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Abstract. Mining frequent patterns is widely used to discover knowl-
edge from a database. It was originally applied on Market Basket Anal-
ysis (MBA) problem which represents the Boolean databases. In those
databases, only the existence of an article (item) in a transaction is
defined. However, in real-world application, the gathered information
generally suffer from imperfections. In fact, a piece of information may
contain two types of imperfection: imprecision and uncertainty. Recently,
a new database representing and integrating those two types of imperfec-
tion were introduced: Evidential Database. Only few works have tackled
those databases from a data mining point of view. In this work, we aim to
discuss evidential itemset’s support. We improve the complexity of state
of art methods for support’s estimation. We also introduce a new sup-
port measure gathering fastness and precision. The proposed methods
are tested on several constructed evidential databases showing perfor-
mance improvement.

Keywords: Evidential database, Support, Frequent evidential item, Ev-
idential Apriori

1 Introduction

The majority of data mining algorithms were applied on precise and certain
data constituting Boolean databases. This type of databases does only indicate
if the considered item I exists or not. However, in real life, gathered information
are suffering from imperfection due to many factors such as acquisition relia-
bility, human errors, information absence, etc. In [1], Lee detailed the two sides
of imperfection that could manifest in a database. Indeed, we may encounter
databases containing imprecise and uncertain information. The imprecision is
relevant to the content of an attribute value of a data object, while the concept
of uncertainty is relevant to the degree of truth of its attribute value. Due to
its adequate imprecision representation, the fuzzy theory [2] was largely used
to extract fuzzy frequent patterns and association rules such that [3–5]. In [1],
the author introduced a new type of databases that handle both imprecise and
uncertain information. This database was modeled via the evidence theory [6, 7],
which offers a certain level of flexibility in imperfect information representation.



Those types of databases were denoted as the Evidential database. The Eviden-
tial database has brought flexibility in handling those imperfect knowledge but
also added complexity in their treatment. Indeed, the number of patterns in-
creases exponentially as far as the number of attributes arises in the database.
Even the literature methodologies for estimating itemset’s support are time con-
sumer, since they rely on Cartesian product. In addition to the time limit, the
proposed support functions such as those introduced in [8, 9], are not that pre-
cise in their estimation. The support computing do not explore all information
that exist in the Basic Belief Assignment. This constraint makes from literature
methods limited in their manner of support estimation and do not extract all ex-
isting frequent patterns within the evidential database. In this work, evidential
data mining problem is tackled by putting our focus on the support estima-
tion. Existing methods for support estimation are highlighted and we propose
a ramification that considerably improves their original performance. We also
introduce a new measure for evidential pattern’s support estimation. This new
measure improves the support computation where all pieces of information in a
Basic Belief Assignment are considered. This method also presents an interesting
performance comparatively to literature methods. We introduce the Evidential
Data mining Algorithm (EDMA) that mines all frequent patterns in an eviden-
tial database. This paper is organized as follows: in section 2, the main principles
of the evidence theory and Smets’s TBM [10] interpretation are presented. In
section 3, several state of art works are scrutinized and we highlight their limits.
We present a ramification for their method that improves the performance. In
section 4, we introduce a new method for evidential itemsets’ support comput-
ing providing more precision in its estimation. Evidential Data Mining Apriori
(EDMA) algorithm for mining frequent evidential patterns is introduced in sec-
tion 5. The performance of this algorithm is studied in section 6. Finally, we
conclude and we sketch issues of future work.

2 Evidence database

In this section, evidential database concepts based on evidence theory formalism
are presented. In the following, we define evidence theory main concepts based
on a Transferable Belief Model interpretation [10].

2.1 Evidence theory

The evidence theory or Dempster-Shafer theory proposes a robust formalism
for modeling uncertainty. In the following, the evidence theory from a Smets’s
Transferable Belief Model (TBM) interpretation is presented. The TBM model
represents quantified beliefs following two distinct levels: (i) a credal level where
beliefs are entertained and quantified by belief functions; (ii) a pignistic level
where beliefs can be used to make decisions and are quantified by probability
functions. The evidence theory is based on several fundamentals such as the



Basic Belief Assignment (BBA). A BBA m is the mapping from elements of the
power set 2θ onto [0, 1]:

m : 2θ −→ [0, 1]

where θ is the frame of discernment. It is the set of possible answers for a
treated problem and is composed of N exhaustive and exclusive hypotheses:

θ = {H1, H2, ...,HN}.

A BBA m do have some constraints such that:∑
A⊆θ

m(A) = 1 (1)

Each subset X of 2θ fulfilling m(X) > 0 is called focal element. Constraining
m(∅) = 0 is the normalized form of a BBA and this corresponds to a closed-
world assumption [11], while allowing m(∅) > 0 corresponds to an open world
assumption [12].

From a BBA another function is commonly defined from 2θ to [0, 1]: Bel(A)
is interpreted as the degree of justified support given to the proposition A by
the available evidence.

Bel(A) =
∑
∅6=B⊆A

m(B) (2)

Generally, in an information fusion problem, not all considered sources share the
same domain (frame of discernment). This constraint prevents from using usual
combination tools [6].

In this case, the Cartesian product allows the combination. Let it be two belief
function m1 and m2 defined respectively in θ1 and θ2, the Cartesian product is
expressed as follows:

mθ
1×2(A×B) = mθ1

1 (A)×mθ2
2 (B). (3)

After source’s combination which integrates the credal stage of the TBM
model, taking decision is necessarily. In [10], the pignistic probability is intro-
duced allowing probabilistic decision from BBA following this formula:

BetP (Hn) =
∑
A⊆θ

|Hn ∩A|
|A|

×m(A) ∀Hn ∈ θ (4)

where |·| is the cardinality operator.

2.2 Evidence database concept

An evidential database stores data that could be perfect or imperfect. Uncer-
tainty in such database is expressed via the evidence theory. An evidential
database, denoted by EDB, with n columns and d lines where each column i
(1 ≤ i ≤ n) has a domain θi of discrete values. Cell of line j and column i
contains a normalized BBA as follows:



mij : 2θi → [0, 1] with

mij(∅) = 0∑
A⊆θi

mij(A) = 1. (5)

Table 1. Evidential transaction database EDB

Transaction Attribute A Attribute B

T1 m(A1) = 0.7 m(B1) = 0.4
m(θA) = 0.3 m(B2) = 0.2

m(θB) = 0.4
T2 m(A2) = 0.3 m(B1) = 1

m(θA) = 0.7

In an evidential database, as shown in Table 1, an item corresponds to a
focal element. An itemset corresponds to a conjunction of focal elements having
different domains. Two different itemsets can be related via the inclusion or
intersection operator. Indeed, the inclusion operator for evidential itemsets is
defined as follows, let X and Y be two evidential itemsets:

X ⊆ Y ⇐⇒ ∀xi ∈ X,xi ⊆ yi.

where xi and yi are the ith element of X and Y . For the same evidential itemsets
X and Y , the intersection operator is defined as follows:

X ∩ Y = Z ⇐⇒ ∀zi ∈ Z, zi ⊆ xi and zi ⊆ yi.

Example 1. In Table 1, A1 is an item and {θA B1} is an itemset such that
A1 ⊂ {θA B1} and A1 ∩ {θA B1} = A1.

3 Evidential patterns’ Cartesian based support

In this section, we present related works in support estimation for evidential
databases. Afterwards, we sketch with an improvement that we propose to im-
prove support’s performance.

3.1 State of art

Evidential data mining does not grasp so much attention. In [13], Hewawasam et
al. proposed a methodology to estimate itemsets’ support and modelize them in
a tree representation: Belief Itemset Tree (BIT). The BIT representation brings
easiness and rapidity for the estimation of the associative rule’s confidence. In



[8], the authors introduced a new approach for itemset support computing and
applied on a Frequent Itemset Maintenance (FIM) problem. All methods [8, 9]
were based on Cartesian product between BBAs.

Let’s study the support of an itemset X =
∏

i∈[1...n]
xi such that xi is an

evidential item belonging to the frame of discernment θi. Since the items do
not share the same discernment frame, any fusion rule cannot be applied. In
the following, we study the belief support introduced by [8] computed by the
following equation:

mj(X) =
∏
xi∈X

mij(xi) (6)

where mj(X) is the Cartesian product of all BBA in the transaction Tj . Thus,
the BBA of the itemset X expressed in the entire EDB database becomes:

mEDB(X) =
1

d

d∑
j=1

mj(X). (7)

Then, the support of X in the EDB database becomes:

SupportEDB(X) = BelEDB(X). (8)

The Cartesian product based support, presented above, fulfills several prop-
erties such that the anti-monotony property. A support measure satisfying the
anti-monotony property consists in the fact that an itemset that contains an in-
frequent itemset is also infrequent. The opposite is true, all itemsets constituting
a frequent one are also frequent. With this satisfied property, the construction
of an Apriori based algorithm becomes straightforward [8].

3.2 Cartesian support ramification

The support measure, proposed by [8, 9] works (shown in equation 6), relies on
Cartesian product. Indeed, the Cartesian product is the suited solution in case
of combining BBAs with different frame of discernment. However, such solution
waste execution time because of its exponential complexity. In this section, we
focus our interest in simplifying the Cartesian based method for performance
requirements.
Let us consider the evidential database EDB and the itemset X = x1 × · · · × xn
constituted by the product of items (focal elements) xi (1 ≤ i ≤ n) of the
exclusive frame of discernment θi. For a transaction Tj , we have:

SupportTj
(X) =

∏
i∈[1...n]

SupportTj
(xi) =

∏
i∈[1...n]

Bel(xi) (9)

SupportEDB(X) =
1

d

d∑
j=1

SupportTj
(X) (10)



Proof. Let us consider two evidential items and focal elements x1 and x2 be-
longing respectively to m1 and m2 BBA such that m = m1 ×m2.

Bel(
∏

xi∈θi,1≤i≤n
xi) =

∑
a⊆x1×···×xn

m1×···×n(a)

Bel(
∏

xi∈θi,1≤i≤n
xi) =

∑
y1⊆x1,...,y2⊆xn

m1(y1)× · · · ×mn(y2)

Bel(
∏

xi∈θi,1≤i≤n
xi) =

∑
y1⊆x1

m1(y1)× · · · ×
∑

yn⊆xn

mn(yn)

Bel(
∏

xi∈θi,1≤i≤n
xi) = Bel(x1)× · · · ×Bel(xn) =

∏
i∈[1...n]

Bel(xi)

In this section, the support is estimated with the Bel(.) function which gen-
erates several limits. In the following, we highlight those limits and we propose
a new support alternative: The precise support.

4 Precise Evidential support estimation

The evidential database relies on representing information’s imperfection with
BBAs. A BBA does not only represent belief accorded to a single hypothesis but
also to their disjunction. As shown in section 2, from a piece of evidence (BBA),
several functions exist allowing the pertinence’s estimation of each hypothesis.
The Bel(.) (see equation 2), used for support definition in section 3, is not the
only function that estimates the degree of veracity of each hypothesis in the
superset 2θ. In addition, Bel(.) estimates the belief by referring only to a small
subset of the superset. This limits make from belief based support measures
imprecise. In the following, we propose a new alternative to the Cartesian support
estimation allowing a precise support computing and a reasonable time scale
performance.

4.1 Support Definition

Let us consider an evidential database EDB and the itemset X = x1 × · · · × xn
constituted by the product of items (focal elements) xi (1 ≤ i ≤ n) of the
exclusive frame of discernment θi. The degree of presence of an item xi in a
transaction Tj (BBA) can be measured as follow:

Pr : 2θ → [0, 1] (11)

Pr(xi) =
∑
x⊆θi

|xi ∩ x|
|x|

×m(x) ∀xi ∈ 2θi . (12)

As illustrated above, the Pr(.) measure allows to compute xi presence in a
single BBA. The Pr measure is equal to the pignistic probability if xi ∈ θi. The
evidential support of an itemset X =

∏
i∈[1...n]

xi is then computed as follows:



SupportPrTj
(X) =

∏
Xi∈θi,i∈[1...n]

Pr(xi) (13)

SupportEDB(X) =
1

d

d∑
j=1

SupportPrTj
(X). (14)

The presented approach for estimating itemset evidential support is sim-
ilar to the support ramification given subsection 3.2. However, our approach
presents several assets where our support inclusion is larger than those given
in respectively [8, 9]. Indeed, in the previous cited works, the authors evaluate
support of X by considering only subsets included in it. The Pr(.) function does
not only consider all subsets of X but also those having intersection with it.
In addition, our support estimation provides an interesting performance since
we get rid of the Cartesian product. The proposed support function sustains
previous works on fuzzy [3] in case of dealing with consonant BBA3. It also
sustains previous data mining works on binary databases [14] when BBA are
certain4. Indeed, previous works have adopted a probabilistic orientation in sup-
port measure in those databases. Support generally represents the frequency of
appearance of an itemset therefore it can be assimilated to an apriori proba-
bility. Interestingly enough, the precise support estimation function keeps the
interesting anti-monotony property useful in infrequent itemsets removal. This
fulfilled condition is proven in the proof given below.

Proof. Assuming an evidential database EDB, let’s consider two evidential item-
sets A and A×X where A ⊂ A×X such that ∀x ∈ A, x ∈ A×X. We aim to
prove that considering this condition Support(A×X) ≤ Support(A).

SupportTj
(A×X) = Pr(A)× Pr(X)

SupportTj (A×X) ≤ SupportTj (A) Since Pr(X) ∈ [0, 1] then
SupportEDB(A×X) ≤ SupportEDB(A)

4.2 Pr Table

Let us consider be the evidential database EDB containing n attributes and d
transactions. The Pr Table is a table having d rows (j ∈ [1, d]) where each one
contains the Pr(.) measure of all items (focal elements) found in the jth trans-
action of EDB. Since the support function can be written as a simple product,
the storage of item’s Pr measure in a table became a need. Table 2 shows the
Pr Table extracted from the evidential database EDB presented in Table 1.

3 A BBA is said consonant if focal elements are nested.
4 A BBA with only one focal element A is said to be certain and is denoted m(A) = 1.



Table 2. Pr Table deduced from the evidential database EDB presented in Table 1

Transaction Transactional Support

T1

PrθA(A1) = 0.85

PrθA(A2) = 0.15

PrθA(θA) = 1.00

PrθB (B1) = 0.60

PrθB (B2) = 0.40

PrθB (θB) = 1.00

T2

PrθA(A1) = 0.35

PrθA(A2) = 0.65

PrθA(θA) = 1.00

PrθB (B1) = 1.00

PrθB (B2) = 0.00

PrθB (θB) = 1.00

5 Evidential Data Mining Apriori: EDMA

In this section, we introduce the Evidential Data Mining Apriori (EDMA) al-
gorithm that allows the extraction of all frequent itemsets. Each itemset having
a support greater than a threshold minsup is considered as frequent and is re-
tained. The proposed algorithm relies on Apriori algorithm basics [14].

Apriori exploits this assumption by generating frequents in a level-wise man-
ner. First of all, it generates frequent items (level 1) by removing those candidates
(items) that do not fulfill the minsup constraint. From the generated frequent, it
seeks to find the frequent of the next level by composing those of the precedent
level. The treatment comes to an end when no further frequent itemset can be
generated.

Algorithm 1 sketches the EDMA algorithm where it generates EIFF the
set of all evidential frequent itemset. Their determination is based on sup-
port measure and minsup constraint fulfillment. This test is performed by Fre-
quent itemset function. The support is computed through the Support estimation
function. As it is shown, the support estimation does not rely anymore on cal-
culating the Cartesian product of BBAs but on stored item’s precise measure
(Pr Table). Since the algorithm sweeps the search space in breadth first man-
ner, EDMA generates candidates (i.e., candidate apriori gen function) from the
frequent itemset of the previous level.
EDMA is an Apriori based algorithm that extract frequent evidential itemsets.
It also generalizes several other known mining algorithms. In case of having only
categorical items (categorical BBA), the database can be viewed as a binary
transaction database. In this case, the proposed EDMA approach for evidential
databases matches the original Apriori algorithm for binary databases [14]. Since
Evidential database represents imprecision and uncertainty, it assimilates fuzzy
databases via consonant BBA. The EDMA approach also assimilates other fuzzy
Apriori algorithms as [3].



Algorithm 1 Evidential Data Mining Apriori (EDMA) algorithm

Require: EDB,minsup, PT, Size EDB
Ensure: EIFF
1: function Support estimation(PT ,
I, d)

2: SupI ← 0
3: for j=1 to d do
4: SupTrans ← 1
5: for all i ∈ Pr(j).focal element

do
6: if Pr(j).focal element ∈ I

then
7: SupTrans ← SupTrans×
Pr(j).value

8: end if
9: end for

10: SupI ← SupI + SupTrans
11: end for
12: return SupI

d

13: end function

14: function Frequent itemset(candidate,
minsup, PT , Size EDB)

15: frequent← ∅
16: for all x in candidate do
17: if Support estimation(PT, x, Size EDB) ≥

minsup then
18: frequent← frequent∪{x}
19: end if
20: end for
21: return frequent
22: end function
23: EIFF ← ∅
24: size← 1
25: candidate← candidate apriori gen(EDB, size)
26: While (candidate 6= ∅)
27: freq ← Frequent itemset (candidate,minsup, PT, Size EDB)
28: size← size+ 1
29: EIFF ← EIFF ∪ freq
30: candidate← candidate apriori gen(EDB, size, freq)
31: End While

6 Experimentation and results

In this section, we present how we managed to conduct our experiments and we
discuss comparative results.

6.1 Evidential database construction

No doubt the evidential database is a real life need where opinions are perfectly
modeled via BBAs. Despite their real contribution, evidential databases are re-
ally hard to find. In [8], tests were conducted on synthetic database. Even in [15],
the constructed BBA includes only one evidential attributes. In [9], the authors
worked on a simplified naval anti-surface warfare scenario. In the following, we
propose a method that allows to construct an evidential database from a numer-
ical dataset. We based our evidential database construction on the ECM [16]
clustering approach. It is an FCM-like algorithm based on the concept of credal
partition, extending those of hard, fuzzy, and possibilistic ones. To derive such
a structure, we minimized the proposed objective function:

JECM (M,V ) ,
d∑
i=1

∑
{j/Aj 6=∅,Aj⊆Ω}

cαjm
β
ijdist

2
ij +

n∑
i=1

δ2mβ
i∅ (15)

subject to: ∑
{j/Aj 6=∅,Aj⊆Ω}

mij +mi∅ = 1 ∀i = 1, d (16)



where mi∅ and mij denote respectively mi(∅) and mi(Aj). M is the credal par-
tition M = (m1, . . . ,md) and V is a cluster centers matrix. cαj is a weighting
coefficient and distij is the Euclidean distance. In our case, the parameters α, β
and δ were fixed to 1, 2 and 10.
In order to obtain evidential databases, this approach was applied on several
UCI benchmarks [17]. The studied datasets are summarized on Table 3 in terms
of number of instances and attributes. For each dataset, the number of focal
elements after ECM application was addressed. The number of focal element is
related to the objective function JECM that was minimized.

Table 3. Data set characteristics

Data set #Instances #Attributes #Focal elements

Iris 150 4 32

Vertebral Column 310 6 64

Diabetes 767 9 144

Abalone 4177 9 40

6.2 Comparative results

We compared the precise support measure integrated into the EDMA algorithm
to [8, 9] support metric. As it is shown in Table 4, the EDMA − Pr attribute
concerns the introduced precise support and EDMA−Bel refers to the defini-
tion given in section 3. For our experimentation, we integrated the ramification
support (subsection 3.2) into EDMA algorithm. Since EDMA relies on a table
that contains all item’s metric values, we created the Belief Table (BT). The
Belief Table has the same structure as that of Pr Table (c.f., subsection 4.2) and
in which we stored all item’s belief. The different approaches were tested on the
obtained evidential database as illustrated in subsection 6.1.

Table 4. Comparative results in terms of the number of frequent pattern number

Support
Iris Diabete Vertebral Column Abalone

EDMA-Pr EDMA-Bel EDMA-Pr EDMA-Bel EDMA-Pr EDMA-Bel EDMA-Pr EDMA-Bel

0.9 15 15 319 191 63 63 767 511

0.8 23 15 1503 319 95 63 767 511

0.7 47 15 5055 671 415 63 767 511

0.6 95 31 9074 1407 799 95 1919 511

Table 4 illustrates the number of extracted frequent patterns from the ev-
idential databases. As is it demonstrated, the Precise support extracts more
frequent pattern than do the based belief method. This result is expected since
the precise metric study all subsets of the superset and considers those having



an intersection with the considered itemset. In addition, the number of patterns
increases normally as far as the considered minsup threshold decreases.

We also conducted performance test on our proposed algorithm which we
compared to an exhaustive approach. This approach consists in the Cartesian
based algorithm (Cart-Bel in Table 5). The Cartesian algorithm computes all
possible BBAs needed for support measure. The complexity of such approach is
exponential with respect to the number of focal elements. Indeed, for an eviden-
tial database with k attributes each one has n focal elements and d transactions.
The arithmetic complexity of a Cartesian product is: C = d× nk = O(nk).

Table 5. Comparative results in terms of execution time (seconds)

Support
Iris Diabete Vertebral Column Abalone

EDMA-Pr EDMA-Bel Cart-Bel ≈ EDMA-Pr EDMA-Bel Cart-Bel ≈ EDMA-Pr EDMA-Bel Cart-Bel ≈ EDMA-Pr EDMA-Bel Cart-Bel ≈

0.9 0.13 0.10 96172 4.72 1.65 6.43E+48 0.74 0.24 3.96E+24 79.71 16.35 9.13E+41

0.8 0.13 0.11 96172 175.94 3.00 6.43E+48 1.11 0.24 3.96E+24 75.77 16.18 9.13E+41

0.7 0.35 0.15 96172 21188 12.69 6.43E+48 15.21 0.24 3.96E+24 77.23 16.24 9.13E+41

0.6 1.01 0.25 96172 12.21E+4 100.56 6.43E+48 116.32 0.33 3.96E+24 337.87 16.21 9.13E+41

Table 5 illustrates a comparative performance tests between EDMA and
Cartesian based algorithm. The proposed algorithm has drastically improved
the results. The extraction performance of the EDMA-Bel is better than those
of EDMA-Pr. This observation can be explained by the number of extracted
patterns. The more frequent candidates are generated, the more time consumed
is.

7 Conclusion

In this paper, we tackled data mining problem in evidential databases. We fo-
cused on evidential itemsets’ support estimation. We detailed state of art eviden-
tial support metric. To drop the original complexity, we proposed a simplification
for their methods by reducing the Cartesian product to a simple belief product.
We also introduced a new support measure that brings precision by analyzing
deeply the BBA’s frame of discernment. The proposed precise measure extracts
more hidden frequent patterns than the usual method. The precise measure was
applied on an Apriori based algorithm and was tested on evidential databases
obtained from transformed datasets. As illustrated in the experimentation sec-
tion, despite the huge item’s number that evidential database contains, EDMA
generates all frequent itemsets in a reasonable execution time. This problem can
be recovered in future works by tackling compact evidential itemset representa-
tion. Indeed, estimating the support exactly from a compact set had never been
more challenging. In addition, quality test for the generated frequent patterns
is a need. In future work, we plan to study the developpement of a new method



to estimate the confidence of evidential associative rules based on our support
measure.
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