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Abstract. This paper investigates a multi-criteria decision making met-
hod in an uncertain environment, where the uncertainty is represented
using the belief function framework. Indeed, we suggest a novel method-
ology that tackles the challenge of introducing uncertainty in both the
criterion and the alternative levels. On the one hand and in order to
judge the criteria weights, our proposed approach suggests to use prefer-
ence relations to elicitate the decision maker assessments. Therefore, the
Analytic Hierarchy Process with qualitative belief function framework
is adopted to get adequate numeric representation. On the other hand,
our model assumes that the evaluation of each alternative with respect
to each criterion may be imperfect and it can be represented by a basic
belief assignment. That is why, a new aggregation procedure that is able
to rank alternatives is introduced.

1 Introduction

In real life decision making, the decision maker is faced with many situations
in which he has to make a decision between different alternatives. However,
the most preferable one is not always easily selected. Thus, he often needs to
make judgments about alternatives that are evaluated on the basis of different
criteria [16]. In this context, the problem is called a multi-criteria decision making
(MCDM) problem.

Within this MCDM framework, a large number of methods has been pro-
posed. On the one hand, the outranking approach introduced by Roy, where
some methods like Electre and Promethee are developed [4]. On the other hand,
the value and utility theory approaches mainly started by Keeney and Raiffa
[8], and then implemented in a number of methods. However, classical methods
applying both multi-attribute utility theory and outranking model do not take
into account imperfection in their parameters. To cope with this problem, several
approaches have been developed. The idea was to combine theories managing
uncertainty or imprecision, such as probability theory, belief function theory and
fuzzy set theory, with MCDM methods [2], [9].

In this context, belief function theory has shown its efficiency. In fact, there
are several MCDM approaches which have been developed such as DS/AHP
approach [2], belief Analytic Hierarchy Process (AHP) method [5], [7], etc.



In spite of many advantages of the presented approaches, they have a crucial
limitation. First, they still treat criteria weights and alternatives performances
in the same way. By nature, the criteria weights are relative to each other. There-
fore, it is reasonable to elicit their importance by pair-wise comparison. However,
the evaluation of an alternative on each criterion should be independent of each
other. Second, the relative importance of criteria can be provided by the expert
based on some previous experience or obtained by some elaborated approach.
As a result, uncertain, imprecise and subjective data are usually present which
make the decision-making process complex and challenging. Therefore, we con-
sider MCDM problem for which expert estimates the evaluation of alternatives
according to ordinal criteria. The information provided can be uncertain and/or
imprecise.

Based on these reasons, we suggest a new methodology for MCDM problems
based on belief function theory. In fact, our model integrates one of the most
important weight calculation procedures with a new ranking process of alterna-
tives in an uncertain environment. In the proposed methodology, AHP with its
qualitative belief functions extension is applied to evaluate criteria and weighting
them in the presence of uncertainty. Then, in the second step, a fusion procedure
is proposed to aggregate the alternatives priorities and the criteria weights.

In this paper, section 2 and 3 describe an overview of the basic concepts of
respectively the belief function theory and the qualitative belief function meth-
ods. Then, in the main body of the paper, we present our new approach namely
belief MCDM method. Finally, our method will be illustrated by an example.

2 Belief Function Theory

2.1 Basic Concepts

Let Θ be the frame of discernment representing a finite set of elementary hy-
potheses related to a problem domain. We denote by 2Θ the set of all the subsets
of Θ [12].

The impact of a piece of evidence on the different subsets of the frame of
discernment Θ is represented by the so-called basic belief assignment (bba),
denoted by m [12]: ∑

A⊆Θ

m(A) = 1. (1)

For each A ⊆ Θ, the valuem(A), named a basic belief mass (bbm), represents the
portion of belief committed exactly to the event A. The events having positive
bbm’s are called focal elements. Let F(m) ⊆ 2Θ be the set of focal elements of
the bba m.

Associated with m is the belief function (bel) is defined for A ⊆ Θ and A ̸= ∅
as:

bel(A) =
∑

∅̸=B⊆A

m(B) and bel(∅) = 0. (2)



The degree of belief bel(A) given to a subset A of the frame Θ is defined as
the sum of all the basic belief masses given to subsets that support A without
supporting its negation.

2.2 Combination

In the Transferable Belief Model (TBM), one interpretation of the belief function
theory [13], the basic belief assignments induced from distinct pieces of evidence
can be combined using the conjunctive rule [13]:

(m1 ∩⃝m2)(A) =
∑

B,C⊆Θ,B∩C=A

m1(B)m2(C), ∀A ⊆ Θ. (3)

m1 ∩⃝m2 is the bba representing the combined impact of two pieces of evidence.

2.3 Discounting

The technique of discounting allows to take into consideration the reliability of
the information source that generates the bba m. Let β = 1−α be the degree of
reliability (α ∈ [0, 1]) assigned to a particular belief function. If the source is not
fully reliable, the bba it generates is “discounted” into a new less informative
bba denoted mα:

mα(A) = (1− α)m(A),∀A ⊂ Θ (4)

mα(Θ) = α+ (1− α)m(Θ) (5)

2.4 Uncertainty Measures

In the case of the belief function framework, the bba is defined on an extension
of the powerset: 2Θ and not only on Θ. In the powerset, each element is not
equivalent in terms of precision. Indeed, θi ⊂ Θ (i ∈ {1, 2}) is more precise than
θ1 ∪ θ2 ⊆ Θ. In order to try to quantify this imprecision, different uncertainty
measures (UM) have been defined, such as the composite measures introduced
by Pal et al. [10] such as:

H(m) =
∑

A∈F(m)

m(A) log2(
|A|

m(A)
). (6)

The interesting feature of H(m) is that it has a unique maximum.

2.5 Decision Making

The TBM considers that holding beliefs and making decision are distinct pro-
cesses. Hence, it proposes a two level model: (1) The credal level where beliefs
are entertained and represented by belief functions. (2) The pignistic level where
beliefs are used to make decisions and represented by probability functions called
the pignistic probabilities, denoted BetP [14]:

BetP (A) =
∑
B⊆Θ

|A ∩B|
|B|

m(B)

(1−m(∅))
,∀A ∈ Θ (7)



3 Qualitative Belief Function method

The problem of eliciting qualitatively expert opinions and generating basic belief
assignments have been addressed by many researchers [1] [15] [6]. In this subsec-
tion, we present the approach of Ben Yaghlane et al. [1], since in next section we
will use this method to elicitate the expert preferences. This method is chosen
since it handles the issue of inconsistency in the pair-wise comparisons. Also,
the originality of this method is its ability to generate quantitative information
from qualitative preferences only.

Giving two alternatives, an expert can usually express which of the proposi-
tions is more likely to be true, thus they used two binary preference relations:
the preference and the indifference relations, defined as follows:

a ≻ b⇔ bel(a)− bel(b) ≥ ε (8)

a ∼ b⇔ |bel(a)− bel(b)| ≤ ε (9)

ε is considered to be the smallest gap that the expert may discern between the
degrees of belief in two propositions a and b. Note that ε is a constant specified
by the expert before beginning the optimization process.

Then, a mono-objective technique was used to solve such constrained opti-
mization problem:

MaxmUM(m)
s.t.

bel(a)− bel(b) ≥ ε (a is prefered to b)
bel(a)− bel(b) ≤ ε (a is indifferent to b)
bel(a)− bel(b) ≥ −ε (a is indifferent to b)∑

a∈F(m)

m(a) = 1,m(a) ≥ 0,∀a ⊆ Θ;m(∅) = 0,

(10)

where the first, second and third constraints are derived from the previous
equations. The last constraint ensures that the total amount of masses allocated
to the focal elements of the bba is equal to one, also it specifies that masses are
non negative and imposes that the bba to be generated must be normalized.

A crucial step that is needed before beginning the task of generating belief
functions, is the identification of the candidate alternatives.

4 MCDM Method Based on Qualitative Assessments and
Relational Belief

The new framework called Belief MCDM method mixes a multi-criteria decision
making method inspired by the Analytic Hierarchy Process (AHP) and belief
function theory. The originality of our approach is to apply the qualitative AHP
to compute the importance of criteria and to replace the aggregation step by



a new fusion process. Its main aim is to take into account both imprecision
and uncertain assessments. In other words, the assumption was made that the
performances of alternatives are provided on the form of bba while the weights
of criteria are introduced using qualitative assessment and preference relations.

4.1 Assigning Criteria Weight Via Qualitative AHP.

In most multi-criteria methods, a numerical value is assigned to each criterion ex-
pressing its relative importance. This reflects the corresponding criterion weight.
In fact, there are many elicitation techniques, but the AHP has some advantages.
One of the most important advantage of the AHP attributes to its pair-wise com-
parison scheme.

In fact, the AHP method is a decision-making technique developed by Saaty
[11]. This method elicits preferences through pair-wise comparisons which are
constructed from decision maker’s answers. Indeed, the expert can use both
objective information about the elements as well as subjective opinions about
the elements’ relative meaning and importance. The responses to the pair-wise
comparison question use a nine-point scale [11], which translates the preferences
of a decision maker into numbers. An eigenvector method is applied to solve
the reciprocal matrix for determining the criteria importance and alternative
performance. The simple additive weighting method is used to calculate the
utility for each alternative across all criteria.

However, standard AHP do not handle the problem of uncertainty. Therefore,
in the proposed methodology, AHP with its belief extension, namely qualitative
AHP, is applied to obtain more decisive judgments by prioritizing the evaluation
criteria and weighting them in the presence of imperfection.

Step 1: Let Ω be a set of criteria where Ω = {c1, . . . , cm}. In this first
stage, qualitative AHP computations are used for forming a pair-wise compari-
son matrix in order to determine the criteria weights using preferences relations
only. Thus to express his preferences, the decision maker has only to express his
opinions qualitatively, based on knowledge and experience that he provides in
response to a given question rather than direct quantitative information. There-
fore, he only selects the related linguistic variable using preference modeling
instead of using a nine-point scale. It is illustrated in Table 1.

Table 1. Preferences relation matrix

c1 c2 . . . cm
c1 - P12 . . . P1m

c2 - - . . . P2m

. . . - - - . . .
cm - - - -

In this table, Pij is a preference assessment. It may be:



1. a strict preference relation ≻ iff (ci ≻ cj) ∧ ¬(cj ≻ ci)

2. an indifference relation ∼ iff (ci ≻ cj) ∧ (cj ≻ ci)

3. an unknown relation (no relation is given).

Under this approach, the expert is not constrained to quantify the degree of
preferences and to fill all pair-wise comparisons matrix. He is able to express his
preferences freely.

Step 2: Once the pair-wise comparison matrix is complete, our objective is
then to compute the importance of each criterion. In fact, within our model, we
propose to transform these preference relations into numerical values using the
belief function framework. By adopting our approach, we try to closely imitate
the expert reasoning without adding any additional information. Therefore, we
suggest to apply Ben Yaghlane et al. approach [1] to convert the preferences re-
lations into constraints of an optimization problem whose resolution, according
to some uncertainty measures (UM) such as H (Equation 6), allows the gener-
ation of the least informative or the most uncertain belief functions. Indeed, we
assume that the criterion weight is then described by a basic belief assignment
and it is denoted by mΩ . It can then be determined by the resolution of an
optimization problem as defined is the previous section (Equation 10).

Furthermore, the proposed method addresses the problem of inconsistency.
In fact, if the preference relations are consistent, then the optimization problem
is feasible. Otherwise, no solutions will be found.

Finally, to obtain a relative importance of each criterion, we propose to trans-
form the obtained bba mΩ into pignistic probabilities:

BetPΩ(ci) = ωi,∀i = 1, . . . ,m (11)

4.2 Aggregation of the Assessments with Respect to all Criteria for
each Alternative.

Step 3: In our proposed method the evaluation of each alternative to each cri-
terion is introduced as a basic belief assignment (bba). This comes from the fact
that in most cases the input data cannot be defined within a reasonable degree
of accuracy. In Table 2, a belief decision matrix representing all the alternatives’
performances with respect to each criterion is introduced, where mi

j represents
the belief assessment of each alternative aj with respect to each criterion ci.

Table 2. Belief decision matrix

Criteria

Alternatives c1 c2 ... cm
a1 m1

1 m2
1 ... mm

1

...

an



Under this approach, we consider MCDM problem, where alternatives are
evaluated with regard to ordinal criteria. Since it is generally thought that or-
dinal criteria are difficult to assess directly and the decision maker is required
to give an accurate evaluation of the performances of all the alternatives on the
given criteria, which is usually inaccurate, unreliable or even unavailable, espe-
cially in an uncertain environment. For the sake of simplicity, we assume that
all criteria have the same assessment grades. In line with this assumption, many
methods were defined such as the evidential reasoning approach and the AHP
method. Let X be the set of assessment grades: X = {x1, . . . , xh}.

To summarize, alternative aj is assessed on each criterion ci, using the same
set of the ordinal assessment grades xk which are required to be mutually ex-
clusive and exhaustive. The ordinal assessment grades constitute our frame of
discernment in the belief function theory.

Step 4: By using standard MCDM method, the performance matrix is ob-
tained by multiplying the weighting vector by the decision matrix. Therefore, in
this stage, we must update the alternative evaluations (bbas) with the impor-
tance of their respective criteria. In this context, our approach proposes to regard
the criteria weight as a measure of reliability [5]. In fact, the idea is to measure
most heavily the bba evaluated according to the most importance criteria and
conversely for the less important ones. If we have ci an evaluation criterion, then
we get βi its corresponding measure of reliability.

βi =
ωi

maxk ωk
∀i, k = {1, . . . ,m} (12)

Then, we get [5]:

mi,αi

j (xk) = βim
i
j(xk), ∀xk ⊂ X. (13)

mi,αi

j (X) = (1− βi) + βim
i
j(X). (14)

where mi
j is the relative bba for the alternative aj , and we denote αi = 1− βi.

Step 5: Using Equation 13 and 14, an overall performance matrix is calcu-
lated. In this step, the main difficulty of our approach is how to combine and
to compare different bbas. An intuitive definition of the strategy is to combine
them using the conjunctive rule of combination, since we can assume that for
each alternative performance is considered as a distinct source of evidence, and
provides opinions towards the preferences of particular alternative. In addition,
the obtained bba is defined on a common frame of discernment. So, the conjunc-
tive rule may then be applied. This rule is used in order to aggregate the bbas
induced by the expert for every alternative on all the criteria. The objective is
to yield a combined bba that represents the performance of every alternative on
the overall objective:

maj = ∩⃝mi,αi

j , i = {1, ...,m} (15)

Step 6: The results of the calculations are in the form of a bba. So each
alternative is characterized by a single bba. As defined above, the main prob-
lem arises in comparing these bbas. In the present work, we consider first belief



dominance (FBD) [3] in order to compare evaluations expressed by belief func-
tions. By using this concept, we obtain a preference relation between each pair
of alternatives. First, we start by computing the ascending belief function noted−→
beli induced by mai and associating to the evaluation of alternative ai which is

defined such as:
−→
beli(Ak) =

∑
C⊆Ak

mai(C) for all Ak ∈
−→
S (X), where k is the

number of assessments grades, Ak = {x1, . . . , xk}, and
−→
S (X) denote the set of

{A1, . . . , Al}.
Then, the descending belief function noted

←−
beli induced by mai and as-

sociating to the evaluation of alternative ai is defined such as:
←−
beli(Bk) =∑

C⊆Bk
mai(C) for all Bk ∈

←−
S (X), where Bk = {xk, . . . , x1}.

Thus, a bba mai
is said to dominate a bba maj

if and only if the following
conditions are satisfied simultaneously:

– For all Ak ∈
−→
S (X)

−→
beli(Ak) ≤

−→
belj(Ak)

– For all Bk ∈
←−
S (X)

←−
beli(Bk) ≥

−→
belj(Bk)

The first condition means that there is greater belief mass of
−→
belj(Ak) than

that of
−→
beli(Ak). On the contrary, the second condition means that there is

greater belief mass of
←−
beli(Bk) than that of

←−
belj(Bk). In the case where the two

conditions are not verified simultaneously, mi does not dominate mj (FBD).
Furthermore, it permits establishing four partial preference situations:

– if mi FBD mj and mj FBD mi, then mi is indifferent from mj .
– if mi FBD mj and mj FBD mi, then mi is strictly preferred to mj .
– if mi FBD mj and mj FBD mi, then mj is strictly preferred to mi.
– if mi FBD mj and mj FBD mi, then mi and mj are incomparable.

Once these relations are determined, the decision maker can then identify
the subsets of best alternatives.

To summarize, Figure 1 shows the decision maker’s process of the proposed
approach.

Fig. 1. Decision making process



5 Illustrative Example

In this section, we apply our proposed MCDM method to deal with a relatively
simple decision problem of purchasing a car. The problem involves three cri-
teria: Ω = {Comfort (c1), Style (c2), Fuel efficiency (c3)}, and three selected
alternatives: Θ = {Peugeot (a1),Renault (a2),Ford (a3)}.

Step 1: The determination of the criteria importance: Along with our
new MCDM method, a judgment matrix based on the pair-wise comparison
process using preference modeling is defined in Table 3. As mentioned above,
the decision maker was asked to indicate his level of preference between the
selected criteria.

Table 3. Preference relation matrix for criterion level

Criteria c1 c2 c3
c1 - ≻ ≻
c2 - - ∼
c3 - - -

From Table 3, we remark that the decision maker has identified his prefer-
ences qualitatively. He identifies that {c1} is evaluated to be more important
than {c3} and {c1} is evaluated to be more preferred than {c2}.

Now, for deriving the weights of criteria, we apply our presented model.
Therefore, we must transform these qualitative assessments into an optimiza-
tion problem (Equation 10), then we solve the obtained system to compute the
criteria importance. We assume that ε = 0.01 and the uncertainty measures is
H since it has a unique maximum as defined in Equation 6. We obtain then the
following optimization problem example:

MaxmH(m) = −m({c1}) ∗ log2(1/m({c1}))−m({c2})log2(1/m({c2}))
−m({c3}) ∗ log2(1/m({c3}))−m(Ω) ∗ log2(3/m(Ω));

s.t.
bel({c1})− bel({c2}) ≥ ε
bel({c1})− bel({c3}) ≥ ε
bel({c2})− bel({c3}) ≤ ε
bel({c2})− bel({c3}) ≥ −ε∑

ci∈F(m)

m(ci) = 1,m(A) ≥ 0,∀A ⊆ Ω;m(∅) = 0,

(16)

Finally, the obtained results (weighting vector) are represented in Table 4.

Step 2: The aggregation of the assessments with respect to all criteria
for each alternative: In order to evaluate each alternative with respect to
each criterion, our first step is to choose the set of evaluation grades as:



Table 4. The weights assigned to the subset of criteria

Criteria c1 c2 c3 Ω

mΩ 0.238 0.208 0.208 0.346

BetPΩ 0.352 0.324 0.324

βi 1 0.92 0.92

X= {poor, indifferent, average, good, excellent}.

In fact, the same set of evaluation grades is used for the three qualitative
criteria. We propose to consider three alternatives. The evaluation of each alter-
native with respect to each criterion is given by a bba (see Table 5). For instance,
to evaluate the alternative a1, the expert hesitates between the fourth and the
fifth assessment grades. He is sure that a1 is either good or excellent without
being able to refine his judgment.

Table 5. The bbas assigned to the alternatives performances.

Criteria c1 c2 c3
a1 m1

1({x4}) = 0.3 m2
1({x1}) = 0.4 m3

1({x4}) = 1
m1

1({x4, x5}) = 0.7 m2
1(X)=0.6

a2 m1
2({x2, x3}) = 0.6 m2

2({x5}) = 0.7 m3
2({x4, x3}) = 0.4

m1
2({x3, x4}) = 0.4 m2

2(X) = 0.3 m3
2({x3}) = 0.3
m3

2(X) = 0.3

a3 m1
3({x3}) = 1 m2

3({x1, x2}) = 0.2 m3
3({x4, x5}) = 0.5

m2
3({x2, x3}) = 0.8 m3

3(X) = 0.5

By applying equation 13 and 14 using the discounting technique, the overall
performance matrix was calculated and the decision matrix was determined in
Table 6.

Table 6. The bbas assigned to the alternatives performances after discounting.

Criteria c1 c2 c3
a1 mα1

1 ({x4}) = 0.3 mα2
1 ({x1}) = 0.368 mα3

1 ({x4}) = 0.92
mα1

1 ({x4, x5}) = 0.7 mα2
1 (X)=0.632 mα3

1 (X) = 0.08

a2 mα1
2 ({x2, x3}) = 0.6 mα2

2 ({x5}) = 0.644 mα3
2 ({x4, x3}) = 0.368

mα1
2 ({x3, x4}) = 0.4 mα2

2 (X) = 0.356 mα3
2 ({x3}) = 0.276
mα3

2 (X) = 0.356

a3 mα1
3 ({x3}) = 1 mα2

3 ({x1, x2}) = 0.184 mα3
3 ({x4, x5}) = 0.46

mα2
3 ({x2, x3}) = 0.736 mα3

3 (X) = 0.54
mα2

3 (X) = 0.08

In order to determine the overall performance of each alternative, the con-
junctive rule of combination is used to combine the obtained bbas. Therefore, for



each alternative, we propose to combine its corresponding bbas. Table 7 shows
the results.

Table 7. The combined bbas

∅ {x4} {x4, x5}
ma1 0.368 0.5966 0.0354

∅ {x3} {x2, x3} {x3, x4}
ma2 0.6441 0.1769 0.076 0.103

∅ {x1, x2} {x2, x3} {x4, x5} X

ma3 0.5126 0.01 0.3974 0.0368 0.0432

Now and after getting a single bba for each alternative, we suggest to apply
the FBD concept to compare and to rank the obtained bbas. Therefore, the
ascending belief function and the descending belief function are calculated.

For instance, to calculate the ascending belief function and the descending
belief function for the alternative a1, we get:

a1 =



−−→
bel11({x1}) = 0
−−→
bel11({x1, x2}) = 0
−−→
bel11({x1, x2, x3}) = 0
−−→
bel11({x1, x2, x3, x4}) = 0.5966
−−→
bel11({x1, x2, x3, x4, x5}) = 1

a1 =



←−−
bel11({x5}) = 0
←−−
bel11({x4, x5}) = 0.632
←−−
bel11({x3, x4, x5}) = 0.632
←−−
bel11({x2, x3, x4, x5}) = 0.632
←−−
bel11({x1, x2, x3, x4, x5}) = 1

Similarly, the FDB is computed for the alternatives a2 and a3, and finally,
the preference situations between the alternatives are established. The results
are given in the Table 8.

Table 8. Observed belief dominances between the alternatives

a1 a2 a3

a1 − FBD FBD

a2 FBD − FBD

a3 FBD FBD −

From this table, we have the alternative a2 is outranked by alternative a1,
so it cannot be chosen. Moreover, alternative a3 is incomparable to a1. Then, a1
and a3 are the set of best alternatives according to our expert.

6 Conclusion

In this paper, a new MCDM approach in an uncertain environment was devel-
oped. Our proposed method, named belief MCDM, is based on the belief function



framework. Indeed, to compute the weight of criteria, we apply a qualitative AHP
approach then a new aggregating procedure is applied in order to update the al-
ternatives performances. The approach developed is simple and comprehensible
in concept, efficient in modeling human evaluation processes which makes it of
general use for solving practical qualitative MCDM problems.
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