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Abstract

This cours is devoted to the main problems of the sequential anal-
ysis: sequential estimation and sequential hypothesis testing. Firstly
we construct the least square estimator for the scalar regression model
and then we propose the sequential least square estimator for the au-
toregression models. Finally, we study the non asymptotic properties
for the sequential estimation procedures. Then in the second part of
this cours we construct and study the sequential Wald procedure for
hypothesis testing. We study its main properties: the mean times and
the optimality properties in the sens of minimal mean time. Then we
consider some examples of the Wald procedures.
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1 Basic Stochastic Calculus

Let
(
Ω,F , (Fn)n≥0 ,P

)
be a probability space with a filtration (Fn)n≥0 which

is an increasing sequence of fields, i.e. Fn−1 ⊆ Fn for n ≥ 1. Moreover, we
assume that the initial fields is trivial, i.e. F0 = {∅,Ω}.

Definition 1.1. A random variable τ ∈ N = {0, 1, 2, . . .} is called Markov
moment, if {τ = n} ∈ Fn for all n ≥ 0. If P(τ < ∞) = 1, then τ is stopping
time.

For any Markov moment τ we set

Fτ = {A ∈ F : A ∩ {τ ≤ n} ∈ Fn ∀n ≥ 0} . (1.1)

Main properties of stopping times.

1. If τ is a constant, i.e. τ = τ(ω) = k for some k ∈ N and for all ω ∈ Ω,
then it is stopping time.

2. The set {ω ∈ Ω : τ(ω) ≥ n} ∈ Fn−1 for all n ≥ 1.

3. A random variable τ with the values in N is stopping time if and only if
{ω ∈ Ω : τ(ω) ≤ n} ∈ Fn for all n ≥ 0.

4. If τ and σ are stopping times, then τ ∧ σ and τ ∨ σ are stopping times.

5. Fτ is field.

6. If τ is a constant, i.e. τ = τ(ω) = k for some k ∈ N and for all ω ∈ Ω,
then Fτ = Fk.

7. τ is measurable with respect to Fτ , i.e. {ω ∈ Ω : τ(ω) = m} ∈ Fτ for
any m ∈ N.

Definition 1.2. A sequence of random variables ξ = (ξn)n≥0 is called adapted,
if ξn is Fn - measurable for any n ≥ 0 and it is called predictable, if ξ0 is F0

- measurable and ξn is Fn−1 - measurable for any n ≥ 1.

Definition 1.3. A sequence of random variables M = (Mn)n≥0 is called mar-
tingale, if the following properties hold:

• it is adapted;

• it is integrable, i.e. E|Mn| <∞ for any n ≥ 1;

• E
(
Mn+1|Fn

)
= Mn for any n ≥ 0.
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Definition 1.4. A martingale M = (Mn)n≥0 is called the square integrable
martingale if EM2

n
<∞ for all n ≥ 1. In this case the sequence

< M >= (< M >n)n≥1

defined for all n ≥ 1 as

< M >n=
n∑
j=1

E
(
(Mj −Mj−1)2|Fj−1

)
(1.2)

is called quadratic characteristic.

Definition 1.5. Let v = (vk)k≥1 be a predictable bounded sequence and m =
(mn)n≥0 be a square integrable martingale. Then the process M = (Mn)n≥0

defined as

Mn = M0 +
n∑
j=1

vj(mj −mj−1) (1.3)

is called martingale transformation.

Theorem 1.1. If M is square integrable martingale and τ is bounded stopping
times, then EMτ = M0 and EM2

τ
= M2

0
+ E < M >τ .

Proof. First for any n ≥ 1 we defined the stopping martingale M̃ = (M̃n)n≥1

as

M̃n = Mτ∧n = M0 +
n∑
j=1

vj(Mj −Mj−1) and vj = 1{j≤τ} .

According to Property 2 the sequence (vj)j≥1 is predictable and, therefore, in

view of Exercice 4, the sequence M̃ = (M̃n)n≥0 is square integrable martingale

with M̃0 = M0 and

< M̃ >n=
n∑
j=1

1{j≤τ}
(
< M >j − < M >j−1

)
=< M >τ∧n .

Moreover, note, that in our case the stopping time τ is bounded, i.e. there
exists some integer N ≥ 1 such that P(τ ≤ N) = 1, i.e. Mτ = M̃N . Therefore,

EMτ = E M̃N = M̃0 = M0 and

EM2
τ

= E M̃2
N

= M2
0

+ E < M̃ >N= M2
0

+ E < M >τ .

Hence Theorem 1.1.
The following result is known as the Wald identity.
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Theorem 1.2. Assume that (ξj)j≥1 are i.i.d. integrable random variables, i.e.
E |ξj| <∞ and τ is a integrable stopping time with respect the filtration (Fj)j≥0

with F0 = {∅,Ω} and Fj = σ{ξ1, . . . , ξj} for j ≥ 1. Then

ESτ = E τ Eξ1 , (1.4)

where Sn =
∑n

j=1
ξj.

Proof. First assume, that ξj ≥ 0 a.s. In this case we can represent Sτ as

Sτ = lim
m→∞

Sτm and τm = τ ∧m.

Note here, that for any m ≥ 1, in view of Property 2,

ESτm =
m∑
j=1

E 1{j≤τ} ξj =
m∑
j=1

E 1{j≤τ}E
(
ξj|Fj−1

)
= Eξ1 Eτ ∧m.

Taking into account, that the sequence (Sτm)m≥1 is increasing, we get through
monotone convergence theorem, that

ESτ = lim
m→∞

ESτm = Eξ1 lim
m→∞

Eτ ∧m = Eξ1 Eτ .

In the general case, we obtain the equality (1.4) using the representation ξj =
(ξj)+−(ξj)−, where (x)+ = max(x, 0) and (x)+ = −min(x, 0). Hence Theorem
1.2.

Exercises 1

1. Show, that if M is a square integrable martingale, then

Var(Mn) = E < M >n .

2. Show, that if (ξn)n≥1 is i.i.d sequence of random variables with Eξ1 = 0
and Eξ2

1
= σ2,∞, then for any constant M0 the sequence

Mn = M0 +
n∑
j=1

ξj

is square integrable martingale with respect to the filtration

(Fn = σ{ξ1, . . . , ξn})n≥1

and its quadratic characteristic < M >n= nσ2.
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3. Show, that the sequence (1.2) is predictable.

4. Show, that if m = (mn)n≥0 is a square integrable martingale, then the
martingale transformation (1.3) is square integrable martingale and its
quadratic characteristic is

< M >n=
n∑
j=1

v2
j

(
< m >j − < m >j−1

)
.

2 Least Square Method

First, we consider the scalar linear regression model, i.e.

yj = θxj + εj , 1 ≤ j ≤ n , (2.1)

where θ is unknown parameter, (xj)1≤j≤n are non random regression variables
and (εj)1≤j≤n is unobservable white noise, i.e. Eεj = 0 and E ε2

j
= σ2 for any

1 ≤ j ≤ n and E εjεl = 0 for j 6= l.
The identification problem for the model (2.1) is to estimate the parameter

θ on, the basis of the observations (yj)1≤j≤n. To this end we will use the Least
Square Estimator (LSE) method according to which one needs to minimize
over unknown parameter the integral noise intensity, i.e.

n∑
j=1

(yj − θxj)2 → min
θ∈R

. (2.2)

Therefore, if
n∑
j=1

x2
j
> 0 (2.3)

then we obtain immediately that least square estimator is

θ̂n =

∑n

j=1
yjxj∑n

j=1
x2
j

. (2.4)

From the model (2.1) it is easy to deduce that

θ̂n = θ +

∑n

j=1
xjεj∑n

j=1
x2
j

.
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Therefore,

E θ̂n = θ +

∑n

j=1
xjE εj∑n

j=1
x2
j

= 0

and, moreover, the mean square estimation accuracy in this case can be cal-
culated as

V(θ̂n) = E (θ̂n − θ)2 =
E
(∑n

j=1
xjεj

)2

(∑n

j=1
x2
j

)2 =
σ2∑n

j=1
x2
j

. (2.5)

From this we can obtain immediately the necessary and sufficient condition
for the convergence in L2 as n→∞.

Proposition 2.1. The least square estimator (2.4) tends to θ in in L2 if and
only if

lim
n→∞

n∑
l=1

x2
l

= +∞ . (2.6)

For this estimator one can show the following theorem.

Theorem 2.1. (Gauss - Markov) The least square estimator (2.5) is the best
estimator in the class of all linear unbiased estimators of the non zero parame-
ter θ in the model (2.1) with the condition (2.3) in the means square accuracy
sense

E (θ̃n − θ)2 ≥ E (θ̂n − θ)2 , (2.7)

where θ̃n is an arbitrary linear estimator, i.e. an estimator of the form

θ̃n =
n∑
j=1

gjyj

and (gj)1≤j≤n are non random coefficients.

Proof. Indeed, note that for unbiased estimators we have

θ = E θ̃n =
n∑
j=1

gjE yj = θ
n∑
j=1

gjxj ,

i.e.
∑n

j=1
gjxj = 1. Using here the Cauchy Bunyakovsky Schwarz we get

1 =

 n∑
j=1

gjxj

2

≤
n∑
j=1

g2
j

n∑
j=1

x2
j
.

6



Therefore,

E (θ̃n − θ)2 = E

 n∑
j=1

gjεj

2

= σ2

n∑
j=1

g2
j
≥ σ2∑n

j=1
x2
j

.

Now, the property (2.5) implies directly (2.7). Hence Theorem 2.1.

Exercises 2

1. Check, if the LSE will be convergence in L2 in following cases :

• xj = j/n for 1 ≤ j ≤ n

• xj = sin(2πj/n) for 1 ≤ j ≤ n

2. Write the convergence criteria in L2 for LSE for multidimensional case.

3 Sequential Estimation

In this section we study the auto-regression process defined as

yj = θ1yj−1 + . . .+ θpyj−p + εj , j ≥ 1 , (3.1)

where (εj)j≥1 are i.i.d. random variables with E εj = 0 and E ε2
j

= 1 which are
unobserved. The initial values y0, . . . , y−p+1 are nonrandom known constants.
The problem is to estimate the unknown parameters (θ1, . . . , θp) on the basis
of observations (yj)j≥1. For this problem we use the filtration generated by
the observations, i.e. F0 = {∅,Ω} and Fj = σ{y1, . . . , yj} for j ≥ 1. First we
study this model, when p = 1, i.e.

yj = θ yj−1 + εj . (3.2)

This model can be represented as a particularly case of the random regression
model (2.1) with xj = yj−1. So, we will study the model (2.1) with predictable
sequence (xj)j≥1. Note, that in this case the least square estimator (2.4) is
a non linear function of the observations (yj)j≥1 and we can’t study it by
the usual methods in the non asymptotic setting, i.e. for the finite n. By
this reason, for the non asymptotic analysis we use the sequential procedure
(τH , θ

∗
H

) proposed in [2], where τH is a stopping time defining the number of
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the observations, θ∗
H

is the sequential estimator and H > 0 is non negative non
random parameter, which will be specified later. In this case we have

τH = inf{n ≥ 1 :
n∑
l=1

x2
l
≥ H} (3.3)

and

θ∗
H

=

∑τH−1

j=1
xjyj + βτH xτHyτH

H
, (3.4)

where βτH is the corrected coefficient defined from the following condition

τH−1∑
k=1

x2
k

+ βτHx
2
τH

= H , i.e. βτH =
H −

∑τH−1

k=1
x2
k

x2
τH

. (3.5)

According to Exercice 2 the function τH is the stopping time for any H > 0,
i.e. τH <∞ a.s. Therefore, the coefficient 0 < β ≤ 1 a.s.

Theorem 3.1. The sequential procedure (3.4) - (3.4) for any H > 0 satisfies
the following properties:

1. τH <∞ a.s.;

2. the estimator θ∗
H

is unbiased, i.e. for any θ ∈ R

Eθθ
∗
H

= θ ; (3.6)

3. the estimator θ∗
H

has a fixed mean square accuracy, i.e.

sup
θ∈R

Eθ

(
θ∗
H
− θ
)2 ≤ 1

H
. (3.7)

Proof. The first property is shown in the exercice 1. As to the second
property, note that the deviation of the estimator (3.4) can be represented as

θ∗
H
− θ =

∑τH−1

j=1
xjεj + βτH xτHετH

H
=

1

H
MτH

,

where

Mn =
n∑
j=1

vjεj and vj = xj1{τH>j} + βτH xτH1{τH=j} .

It should be noted here, that the definition (3.3) implies, that the sets {τH > j}
and {τH = j} belong to Fj−1 for any j ≥ 1. Note also, that the from (3.5) we
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can conclude, that βk is Fk−1 mesurable for any k ≥ 1. Therefore, taking into
account, that

βτH 1{j=τH} = βj 1{j=τH} ,

we get, that the sequence (vj)j≥1 is predictable, i.e. vj is Fj−1 - mesurable for

any j ≥ 1. Moreover, it is bounded, i.e. sup
j≥1
|vj| ≤

√
H a.s. Therefore, by

Exercice 1.4 we get, that the sequence M = (Mn)n≥0 is a square integrable
martingale with

< M >n=
n∑
j=1

v2
j
≤ H .

Therefore, in view of Theorem 1.1 for any N > 1 we get, that

EθMτH∧N = M0 = 0 and EθM
2
τH∧N

= Eθ < M >τH∧N≤ H .

This implies immediately, that the sequence (MτH∧N)N≥1 is uniformly inte-
grable, i.e.

EθMτH
= Eθ lim

N→∞
MτH∧N = lim

N→∞
EθMτH∧N = 0 .

This implies the property (3.6). The property (3.7) can be obtained through
Fatou’s lemma, i.e.

EθM
2
τH

= Eθ lim inf
N→∞

M2
τH∧N

≤ H . (3.8)

Hence Theorem 3.1.
Lets consider now the estimation problem for the process (3.1). To this end
we set Xj = (yj−1, . . . , yj−p+1)′, where ′ denotes the transposition. Then, we
can represent the model (3.1) as

yj = X
′

j
θ + εj , j ≥ 1 , (3.9)

where in this case θ = (θ1, . . . , θp)
′ is the unknown vector in Rp. We will study

the genearl random regression model with the predictable sequence (Xj)j≥1.
It should be noted, that the least square estimator for the unknown vector
θ ∈ Rp is defined as

θ̂n = G−1
n

n∑
j=1

Xj yj and Gn =
n∑
j=1

Xj X
′

j
. (3.10)

Note, that this estimator can be defined only under the condition, that the
matrix G−1

n
exists. To calculate these estimators for sufficiently large n, we

assumes that

lim
n→∞

1

n
Gn = F a.s , (3.11)
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where F is a positive defined non random matrix. It should be noted, that for
the model (3.1) (see, for example, in [1]) this condition holds with

F =
∑
j≥0

Aj B (A′)j , (3.12)

where

A =


θ1 , . . . , θp

1 , . . . , 0

.. . . .

0 , . . . , 1, 0

 and B =

 1 , . . . , 0

.. . . .

0 , . . . , 0

 .

Now, to estimate this parameter through we use the two - step sequential
estimation method developed in [6]. To this end, first we fixe the increasing
sequence of positive numbers (cn)n≥1 such that

ρ =
∑
n≥1

1

cn
<∞ . (3.13)

In the first step we set the following sequence of stopping times defined as

τn = inf{k ≥ 1 : trGk ≥ cn} , (3.14)

where inf{∅} = +∞. Now on the set {τn < ∞} we define the following
correction for the matrix Gn defined in (3.10)

G̃n =

τn−1∑
j=1

Xj X
′

j
+ βτnXτn

X
′

τn
, (3.15)

where the correction coefficient βτn is defined as

trGτn−1 + βτn|Xτn
|2 = cn , (3.16)

where | · | is the Euclidean norm in Rp, i.e. |X|2 = X
′
X. Now on the set

Γn = {τn <∞} ∩ {det G̃n > 0} (3.17)

we modify the least square estimator (3.10) as

θ̃n = G̃−1
n

τn−1∑
j=1

Xj yj + βτnXτn
yτn

 . (3.18)
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Now setting the weight coefficients

bn =
1

|G̃−1
n
| cn

1Γn
, (3.19)

we define for any H > 0 the stopping time as

σH = inf{n ≥ 1 :
n∑
k=1

b2
k
≥ H} . (3.20)

Finally, we define the sequential procedure (NH , θ
∗
H

) as

NH = τσH and θ∗
H

=
1∑σH

k=1
b2
k

σH∑
k=1

b2
k
θ̃k1{σH<∞} . (3.21)

The properties of this procedure are given in this theorem from [6].

Theorem 3.2. If the condition (3.11) holds, then the sequential procedure
(3.21) for any H > 0 satisfies the following properties:

1. NH <∞ a.s.;

2. the estimator θ∗
H

has a fixed mean square accuracy, i.e.

Eθ

∣∣θ∗
H
− θ
∣∣2 ≤ ρ

H
, (3.22)

where the coefficient ρ is defined in (3.13).

Proof. First, note, that the condition (3.11) directly implies

lim
n→∞

τn
cn

=
1

trF
and lim

n→∞
bn =

1

|F−1| trF
a.s.

Therefore, NH <∞ a.s. for any H > 0. Moreover, note, that on the set (3.17)
the estimator (3.18) can be represented as

θ̃k = θ + G̃−1
k
ξk and ξk =

τk−1∑
j=1

Xj εj + βτkXτn
ετk .

Then, from (3.19) and (3.21) we obtain, that

|θ∗
H
− θ| ≤ 1∑σH

k=1
b2
k

σH∑
k=1

b2
k
|G̃−1

k
| |ξk| ≤

1∑σH
k=1

b2
k

σH∑
k=1

bk
|ξk|
ck

.

11



Note here, that for any k ≥ 1 similarly to (3.8) the variance of ξk can be
estimated from above as

Eθ|ξk|2 ≤ ck .

Therefore, using the Cauchy–Bunyakovsky–Schwarz inequality and the defini-
tion of σH we obtain that

Eθ|θ∗H − θ|
2 ≤ Eθ

(
1∑σH

k=1
b2
k

σH∑
k=1

bk
|ξk|
ck

)2

≤ 1

H

∑
k≥1

Eθ|ξk|2

c2
k

≤ 1

H

∑
k≥1

1

ck
,

i.e. we obtain the bound (3.22). Hence Theorem 3.2.

Exercises 3

1. Let us consider the random regression model (2.1) with the predictable
sequence (xj)j≥1 with respect to the filtration generated by the obser-
vations, i.e. Fj = σ{y1, . . . , yj} for j ≥ 1. Show, that for this model
σ{y1, . . . , yj} = σ{ε1, . . . , εj} for j ≥ 1.

2. Show, that the rule (3.3) is stopping time for any H > 0 with respect
the filtration generated by the observations, defined in Exercice 3.1.

3. Show, that the coefficient β defined in (3.5) is Fτ measurable.

4. Show, that if in the model (3.2) the parameter |θ| < 1, then

P− lim
n→∞

1

n

n∑
j=1

y2
j

=
1

1− θ2
.

To conclude from this, that

P− lim
H→∞

τH
H

= 1− θ2 .

5. Show, that the random moment NH defined in (3.21) is a stopping time.

6. Construct the sequential estimator (3.21) for the parameter µ in the
model

yj = µ+ λ yj−1 + εj ,

where |λ| < 1 and (εj)j≥1 is i.i.d random variables with E εj = 0 and
E ε2

j
= 1.
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4 Hypothesis Testing

In this section we consider the testing problem for the observations which are
i.i.d. random variables (Xj)j≥1 defined on some probability space (Ω,F , P̃)
with values in the sample space (X ,A, µ), where µ is a σ - finite measure. In
this case the filtration (Fj)j≥0 is generated by the observations (Xj)j≥1, i.e.

F0 = {∅,Ω} and Fj = σ
{
X1, . . . , Xj

}
for j ≥ 1 . (4.1)

We assume, that the random variables (Xj)j≥1 have a density f with respect
to the measure µ, i.e. for any Γ ∈ A

P̃(Xj ∈ Γ) =

∫
Γ

f(x)dµ .

The density f is unknown, it is only known that it is either f0 or f1, where
f0 and f1 are X → R+ known probability densities. The problem is to decide
which density of observations (Xj)j≥1 is true f0 or f1, i.e. one has to study
the following hypothesise testing problem{

H0 : f = f0 ;

H1 : f = f1 .
(4.2)

In the classical setting one needs to accept or reject H0 or H1 on the basis of
the observations (X1, . . . , Xn).

Definition 4.1. We call any measurable X n → {0, 1} mapping dn a statistical
test for testing between hypotheses H0 and H1.

We denote by P
(n)
0 and P

(n)
1 the probability measures on An = A ⊗ · · · ⊗ A

corresponding to the densities f0 and f1, which for any Γ ∈ An are defined as

P(n)
ι

(Γ) =

∫
Γ

f (n)
ι

(x)µ(n)(dx) , ι = 0, 1 , (4.3)

where the density f (n)
ι

(x) =
∏n

j=1
fι(xj), µ

(n)(dx) = µ(dx1) · · ·µ(dxn) and the

vector x = (x1, . . . , xn) ∈ X n. According to the statistical test we accept H0

if dn = 0 and H1 for dn = 1. The quality of a hypothesis test dn can be
measured by the following error probabilities

P(n)
0

(dn = 1) and P(n)
1

(dn = 0) . (4.4)

The probability P
(n)
0 (dn = 1) is called the error probability of type I or size

oftest and P
(n)
1 (dn = 0) is called the error probability of type II. Moreover, the

probability P
(n)
1 (dn = 1) = 1−P

(n)
1 (dn = 0) is called power of the test.

Now, to construct the test function we need the following condition.
C0) The density f0 and f1 are positive on X , i.e. f0(x) > 0 and f1(x) > 0 for
all x ∈ X and µ (x ∈ X : f1(x) 6= f0(x)) > 0.
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Remark 4.1. Note, that we can always to reduce the sample space X to the set
defined as {x ∈ X : min(f0(x) , f1(x)) > 0}. Moreover, it should be noted also,

that if µ (x ∈ X : f1(x) 6= f0(x)) = 0, then P
(n)
0 = P

(n)
1 and the hypothesises

H0 and H1 are the same. Therefore, Condition C0) is not restrictable.

For the problem (4.2) we construct the Neyman – Pearson test procedure (see,
for example, in [4, 7]). To this end we set the likelihood as

Λn =
n∏
j=1

f1(Xj)

f0(Xj)
and λn = ln Λn =

n∑
j=1

zj , (4.5)

where i.i.d. variables zj = ln f1(Xj)/f0(Xj). Now we set

d∗
n

=

{
1 , if Λn ≥ c ;

0 , if Λn < c ,
(4.6)

where c > 0 is threshold which will be specified later.

Theorem 4.1. Assume, that for 0 < α < 1 there exists c = cα such, that

P(n)
0

(Λn ≥ cα) = α . (4.7)

Then the test function (4.6) with the threshold defined in (4.7) has the maximal
test power in the class of all test procedures having the error probability of type
I less than α.

Proof. Indeed, let dn test function for which P
(n)
0 (dn = 1) ≤ α. We set

S1 = {x ∈ X n : dn > d∗
n
} and S2 = {x ∈ X n : dn < d∗

n
} .

Now, setting ∆n = P
(n)
1

(
d∗
n

= 1
)
− P

(n)
1 (dn = 1) and using the definitions

(4.3), we can represent this difference as

∆n = E(n)
1

(
d∗
n
− dn

)
=

∫
S1∪S2

(
d∗
n
− dn

)
dP(n)

1

=

∫
S1∪S2

(
d∗
n
(x)− dn(x)

)
f (n)

1
(x)µ(n)(dx) .

Moreover, note here, that the function(
d∗
n
(x)− dn(x)

) (
fn

1
(x)− cαf

n
0

(x)
)
≥ 0

for any x ∈ S1 ∪ S2. Therefore,

∆n ≥ cα

∫
S1∪S2

(
d∗
n
(x)− dn(x)

)
f (n)

0
(x)µ(n)(dx)

= cα

∫
Xn

(
d∗
n
(x)− dn(x)

)
f (n)

0
(x)µ(n)(dx)

= cα
(
E(n)

0
d∗
n
− E(n)

0
dn
)
.
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Taking into account the condition (4.7), we obtain that the last term in the
right side of this inequality can be estimated from below as

E(n)
0

d∗
n
− E(n)

0
dn = α−P(n)

0
(dn = 1) ≥ 0 .

Hence Theorem 4.1.

Exercises 5

1. Show, that under Condition C0) the probability measure P
(n)
1 is abso-

lutely continuous with respect to the measure P
(n)
0 and the radnom vari-

able Λn defined in (4.5) is the Radon - Nikodym derivative dP
(n)
1 /P

(n)
0 .

2. Write the the Neyman – Pearson test for

H0 : N (0, 1) and H1 : N (m, 1) ,

where N (µ, σ2) is the gaussian distribution with the parameters (µ, σ2)
and m 6= 0.

3. Write the the Neyman – Pearson test for

H0 : E(λ0) and H1 : E(λ1) ,

where E(λ) is the exponential distribution with the parameter
λ > 0 and λ0 6= λ1.

5 Sequential Hypothesis Testing

In this section we consider the problem (4.2) in the sequential analysis setting
proposed by Wald in [12], i.e. we don’t fixe the number of observations in
advance the number of observations, but we chose it as a stopping time with
respect to filtration (4.1). Therefore, for this problem we need to use in the
sample space the field generated by all observations, i.e. A∞ = σ

{
∪n≥1An

}
.

Moreover, in this case we denote by P0 and P1 the probability measures on

A∞ defined by its finite dimension distributions (P
(n)
0 )n≥1 and (P

(n)
1 )n≥1. In

this case we need to construct a sequential procedure δ = (T,dT ) in which the
number of observations T is stopping time with respect to the filtration (4.1)
and dT is a test function, i.e. FT measurable random variable with value in
the set {0, 1}. The problem is to find a sequential procedure with the minimal
mean observations and the bounded I and II type errors probabilities. To

15



this end for some fixed 0 < α0, α1 < 1 we introduce the class of sequential
procedures

C(α0, α1) = {δ : P0(dT = 1) ≤ α0 , P1(dT = 0) ≤ α1

P0(T <∞) = P1(T <∞) = 1} . (5.1)

The Wald procedure
(
τ ∗,d∗

τ∗

)
for fixed thresholds 0 < A0 < 1 < A1 is defined

as

τ ∗ = inf {n ≥ 0 : Λn /∈ (A0 , A1)} = inf {n ≥ 0 : λn /∈ (−a0 , a1)} , (5.2)

where inf{∅} = +∞, the sequences Λn and λn are defined in (4.5) and the
thresholds a0 = − lnA0, a1 = lnA1. In this case the test decision rule is
defined as

d∗
τ∗

=

{
1 if λτ∗ ≥ a1 ;

0 if λτ∗ ≤ −a0 .
(5.3)

It should be noted, that under Condition C0)

P0(z1 = 0) =

∫
{x∈X : f0(x)=f1(x)}

f0(x)µ(dx) < 1

and

P1(z1 = 0) =

∫
{x∈X : f0(x)=f1(x)}

f1(x)µ(dx) < 1 .

Therefore, in view of Lemma A.1 we obtain that for any a0 and a1

E0τ
∗ <∞ and E1τ

∗ <∞ .

Now we study the type I and II error probabilities

q∗
0

= P0

(
d∗
τ∗

= 1
)

and q∗
1

= P1

(
d∗
τ∗

= 0
)
. (5.4)

As we already seen, the random variables Λn is the Radon - Nikodym density
dP1/dP0 on the field Fn. This means, that for any Fn measurable bounded
random variable ηn, i.e. ηn = gn(X1, . . . , Xn) and gn is a X n → R function,
we get using the definitions (4.3), that

E1ηn =

∫
Xn

gn(x) fn
1

(x)µ(n)(dx) = E0ηnΛn .

Therefore, for any stopping time T any bounded random variable ηT = gT (X1, . . . , XT )
we can conclude that

E1ηT =
∞∑
n=0

E1ηn1{T=n} =
∞∑
n=0

E0ηnΛn1{T=n} = E0ηTΛT .
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Similarly, we can obtain, that E0ηT = E1ηTΛ−1
T

. Therefore, asymptotically as
a0, a1 →∞,

q∗
1

= E11{d∗
τ∗=0} = E0 e

λτ∗1{d∗
τ∗=0} ≈ e−a0 P0(d∗

τ∗
= 0) = e−a0 (1− q∗

0
)

and

q∗
0

= E01{d∗
τ∗=1} = E1 e

−λτ∗1{d∗
τ∗=1} ≈ e−a1 P1(d∗

τ∗
= 1) = e−a1 (1− q∗

1
) .

This implies, that, asymptotically, as a0, a1 →∞,

q∗
0
≈ ea0 − 1

ea0+a1 − 1
and q∗

1
≈ ea1 − 1

ea0+a1 − 1
.

Therefore, setting in the Wald procedure (5.2),

a0 = ln
1− α0

α1

and a1 = ln
1− α1

α0

, (5.5)

we obtain, that that the errors (5.4) satisfy the following properties

lim
α0+α1→0

q∗
0

α0

= 1 and lim
α0+α1→0

q∗
1

α1

= 1 .

Therefore, asymptotically, as α0 + α1 → 0, the Wald procedure δ∗ = (τ ∗,d∗
τ∗

)
belongs to the class (5.1).

5.1 Properties of E0τ
∗

Now we define the Kullback informations

I0 = −E0 z1 = −E0 ln
f1(X1)

f0(X1)
(5.6)

and

I1 = E1 z1 = E1 ln
f1(X1)

f0(X1)
. (5.7)

We assume that

I0 > 0 and I1 > 0 . (5.8)

Note, that the conditions (5.8) imply that P0(z0 = 0) < 1 and P1(z1 = 0) < 1.
Therefore, by the Stein lemma we obtain that

E0 τ
∗ <∞ and E1 τ

∗ <∞ .
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To study the properties of the mean time E0τ
∗ note that in view of Wald’s

identity

E0 λτ∗ = E0

τ∗∑
j=1

zj = E0 z1 E0 τ
∗ = −I0 E0 τ

∗ (5.9)

and

E1 λτ∗ = E1

τ∗∑
j=1

zj = E1 z1 E0 τ
∗ = I1 E1 τ

∗ . (5.10)

Let us calculate now the expectation E0λτ∗ . We have

E0λτ∗ = E0λτ∗1{λτ∗≤−a0} + E0λτ∗1{λτ∗≥a1}

≈ −a0 P0 (λτ∗ ≤ −a0) + a1P1 (λτ∗ ≥ a1)

= −a0 (1− q∗
0
) + a1q

∗
0
≈ −a0 (1− α0) + a1α0

Using here, that

a0 = ln
1− α0

α1

and a1 = ln
1− α1

α0

,

we obtain

E0λτ∗ ≈ −(1− α0) ln
1− α0

α1

+ α0 ln
1− α1

α0

= −β(α0, α1) ,

where

β(x, y) = (1− x) ln
1− x
y

+ x ln
x

1− y
. (5.11)

Note here that, the function V (x) = − lnx is convex, i.e. for any 0 < θ < 1,
b1 and b2

V ((1− θ)b1 + θb2) ≤ (1− θ)V (b1) + θV (b2) .

So, using this property with

θ = x , b1 =
y

1− x
and b2 =

1− y
x

.

we obtain

β(x, y) = (1− θ)V (b1) + θV (b2)

≥ V ((1− θ)b1 + θb2)

= V (1− y + y) = − ln 1 = 0 .

Finally, asymptotically, as α0 + α1 → 0, we obtain, that

E0 τ
∗ =

E0λτ∗

I0

≈ β(α0, α1)

I0

. (5.12)
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5.2 Properties of E1τ
∗

Let us calculate now the expectation E1λτ∗ . We have

E1λτ∗ = E1λτ∗1{λτ∗≤−a0} + E1λτ∗1{λτ∗≥a1}

≈ −a0 P1 (λτ∗ ≤ −a0) + a1P1 (λτ∗ ≥ a1)

= −a0 q
∗
1

+ a1(1− q∗
1
) ≈ −a0 α1 + a1(1− α1) .

Using here, that

a0 = ln
1− α0

α1

and a1 = ln
1− α1

α0

,

we obtain

E1λτ∗ ≈ (1− α1) ln
1− α1

α0

+ α1 ln
α1

1− α0

= β(α1, α0) ,

where the function β is defined in (5.11). Finally, we obtain that, asymptoti-
cally, as α0 + α1 → 0,

E1 τ
∗ =

E1λτ∗

I1

≈ β(α1, α0)

I1

. (5.13)

Now we have to study the lower bounds for arbitrary procedure.

5.3 Optimality properties

First we show the following lemma.

Lemma 5.1. Let (X ,A) be a measurable space with two equivalent probability
measures P and Q, i.e. P ∼ Q. Then for any set Γ ∈ A

E ln ρ ≥ P(Γ) ln
P(Γ)

Q(Γ)
+ (1−P(Γ)) ln

P(Γc)

Q(Γc)
(5.14)

where

E g =

∫
X
g(x) dP and ρ(x) =

dP

dQ
(x)

is the Radon - Nykodym derivative.

Proof. First, note that

E ln ρ = E1Γ ln ρ+ E1Γc ln ρ

= P(Γ)

∫
Γ

ln ρ(x)dP1 + P(Γc)

∫
Γc

ln ρ(x)dP2 ,
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where

P1(A) =
P(A ∩ Γ)

P(Γ)
= P(A|Γ)

and

P2(A) =
P(A ∩ Γc)

P(Γc)
= P(A|Γc) .

Moreover, note that∫
Γ

ln ρ(x)dP1 = E(ln ρ|Γ) = −E(ln ρ−1|Γ)

and, therefore,

E ln ρ = P(Γ)E(ln ρ|Γ) + P(Γc)E(ln ρ|Γc) . (5.15)

Note here, that the function ln is concave, i.e. for any 0 ≤ α ≤ 1, x > 0 and
y > 0

ln(αx+ (1− α)y) ≥ α ln x+ (1− α) ln y .

Therefore, by the Jensen inequality

E(ln ρ−1|Γ) ≥ ln E(ρ−1|Γ) = ln
1

P(Γ)

∫
Γ

dQ

dP
dP = ln

Q(Γ)

P(Γ)
,

i.e. for any Γ ∈ A
E(ln ρ|Γ) ≥ ln

P(Γ)

Q(Γ)
.

Therefore, using this inequality in (5.15) with Γc we obtain the bound (5.14).
Hence lemma 5.1.
Using this lemma we show now the following

Theorem 5.1. Assume that the conditions (5.8) hold. Then, the class of the
sequential decisions (5.1) for any 0 < α0 + α1 < 1 admits the following lower
bounds

inf
δ∈C(α0,α1)

E0 T ≥
β(α0, α1)

I0

(5.16)

and

inf
δ∈C(α0,α1)

E1 T ≥
β(α1, α0)

I1

, (5.17)

where the function β is defined in (5.11).

Proof. Let δ = (T, dT ) be some fixed sequential procedure from C(α0, α1), i.e.

q0(δ) = P0 (dT = 1) ≤ α0 and q1(δ) = P1 (dT = 0) ≤ α1 . (5.18)
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We start with the inequality (5.16). Assume that E0T < ∞. If non, this in-
equality is obvious. We use now Lemma 5.1 on the probability space (Ω,FT ,P,Q)
with

P = P0|FT , Q = P1|FT and Γ = {ω ∈ Ω : dT = 0} ,
where the probabilities P1|FT and P0|FT are reductions of these probabilities
on the field FT . Note that, in this case

ρ =
dP

dQ
=

dP0

dP1

|FT = Λ−1
T
,

where the density λn is defined in (4.5). Therefore, in view of Lemma 5.14

E0 λT = −E0 ln ρ ≤ −P(Γ) ln
P(Γ)

Q(Γ)
−P(Γc) ln

P(Γc)

Q(Γc)

= −P0(dT = 0) ln
P0(dT = 0)

P1(dT = 0)
−P0(dT = 1) ln

P0(dT = 1)

P1(dT = 1)

= −(1− q0(δ)) ln
(1− q0(δ))

q1(δ)
− q0(δ) ln

q0(δ)

1− q1(δ)
= −β(q0(δ), q1(δ)) ,

where the function β(·, ·) is defined in (5.11). Note here, that

β′
x
(x, y) = ln

xy

(1− x)(1− y)
< 0 and β′

y
(x, y) =

x+ y − 1

y(1− y)
< 0

for x + y < 1. So, taking into account that α0 + α1 < 1 and the inequalities
(5.18), we obtain that

E0 λT ≤ −β(α0, α1) . (5.19)

Note here that, similar to (5.9) through the Wald identity we can get

E0 λT = −I0 E0 T

and, therefore, from the inequality (5.19) it follows the lower bound (5.16).
To show the bound (5.17) use again Lemma 5.1 on the probability space
(Ω,FT ,P,Q) with

P = P1 , Q = P0 and Γ = {ω ∈ Ω : dT = 0} .

Then, Lemma 1 yields the following lower bound

E1λT = E1 ln
dP1

dP0

≥ P1(dT = 0) ln
P1(dT = 0)

P0(dT = 0)

+ P1(dT = 1) ln
P1(dT = 1)

P0(dT = 1)
= q1(δ) ln

q1(δ)

1− q0(δ)

+ (1− q1(δ)) ln
(1− q1(δ))

q0(δ)
= β(q1(δ), q0(δ)) .
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Taking into account the inequalities (5.18), we get

E1λT ≥ β(α1, α0) .

Using here again the Wald identity we obtain

E1λT = I1E1 T

and, therefore, the bound (5.17). Hence Theorem 5.1.

Theorem 5.2. Assume that the conditions (5.8) hold. Then, the Wald proce-
dure δ∗ = (τ ∗, dτ∗) defined in (5.3) and (5.4) is optimal in the minimum mean
time sense among the sequential procedures defined in (5.1) as α0 + α1 → 0,
i.e.

lim
α0+α1→0

infδ∈C(α0,α1) E0 T

E0 τ
∗ = 1 (5.20)

and

lim
α0+α1→0

infδ∈C(α0,α1) E1 T

E1 τ
∗ = 1 . (5.21)

Proof. This theorem directly follows from the asymptotic properties (5.12) –
(5.13), Theorem 5.1 and the fact that the the function β(α0, α1) → +∞ and
β(α1, α0)→ +∞ as α0 + α1 → 0.

Remark 5.1. It should be noted that Theorem 5.2 means that the Wald rule
gives for the Neyman-Pearson procedure the minimal mean observations num-
ber which provides errors (5.4) less than the sufficiently small fixed levels
0 < α0, α1 < 1.

Exercises 5

Write the Wald procedure and calculate the mean times E0τ
∗ and E1τ

∗ for
the following problems

1.
H0 : N (0, 1) and H1 : N (m, 1) ,

where N (µ, σ2) is the gaussian distribution with the parameters (µ, σ2)
and m 6= 0.

2.
H0 : E(λ0) and H1 : E(λ1) ,

where E(λ) is the exponential distribution with the parameter
λ > 0 and λ0 6= λ1.
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3.
H0 : Bern(p0) and H1 : Bern(p1) ,

where Bern(p) is the Bernoulli distribution with 0 < p < 1 and p0 6= p1.

4.
H0 : Binm(p0) and H1 : Binm(p1) ,

where Binm(p) is the Bernoulli distribution with the parameters m ≥ 1
and 0 < p < 1 and p0 6= p1.

5.
H0 : Gm(p0) and H1 : Gm(p1) ,

where Gm is the geometric distribution with the parameter 0 < p < 1
and p0 6= p1.
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A Appendix

A.1 Stein lemma

Let (Yj)j≥1 be i.i.d. random variables and

τa0,a1 = inf{n ≥ 1 : Sn /∈ [−a0, a1]} ,

where Sn =
∑n

j=1
Yj, a0 > 0 and a1 > 0 are some fixed constants.

Lemma A.1. If P(Y1 = 0) < 1, then for any a0 > 0 and a1 > 0 there exist
0 < % < 1 and c > 0 such that for any n ≥ 1

P
(
τa0,a1 > n

)
< c %n .

Proof. Note, that if P(Y1 = 0) < 1, then there exists y0 > 0 such that
P(Y1 ≥ y0) = ε > 0. If non,, we can always to pass to the sequence −Yj. Let
now m ≥ 1 such, that my0 > a0 + a0. Therefore,

P (Sm > a0 + a1) ≥ P (Sm ≥ my0)

≥ P(Y1 ≥ y0, . . . , Ym ≥ y0) = εm .

Moreover, note, that for any k ≥ 1

P(τa0,a1 > mk) = P
(
∩mk
n=1
{−a0 ≤ Sn ≤ a1}

)
≤ P (Γk) ,

where
Γk = ∩k

l=1
Dl and Dl = {−a0 ≤ Sml ≤ a1} .

Note here, that for any l ≥ 2 the sum Sml can be represented as

Sml = S(m−1)l + S̃m,l and S̃m,l =
m∑
j=1

Y(l−1)m+j .

This means, that for any l ≥ 2 the intersection

Dl−1 ∩Dl ⊆ Dl−1 ∩ {|S̃m,l| ≤ a0 + a1} ,

i.e. for any k ≥ 2

P (Γk) ≤ P
(

Γk−1 ∩ {|S̃m,k| ≤ a0 + a1}
)

= P
(
Γk−1

)
P
(
|S̃m,k| ≤ a0 + a1

)
.

Taking into account here, that

P
(
|S̃m,k| ≤ a0 + a1

)
≤ 1−P (|Sm| > a0 + a1) ≤ 1− εm := q ,
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we get, that for any k ≥ 2

P (Γk) ≤ P
(
Γk−1

)
q ,

i.e. for any k ≥ 1
P (Γk) ≤ P (Γ1) qk−1 ≤ qk .

Note here, that, any n > m can be represented as n = km+ l with k ≥ 1 and
0 ≤ l < m, i.e.

P(τa0,a1 > n) ≤ P(τa0,a1 > km) ≤ qk ≤ q−1%n ,

where % = q1/m. Taking into account, that for 0 ≤ n ≤ m this upper bound
q−1%n ≥ q−1%m = 1 ≥ P(τa0,a1 > n), we obtain that the last inequality holds
true for any n ≥ 0. Hence Lemma A.1.
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