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Mining frequent patterns is widely used to discover knowledge from a database. It was originally applied on Market Basket Analysis (MBA) problem which represents the Boolean databases. In those databases, only the existence of an article (item) in a transaction is defined. However, in real-world application, the gathered information generally suffer from imperfections. In fact, a piece of information may contain two types of imperfection: imprecision and uncertainty. Recently, a new database representing and integrating those two types of imperfection were introduced: Evidential Database. Only few works have tackled those databases from a data mining point of view. In this work, we aim to discuss evidential itemset's support. We improve the complexity of state of art methods for support's estimation. We also introduce a new support measure gathering fastness and precision. The proposed methods are tested on several constructed evidential databases showing performance improvement.

Introduction

The majority of data mining algorithms were applied on precise and certain data constituting Boolean databases. This type of databases does only indicate if the considered item I exists or not. However, in real life, gathered information are suffering from imperfection due to many factors such as acquisition reliability, human errors, information absence, etc. In [START_REF] Lee | Imprecise and uncertain information in databases: an evidential approach[END_REF], Lee detailed the two sides of imperfection that could manifest in a database. Indeed, we may encounter databases containing imprecise and uncertain information. The imprecision is relevant to the content of an attribute value of a data object, while the concept of uncertainty is relevant to the degree of truth of its attribute value. Due to its adequate imprecision representation, the fuzzy theory [START_REF] Zadeh | Fuzzy sets[END_REF] was largely used to extract fuzzy frequent patterns and association rules such that [START_REF] Hong | A fuzzy AprioriTid mining algorithm with reduced computational time[END_REF][START_REF] Chen | Mining association rules from imprecise ordinal data[END_REF][START_REF] Lee | Mining fuzzy association rules with multiple minimum supports using maximum constraints[END_REF]. In [START_REF] Lee | Imprecise and uncertain information in databases: an evidential approach[END_REF], the author introduced a new type of databases that handle both imprecise and uncertain information. This database was modeled via the evidence theory [START_REF] Dempster | Upper and lower probabilities induced by multivalued mapping[END_REF][START_REF] Shafer | A Mathematical Theory of Evidence[END_REF], which offers a certain level of flexibility in imperfect information representation.

Those types of databases were denoted as the Evidential database. The Evidential database has brought flexibility in handling those imperfect knowledge but also added complexity in their treatment. Indeed, the number of patterns increases exponentially as far as the number of attributes arises in the database. Even the literature methodologies for estimating itemset's support are time consumer, since they rely on Cartesian product. In addition to the time limit, the proposed support functions such as those introduced in [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF][START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF], are not that precise in their estimation. The support computing do not explore all information that exist in the Basic Belief Assignment. This constraint makes from literature methods limited in their manner of support estimation and do not extract all existing frequent patterns within the evidential database. In this work, evidential data mining problem is tackled by putting our focus on the support estimation. Existing methods for support estimation are highlighted and we propose a ramification that considerably improves their original performance. We also introduce a new measure for evidential pattern's support estimation. This new measure improves the support computation where all pieces of information in a Basic Belief Assignment are considered. This method also presents an interesting performance comparatively to literature methods. We introduce the Evidential Data mining Algorithm (EDMA) that mines all frequent patterns in an evidential database. This paper is organized as follows: in section 2, the main principles of the evidence theory and Smets's TBM [START_REF] Smets | The Transferable Belief Model and other interpretations of Dempster-Shafer's Model[END_REF] interpretation are presented. In section 3, several state of art works are scrutinized and we highlight their limits. We present a ramification for their method that improves the performance. In section 4, we introduce a new method for evidential itemsets' support computing providing more precision in its estimation. Evidential Data Mining Apriori (EDMA) algorithm for mining frequent evidential patterns is introduced in section 5. The performance of this algorithm is studied in section 6. Finally, we conclude and we sketch issues of future work.

Evidence database

In this section, evidential database concepts based on evidence theory formalism are presented. In the following, we define evidence theory main concepts based on a Transferable Belief Model interpretation [START_REF] Smets | The Transferable Belief Model and other interpretations of Dempster-Shafer's Model[END_REF].

Evidence theory

The evidence theory or Dempster-Shafer theory proposes a robust formalism for modeling uncertainty. In the following, the evidence theory from a Smets's Transferable Belief Model (TBM) interpretation is presented. The TBM model represents quantified beliefs following two distinct levels: (i) a credal level where beliefs are entertained and quantified by belief functions; (ii) a pignistic level where beliefs can be used to make decisions and are quantified by probability functions. The evidence theory is based on several fundamentals such as the Basic Belief Assignment (BBA). A BBA m is the mapping from elements of the power set 2 θ onto [0, 1]:

m : 2 θ -→ [0, 1]
where θ is the frame of discernment. It is the set of possible answers for a treated problem and is composed of N exhaustive and exclusive hypotheses:

θ = {H 1 , H 2 , ..., H N }.
A BBA m do have some constraints such that:

A⊆θ m(A) = 1 (1)
Each subset X of 2 θ fulfilling m(X) > 0 is called focal element. Constraining m(∅) = 0 is the normalized form of a BBA and this corresponds to a closedworld assumption [START_REF] Smets | Belief functions[END_REF], while allowing m(∅) > 0 corresponds to an open world assumption [START_REF] Smets | The Transferable Belief Model[END_REF].

From a BBA another function is commonly defined from 2 θ to [0, 1]: Bel(A) is interpreted as the degree of justified support given to the proposition A by the available evidence.

Bel(A) = ∅ =B⊆A m(B) (2) 
Generally, in an information fusion problem, not all considered sources share the same domain (frame of discernment). This constraint prevents from using usual combination tools [START_REF] Dempster | Upper and lower probabilities induced by multivalued mapping[END_REF].

In this case, the Cartesian product allows the combination. Let it be two belief function m 1 and m 2 defined respectively in θ 1 and θ 2 , the Cartesian product is expressed as follows:

m θ 1×2 (A × B) = m θ1 1 (A) × m θ2 2 (B). (3) 
After source's combination which integrates the credal stage of the TBM model, taking decision is necessarily. In [START_REF] Smets | The Transferable Belief Model and other interpretations of Dempster-Shafer's Model[END_REF], the pignistic probability is introduced allowing probabilistic decision from BBA following this formula:

BetP (H n ) = A⊆θ |H n ∩ A| |A| × m(A) ∀H n ∈ θ (4) 
where |•| is the cardinality operator.

Evidence database concept

An evidential database stores data that could be perfect or imperfect. Uncertainty in such database is expressed via the evidence theory. An evidential database, denoted by EDB, with n columns and d lines where each column i (1 ≤ i ≤ n) has a domain θ i of discrete values. Cell of line j and column i contains a normalized BBA as follows:

m ij : 2 θi → [0, 1] with    m ij (∅) = 0 A⊆θi m ij (A) = 1. ( 5 
)
Table 1. Evidential transaction database EDB

Transaction Attribute A Attribute B T1 m(A1) = 0.7 m(B1) = 0.4 m(θA) = 0.3 m(B2) = 0.2 m(θB) = 0.4 T2 m(A2) = 0.3 m(B1) = 1 m(θA) = 0.7
In an evidential database, as shown in Table 1, an item corresponds to a focal element. An itemset corresponds to a conjunction of focal elements having different domains. Two different itemsets can be related via the inclusion or intersection operator. Indeed, the inclusion operator for evidential itemsets is defined as follows, let X and Y be two evidential itemsets:

X ⊆ Y ⇐⇒ ∀x i ∈ X, x i ⊆ y i .
where x i and y i are the i th element of X and Y . For the same evidential itemsets X and Y , the intersection operator is defined as follows:

X ∩ Y = Z ⇐⇒ ∀z i ∈ Z, z i ⊆ x i and z i ⊆ y i . Example 1. In Table 1, A 1 is an item and {θ A B 1 } is an itemset such that A 1 ⊂ {θ A B 1 } and A 1 ∩ {θ A B 1 } = A 1 .

Evidential patterns' Cartesian based support

In this section, we present related works in support estimation for evidential databases. Afterwards, we sketch with an improvement that we propose to improve support's performance.

State of art

Evidential data mining does not grasp so much attention. In [START_REF] Hewawasam | Rule mining and classification in the presence of feature level and class label ambiguities[END_REF], Hewawasam et al. proposed a methodology to estimate itemsets' support and modelize them in a tree representation: Belief Itemset Tree (BIT). The BIT representation brings easiness and rapidity for the estimation of the associative rule's confidence. In [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF], the authors introduced a new approach for itemset support computing and applied on a Frequent Itemset Maintenance (FIM) problem. All methods [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF][START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF] were based on Cartesian product between BBAs.

Let's study the support of an itemset

X = i∈[1...n]
x i such that x i is an evidential item belonging to the frame of discernment θ i . Since the items do not share the same discernment frame, any fusion rule cannot be applied. In the following, we study the belief support introduced by [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF] computed by the following equation:

m j (X) = xi∈X m ij (x i ) (6) 
where m j (X) is the Cartesian product of all BBA in the transaction T j . Thus, the BBA of the itemset X expressed in the entire EDB database becomes:

m EDB (X) = 1 d d j=1 m j (X). (7) 
Then, the support of X in the EDB database becomes:

Support EDB (X) = Bel EDB (X). (8) 
The Cartesian product based support, presented above, fulfills several properties such that the anti-monotony property. A support measure satisfying the anti-monotony property consists in the fact that an itemset that contains an infrequent itemset is also infrequent. The opposite is true, all itemsets constituting a frequent one are also frequent. With this satisfied property, the construction of an Apriori based algorithm becomes straightforward [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF].

Cartesian support ramification

The support measure, proposed by [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF][START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF] works (shown in equation 6), relies on Cartesian product. Indeed, the Cartesian product is the suited solution in case of combining BBAs with different frame of discernment. However, such solution waste execution time because of its exponential complexity. In this section, we focus our interest in simplifying the Cartesian based method for performance requirements. Let us consider the evidential database EDB and the itemset

X = x 1 × • • • × x n constituted by the product of items (focal elements) x i (1 ≤ i ≤ n) of the exclusive frame of discernment θ i .
For a transaction T j , we have:

Support Tj (X) = i∈[1...n] Support Tj (x i ) = i∈[1...n] Bel(x i ) (9) Support EDB (X) = 1 d d j=1
Support Tj (X) [START_REF] Smets | The Transferable Belief Model and other interpretations of Dempster-Shafer's Model[END_REF] Proof. Let us consider two evidential items and focal elements x 1 and x 2 belonging respectively to m 1 and m 2 BBA such that m = m 1 × m 2 .

Bel(

xi∈θi,1≤i≤n

x i ) = a⊆x1ו••×xn m 1ו••×n (a)
Bel(

xi∈θi,1≤i≤n

x i ) = y1⊆x1,...,y2⊆xn

m 1 (y 1 ) × • • • × m n (y 2 )
Bel(

xi∈θi,1≤i≤n

x i ) = y1⊆x1 m 1 (y 1 ) × • • • × yn⊆xn m n (y n ) Bel( xi∈θi,1≤i≤n x i ) = Bel(x 1 ) × • • • × Bel(x n ) = i∈[1...n]
Bel(x i )

In this section, the support is estimated with the Bel(.) function which generates several limits. In the following, we highlight those limits and we propose a new support alternative: The precise support.

Precise Evidential support estimation

The evidential database relies on representing information's imperfection with BBAs. A BBA does not only represent belief accorded to a single hypothesis but also to their disjunction. As shown in section 2, from a piece of evidence (BBA), several functions exist allowing the pertinence's estimation of each hypothesis. The Bel(.) (see equation 2), used for support definition in section 3, is not the only function that estimates the degree of veracity of each hypothesis in the superset 2 θ . In addition, Bel(.) estimates the belief by referring only to a small subset of the superset. This limits make from belief based support measures imprecise. In the following, we propose a new alternative to the Cartesian support estimation allowing a precise support computing and a reasonable time scale performance.

Support Definition

Let us consider an evidential database EDB and the itemset X = x 1 × • • • × x n constituted by the product of items (focal elements) x i (1 ≤ i ≤ n) of the exclusive frame of discernment θ i . The degree of presence of an item x i in a transaction T j (BBA) can be measured as follow:

P r : 2 θ → [0, 1] ( 11 
) P r(x i ) = x⊆θi |x i ∩ x| |x| × m(x) ∀x i ∈ 2 θi . ( 12 
)
As illustrated above, the P r(.) measure allows to compute x i presence in a single BBA. The P r measure is equal to the pignistic probability if

x i ∈ θ i . The evidential support of an itemset X = i∈[1...n]
x i is then computed as follows:

Support P r Tj (X) = Xi∈θi,i∈[1...n] P r(x i ) ( 13 
)
Support EDB (X) = 1 d d j=1 Support P r Tj (X). ( 14 
)
The presented approach for estimating itemset evidential support is similar to the support ramification given subsection 3.2. However, our approach presents several assets where our support inclusion is larger than those given in respectively [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF][START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF]. Indeed, in the previous cited works, the authors evaluate support of X by considering only subsets included in it. The P r(.) function does not only consider all subsets of X but also those having intersection with it. In addition, our support estimation provides an interesting performance since we get rid of the Cartesian product. The proposed support function sustains previous works on fuzzy [START_REF] Hong | A fuzzy AprioriTid mining algorithm with reduced computational time[END_REF] in case of dealing with consonant BBA3 . It also sustains previous data mining works on binary databases [START_REF] Agrawal | Fast algorithm for mining association rules[END_REF] when BBA are certain 4 . Indeed, previous works have adopted a probabilistic orientation in support measure in those databases. Support generally represents the frequency of appearance of an itemset therefore it can be assimilated to an apriori probability. Interestingly enough, the precise support estimation function keeps the interesting anti-monotony property useful in infrequent itemsets removal. This fulfilled condition is proven in the proof given below.

Proof. Assuming an evidential database EDB, let's consider two evidential itemsets A and A × X where A ⊂ A × X such that ∀x ∈ A, x ∈ A × X. We aim to prove that considering this condition Support(A × X) ≤ Support(A). Support Tj (A × X) = P r(A) × P r(X) Support Tj (A × X) ≤ Support Tj (A) Since P r(X) ∈ [0, 1] then Support EDB (A × X) ≤ Support EDB (A)

Pr Table

Let us consider be the evidential database EDB containing n attributes and d transactions. The Pr Table is a table having d rows (j ∈ [1, d]) where each one contains the P r(.) measure of all items (focal elements) found in the j th transaction of EDB. Since the support function can be written as a simple product, the storage of item's P r measure in a table became a need. Table 2 shows the Pr Table extracted from the evidential database EDB presented in Table 1. 1 Transaction Transactional Support T1 P r θ A (A1) = 0.85 P r θ A (A2) = 0.15 P r θ A (θA) = 1.00 P r θ B (B1) = 0.60 P r θ B (B2) = 0.40 P r θ B (θB) = 1.00 T2 P r θ A (A1) = 0.35 P r θ A (A2) = 0.65 P r θ A (θA) = 1.00 P r θ B (B1) = 1.00 P r θ B (B2) = 0.00 P r θ B (θB) = 1.00

Evidential Data Mining Apriori: EDMA

In this section, we introduce the Evidential Data Mining Apriori (EDMA) algorithm that allows the extraction of all frequent itemsets. Each itemset having a support greater than a threshold minsup is considered as frequent and is retained. The proposed algorithm relies on Apriori algorithm basics [START_REF] Agrawal | Fast algorithm for mining association rules[END_REF].

Apriori exploits this assumption by generating frequents in a level-wise manner. First of all, it generates frequent items (level 1) by removing those candidates (items) that do not fulfill the minsup constraint. From the generated frequent, it seeks to find the frequent of the next level by composing those of the precedent level. The treatment comes to an end when no further frequent itemset can be generated.

Algorithm 1 sketches the EDMA algorithm where it generates EIF F the set of all evidential frequent itemset. Their determination is based on support measure and minsup constraint fulfillment. This test is performed by Frequent itemset function. The support is computed through the Support estimation function. As it is shown, the support estimation does not rely anymore on calculating the Cartesian product of BBAs but on stored item's precise measure (Pr Table ). Since the algorithm sweeps the search space in breadth first manner, EDMA generates candidates (i.e., candidate apriori gen function) from the frequent itemset of the previous level. EDMA is an Apriori based algorithm that extract frequent evidential itemsets. It also generalizes several other known mining algorithms. In case of having only categorical items (categorical BBA), the database can be viewed as a binary transaction database. In this case, the proposed EDMA approach for evidential databases matches the original Apriori algorithm for binary databases [START_REF] Agrawal | Fast algorithm for mining association rules[END_REF]. Since Evidential database represents imprecision and uncertainty, it assimilates fuzzy databases via consonant BBA. The EDMA approach also assimilates other fuzzy Apriori algorithms as [START_REF] Hong | A fuzzy AprioriTid mining algorithm with reduced computational time[END_REF].

Algorithm 1 Evidential Data Mining Apriori (EDMA) algorithm

Require: EDB, minsup, P T, Size EDB Ensure: EIFF 1: function Support estimation(P T , I, d) 2:

SupI ← 0 3: for j=1 to d do 4:

SupT rans ← 1 5:

for all i ∈ P r(j).f ocal element do 6:

if P r(j).f ocal element ∈ I then 7:

SupT rans ← SupT rans× P r(j 

Experimentation and results

In this section, we present how we managed to conduct our experiments and we discuss comparative results.

Evidential database construction

No doubt the evidential database is a real life need where opinions are perfectly modeled via BBAs. Despite their real contribution, evidential databases are really hard to find. In [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF], tests were conducted on synthetic database. Even in [START_REF] Bach Tobji | Frequent itemset mining from databases including one evidential attribute[END_REF], the constructed BBA includes only one evidential attributes. In [START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF], the authors worked on a simplified naval anti-surface warfare scenario. In the following, we propose a method that allows to construct an evidential database from a numerical dataset. We based our evidential database construction on the ECM [START_REF] Masson | ECM: An evidential version of the fuzzy c-means algorithm[END_REF] clustering approach. It is an FCM-like algorithm based on the concept of credal partition, extending those of hard, fuzzy, and possibilistic ones. To derive such a structure, we minimized the proposed objective function:

J ECM (M, V ) d i=1 {j/Aj =∅,Aj ⊆Ω} c α j m β ij dist 2 ij + n i=1 δ 2 m β i∅ ( 15 
)
subject to:

{j/Aj =∅,Aj ⊆Ω} m ij + m i∅ = 1 ∀i = 1, d (16) 
where m i∅ and m ij denote respectively m i (∅) and m i (A j ). M is the credal partition M = (m 1 , . . . , m d ) and V is a cluster centers matrix. c α j is a weighting coefficient and dist ij is the Euclidean distance. In our case, the parameters α, β and δ were fixed to 1, 2 and 10. In order to obtain evidential databases, this approach was applied on several UCI benchmarks [START_REF] Frank | UCI machine learning repository[END_REF]. The studied datasets are summarized on Table 3 in terms of number of instances and attributes. For each dataset, the number of focal elements after ECM application was addressed. The number of focal element is related to the objective function J ECM that was minimized. 

Comparative results

We compared the precise support measure integrated into the EDMA algorithm to [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF][START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF] support metric. As it is shown in Table 4, the EDM A -P r attribute concerns the introduced precise support and EDM A -Bel refers to the definition given in section 3. For our experimentation, we integrated the ramification support (subsection 3. Table 4 illustrates the number of extracted frequent patterns from the evidential databases. As is it demonstrated, the Precise support extracts more frequent pattern than do the based belief method. This result is expected since the precise metric study all subsets of the superset and considers those having an intersection with the considered itemset. In addition, the number of patterns increases normally as far as the considered minsup threshold decreases.

We also conducted performance test on our proposed algorithm which we compared to an exhaustive approach. This approach consists in the Cartesian based algorithm (Cart-Bel in Table 5). The Cartesian algorithm computes all possible BBAs needed for support measure. The complexity of such approach is exponential with respect to the number of focal elements. Indeed, for an evidential database with k attributes each one has n focal elements and d transactions. The arithmetic complexity of a Cartesian product is: Table 5 illustrates a comparative performance tests between EDMA and Cartesian based algorithm. The proposed algorithm has drastically improved the results. The extraction performance of the EDMA-Bel is better than those of EDMA-Pr. This observation can be explained by the number of extracted patterns. The more frequent candidates are generated, the more time consumed is.

C = d × n k = O(n k ).

Conclusion

In this paper, we tackled data mining problem in evidential databases. We focused on evidential itemsets' support estimation. We detailed state of art evidential support metric. To drop the original complexity, we proposed a simplification for their methods by reducing the Cartesian product to a simple belief product. We also introduced a new support measure that brings precision by analyzing deeply the BBA's frame of discernment. The proposed precise measure extracts more hidden frequent patterns than the usual method. The precise measure was applied on an Apriori based algorithm and was tested on evidential databases obtained from transformed datasets. As illustrated in the experimentation section, despite the huge item's number that evidential database contains, EDMA generates all frequent itemsets in a reasonable execution time. This problem can be recovered in future works by tackling compact evidential itemset representation. Indeed, estimating the support exactly from a compact set had never been more challenging. In addition, quality test for the generated frequent patterns is a need. In future work, we plan to study the developpement of a new method to estimate the confidence of evidential associative rules based on our support measure.

Table 2 .

 2 Pr Table deduced from the evidential database EDB presented in Table

  While (candidate = ∅) 27: f req ← F requent itemset (candidate, minsup, P T, Size EDB) 28: size ← size + 1 29: EIFF ← EIFF ∪ f req 30: candidate ← candidate apriori gen(EDB, size, f req) 31: End While

			14: function Frequent itemset(candidate,
				minsup, P T , Size EDB)
			15:	f requent ← ∅
			16:	for all x in candidate do
			17:	if Support estimation(P T, x, Size EDB) ≥
				minsup then
			18:	f requent ← f requent∪{x}
			19:	end if
			20:	end for
			21:	return f requent
			22: end function
			23: EIFF ← ∅
		).value	24: size ← 1
	8:	end if	25: candidate ← candidate apriori gen(EDB, size)
	9:	end for	26:
	10:	SupI ← SupI + SupT rans	
	11:	end for	
	12:	return Sup I d	
	13: end function	

Table 3 .

 3 Data set characteristics

	Data set	#Instances #Attributes #Focal elements
	Iris	150	4	32
	Vertebral Column	310	6	64
	Diabetes	767	9	144
	Abalone	4177	9	40

  2) into EDMA algorithm. Since EDMA relies on a table that contains all item's metric values, we created the Belief Table (BT). The Belief Table has the same structure as that of Pr Table (c.f., subsection 4.2) and in which we stored all item's belief. The different approaches were tested on the obtained evidential database as illustrated in subsection 6.1.

Table 4 .

 4 Comparative results in terms of the number of frequent pattern number

	Support	Iris	Diabete	Vertebral Column	Abalone
		EDMA-Pr	EDMA-Bel	EDMA-Pr	EDMA-Bel	EDMA-Pr	EDMA-Bel	EDMA-Pr	EDMA-Bel
	0.9	15	15	319	191	63	63	767	511
	0.8	23	15	1503	319	95	63	767	511
	0.7	47	15	5055	671	415	63	767	511
	0.6	95	31	9074	1407	799	95	1919	511

Table 5 .

 5 Comparative results in terms of execution time (seconds)

	Support		Iris			Diabete	Vertebral Column	Abalone
		EDMA-Pr EDMA-Bel Cart-Bel ≈	EDMA-Pr	EDMA-Bel Cart-Bel ≈ EDMA-Pr EDMA-Bel Cart-Bel ≈ EDMA-Pr EDMA-Bel Cart-Bel ≈
	0.9	0.13	0.10	96172	4.72	1.65 6.43E+48 0.74	0.24 3.96E+24 79.71	16.35 9.13E+41
	0.8	0.13	0.11	96172	175.94	3.00 6.43E+48 1.11	0.24 3.96E+24 75.77	16.18 9.13E+41
	0.7	0.35	0.15	96172	21188	12.69 6.43E+48 15.21	0.24 3.96E+24 77.23	16.24 9.13E+41
	0.6	1.01	0.25	96172 12.21E+4 100.56 6.43E+48 116.32	0.33 3.96E+24 337.87 16.21 9.13E+41

A BBA is said consonant if focal elements are nested.

A BBA with only one focal element A is said to be certain and is denoted m(A) = 1.