Pergamenshchikov Serguei 
email: serge.pergamenshchikov@univ-rouen.fr
  
Pchelintsev Evgeny 
  
Sequential Analysis and its Applications *

This cours is devoted to the main problems of the sequential analysis: sequential estimation and sequential hypothesis testing. Firstly we construct the least square estimator for the scalar regression model and then we propose the sequential least square estimator for the autoregression models. Finally, we study the non asymptotic properties for the sequential estimation procedures. Then in the second part of this cours we construct and study the sequential Wald procedure for hypothesis testing. We study its main properties: the mean times and the optimality properties in the sens of minimal mean time. Then we consider some examples of the Wald procedures.

Basic Stochastic Calculus

Let Ω, F , (F n ) n≥0 , P be a probability space with a filtration (F n ) n≥0 which is an increasing sequence of fields, i.e. F n-1 ⊆ F n for n ≥ 1. Moreover, we assume that the initial fields is trivial, i.e. F 0 = {∅, Ω}. Definition 1.1. A random variable τ ∈ N = {0, 1, 2, . . .} is called Markov moment, if {τ = n} ∈ F n for all n ≥ 0. If P(τ < ∞) = 1, then τ is stopping time.

For any Markov moment τ we set

F τ = {A ∈ F : A ∩ {τ ≤ n} ∈ F n ∀n ≥ 0} . (1.1)
Main properties of stopping times.

1. If τ is a constant, i.e. τ = τ (ω) = k for some k ∈ N and for all ω ∈ Ω, then it is stopping time.

2. The set {ω ∈ Ω : τ (ω) ≥ n} ∈ F n-1 for all n ≥ 1.

3. A random variable τ with the values in N is stopping time if and only if {ω ∈ Ω : τ (ω) ≤ n} ∈ F n for all n ≥ 0.

4. If τ and σ are stopping times, then τ ∧ σ and τ ∨ σ are stopping times.

5. F τ is field.

6. If τ is a constant, i.e. τ = τ (ω) = k for some k ∈ N and for all ω ∈ Ω, then F τ = F k .

7. τ is measurable with respect to F τ , i.e. {ω ∈ Ω : τ (ω) = m} ∈ F τ for any m ∈ N.

Definition 1.2. A sequence of random variables ξ = (ξ n ) n≥0 is called adapted, if ξ n is F n -measurable for any n ≥ 0 and it is called predictable, if ξ 0 is F 0 -measurable and ξ n is F n-1 -measurable for any n ≥ 1.

Definition 1.3. A sequence of random variables M = (M n ) n≥0 is called martingale, if the following properties hold:

• it is adapted;

• it is integrable, i.e. E|M n | < ∞ for any n ≥ 1;

• E M n+1 |F n = M n for any n ≥ 0.

Definition 1.4. A martingale M = (M n ) n≥0 is called the square integrable martingale if E M 2 n < ∞ for all n ≥ 1. In this case the sequence

< M >= (< M > n ) n≥1
defined for all n ≥ 1 as

< M > n = n j=1 E (M j -M j-1 ) 2 |F j-1 (1.2)
is called quadratic characteristic.

Definition 1.5. Let v = (v k ) k≥1 be a predictable bounded sequence and m = (m n ) n≥0 be a square integrable martingale. Then the process M = (M n ) n≥0 defined as

M n = M 0 + n j=1 v j (m j -m j-1 ) (1.3)
is called martingale transformation.

Theorem 1.1. If M is square integrable martingale and τ is bounded stopping times, then E M τ = M 0 and E M 2 τ = M 2 0 + E < M > τ .

Proof. First for any n ≥ 1 we defined the stopping martingale M = ( M n ) n≥1 as

M n = M τ ∧n = M 0 + n j=1
v j (M j -M j-1 ) and v j = 1 {j≤τ } .

According to Property 2 the sequence (v j ) j≥1 is predictable and, therefore, in view of Exercice 4, the sequence M = ( M n ) n≥0 is square integrable martingale with M 0 = M 0 and

< M > n = n j=1 1 {j≤τ } < M > j -< M > j-1 =< M > τ ∧n .
Moreover, note, that in our case the stopping time τ is bounded, i.e. there exists some integer N ≥ 1 such that P(τ

≤ N ) = 1, i.e. M τ = M N . Therefore, EM τ = E M N = M 0 = M 0 and E M 2 τ = E M 2 N = M 2 0 + E < M > N = M 2 0 + E < M > τ .
Hence Theorem 1.1.

The following result is known as the Wald identity.

Theorem 1.2. Assume that (ξ j ) j≥1 are i.i.d. integrable random variables, i.e. E |ξ j | < ∞ and τ is a integrable stopping time with respect the filtration (F j ) j≥0 with F 0 = {∅, Ω} and F j = σ{ξ 1 , . . . , ξ j } for j ≥ 1. Then

E S τ = E τ Eξ 1 , (1.4) 
where S n = n j=1 ξ j . Proof. First assume, that ξ j ≥ 0 a.s. In this case we can represent S τ as

S τ = lim m→∞ S τ m and τ m = τ ∧ m .
Note here, that for any m ≥ 1, in view of Property 2,

E S τ m = m j=1 E 1 {j≤τ } ξ j = m j=1 E 1 {j≤τ } E ξ j |F j-1 = Eξ 1 Eτ ∧ m .
Taking into account, that the sequence (S τ m ) m≥1 is increasing, we get through monotone convergence theorem, that

E S τ = lim m→∞ E S τ m = Eξ 1 lim m→∞ Eτ ∧ m = Eξ 1 Eτ .
In the general case, we obtain the equality (1.4) using the representation ξ j = (ξ j ) + -(ξ j ) -, where (x) + = max(x, 0) and (x) + = -min(x, 0). Hence Theorem 1.2.

Exercises 1

1. Show, that if M is a square integrable martingale, then Var(M n ) = E < M > n . 2. Show, that if (ξ n ) n≥1 is i.i.d sequence of random variables with Eξ 1 = 0
and Eξ 2 1 = σ 2 , ∞, then for any constant M 0 the sequence

M n = M 0 + n j=1 ξ j
is square integrable martingale with respect to the filtration

(F n = σ{ξ 1 , . . . , ξ n }) n≥1
and its quadratic characteristic < M > n = nσ 2 .

3. Show, that the sequence (1.2) is predictable.

4. Show, that if m = (m n ) n≥0 is a square integrable martingale, then the martingale transformation (1.3) is square integrable martingale and its quadratic characteristic is

< M > n = n j=1 v 2 j < m > j -< m > j-1 .
2 Least Square Method

First, we consider the scalar linear regression model, i.e.

y j = θx j + ε j , 1 ≤ j ≤ n , (2.1) 
where θ is unknown parameter, (x j ) 1≤j≤n are non random regression variables and (ε j ) 1≤j≤n is unobservable white noise, i.e. Eε j = 0 and E ε 2 j = σ 2 for any 1 ≤ j ≤ n and E ε j ε l = 0 for j = l.

The identification problem for the model (2.1) is to estimate the parameter θ on, the basis of the observations (y j ) 1≤j≤n . To this end we will use the Least Square Estimator (LSE) method according to which one needs to minimize over unknown parameter the integral noise intensity, i.e. n j=1 (y j -θx j ) 2 → min θ∈R .

(2.2)

Therefore, if n j=1 x 2 j > 0 (2.3)
then we obtain immediately that least square estimator is

θ n = n j=1 y j x j n j=1 x 2 j . (2.4)
From the model (2.1) it is easy to deduce that

θ n = θ + n j=1 x j ε j n j=1 x 2 j .
Therefore,

E θ n = θ + n j=1 x j E ε j n j=1 x 2 j = 0
and, moreover, the mean square estimation accuracy in this case can be calculated as 

V( θ n ) = E ( θ n -θ) 2 = E n j=1 x j ε j 2 n j=1 x 2 j 2 = σ 2 n j=1 x 2 j . ( 2 
E ( θ n -θ) 2 ≥ E ( θ n -θ) 2 , (2.7) 
where θ n is an arbitrary linear estimator, i.e. an estimator of the form

θ n = n j=1 g j y j
and (g j ) 1≤j≤n are non random coefficients.

Proof. Indeed, note that for unbiased estimators we have

θ = E θ n = n j=1 g j E y j = θ n j=1 g j x j ,
i.e. n j=1 g j x j = 1. Using here the Cauchy Bunyakovsky Schwarz we get

1 =   n j=1 g j x j   2 ≤ n j=1 g 2 j n j=1 x 2 j .
Therefore,

E ( θ n -θ) 2 = E   n j=1 g j ε j   2 = σ 2 n j=1 g 2 j ≥ σ 2 n j=1 x 2 j .
Now, the property (2.5) implies directly (2.7). Hence Theorem 2.1.

Exercises 2

1. Check, if the LSE will be convergence in L 2 in following cases :

• x j = j/n for 1 ≤ j ≤ n • x j = sin(2πj/n) for 1 ≤ j ≤ n 2.
Write the convergence criteria in L 2 for LSE for multidimensional case.

Sequential Estimation

In this section we study the auto-regression process defined as

y j = θ 1 y j-1 + . . . + θ p y j-p + ε j , j ≥ 1 , (3.1) 
where (ε j ) j≥1 are i.i.d. random variables with E ε j = 0 and E ε 2 j = 1 which are unobserved. The initial values y 0 , . . . , y -p+1 are nonrandom known constants. The problem is to estimate the unknown parameters (θ 1 , . . . , θ p ) on the basis of observations (y j ) j≥1 . For this problem we use the filtration generated by the observations, i.e. F 0 = {∅, Ω} and F j = σ{y 1 , . . . , y j } for j ≥ 1. First we study this model, when p = 1, i.e.

y j = θ y j-1 + ε j . (3.2)
This model can be represented as a particularly case of the random regression model (2.1) with x j = y j-1 . So, we will study the model (2.1) with predictable sequence (x j ) j≥1 . Note, that in this case the least square estimator (2.4) is a non linear function of the observations (y j ) j≥1 and we can't study it by the usual methods in the non asymptotic setting, i.e. for the finite n. By this reason, for the non asymptotic analysis we use the sequential procedure (τ H , θ * H ) proposed in [START_REF] Borisov | Sequential Estimation of Parameters of Discrete Processes[END_REF], where τ H is a stopping time defining the number of the observations, θ * H is the sequential estimator and H > 0 is non negative non random parameter, which will be specified later. In this case we have

τ H = inf{n ≥ 1 : n l=1 x 2 l ≥ H} (3.3)
and

θ * H = τ H -1 j=1 x j y j + β τ H x τ H y τ H H , (3.4) 
where β τ H is the corrected coefficient defined from the following condition

τ H -1 k=1 x 2 k + β τ H x 2 τ H = H , i.e. β τ H = H -τ H -1 k=1 x 2 k x 2 τ H . (3.5)
According to Exercice 2 the function τ H is the stopping time for any H > 0, i.e. τ H < ∞ a.s. Therefore, the coefficient 0 < β ≤ 1 a.s.

Theorem 3.1. The sequential procedure (3.4) -(3.4) for any H > 0 satisfies the following properties:

1. τ H < ∞ a.s.;

2. the estimator θ * H is unbiased, i.e. for any θ ∈ R

E θ θ * H = θ ; (3.6)
3. the estimator θ * H has a fixed mean square accuracy, i.e.

sup θ∈R E θ θ * H -θ 2 ≤ 1 H . (3.7) 
Proof. The first property is shown in the exercice 1. As to the second property, note that the deviation of the estimator (3.4) can be represented as

θ * H -θ = τ H -1 j=1 x j ε j + β τ H x τ H ε τ H H = 1 H M τ H ,
where

M n = n j=1 v j ε j and v j = x j 1 {τ H >j} + β τ H x τ H 1 {τ H =j} .
It should be noted here, that the definition (3.3) implies, that the sets {τ H > j} and {τ H = j} belong to F j-1 for any j ≥ 1. Note also, that the from (3.5) we can conclude, that β k is F k-1 mesurable for any k ≥ 1. Therefore, taking into account, that

β τ H 1 {j=τ H } = β j 1 {j=τ H } ,
we get, that the sequence (v j ) j≥1 is predictable, i.e. v j is F j-1 -mesurable for any j ≥ 1. Moreover, it is bounded, i.e. sup j≥1 |v j | ≤ √ H a.s. Therefore, by Exercice 1.4 we get, that the sequence M = (M n ) n≥0 is a square integrable martingale with

< M > n = n j=1 v 2 j ≤ H .
Therefore, in view of Theorem 1.1 for any N > 1 we get, that

E θ M τ H ∧N = M 0 = 0 and E θ M 2 τ H ∧N = E θ < M > τ H ∧N ≤ H .
This implies immediately, that the sequence (M τ H ∧N ) N ≥1 is uniformly integrable, i.e.

E θ M τ H = E θ lim N →∞ M τ H ∧N = lim N →∞ E θ M τ H ∧N = 0 .
This implies the property (3.6). The property (3.7) can be obtained through Fatou's lemma, i.e.

E θ M 2 τ H = E θ lim inf N →∞ M 2 τ H ∧N ≤ H . (3.8) 
Hence Theorem 3.1.

Lets consider now the estimation problem for the process (3.1). To this end we set X j = (y j-1 , . . . , y j-p+1 ) , where denotes the transposition. Then, we can represent the model (3.1) as

y j = X j θ + ε j , j ≥ 1 , (3.9) 
where in this case θ = (θ 1 , . . . , θ p ) is the unknown vector in R p . We will study the genearl random regression model with the predictable sequence (X j ) j≥1 .

It should be noted, that the least square estimator for the unknown vector θ ∈ R p is defined as

θ n = G -1 n n j=1 X j y j and G n = n j=1 X j X j . (3.10)
Note, that this estimator can be defined only under the condition, that the matrix G -1 n exists. To calculate these estimators for sufficiently large n, we assumes that lim

n→∞ 1 n G n = F a.s , (3.11) 
where F is a positive defined non random matrix. It should be noted, that for the model (3.1) (see, for example, in [START_REF] Anderson | The Statistical Analysis of Time Series[END_REF]) this condition holds with

F = j≥0 A j B (A ) j , (3.12) 
where

A =       θ 1 , . . . , θ p 1 , . . . , 0 .. . . . 0 , . . . , 1, 0       and B =    1 , . . . , 0 .. . . . 0 , . . . , 0    .
Now, to estimate this parameter through we use the two -step sequential estimation method developed in [START_REF] Konev | Sequential Identification Procedures for the Parameters of Dynamic Systems[END_REF]. To this end, first we fixe the increasing sequence of positive numbers (c n ) n≥1 such that

ρ = n≥1 1 c n < ∞ . (3.13) 
In the first step we set the following sequence of stopping times defined as

τ n = inf{k ≥ 1 : tr G k ≥ c n } , (3.14) 
where inf{∅} = +∞. Now on the set {τ n < ∞} we define the following correction for the matrix G n defined in (3.10)

G n = τ n -1 j=1 X j X j + β τ n X τ n X τ n , (3.15) 
where the correction coefficient β τ n is defined as

tr G τ n -1 + β τ n |X τ n | 2 = c n , (3.16) 
where

| • | is the Euclidean norm in R p , i.e. |X| 2 = X X. Now on the set Γ n = {τ n < ∞} ∩ {det G n > 0} (3.17)
we modify the least square estimator (3.10) as

θ n = G -1 n   τ n -1 j=1 X j y j + β τ n X τ n y τ n   . (3.18)
Now setting the weight coefficients

b n = 1 | G -1 n | c n 1 Γ n , (3.19) 
we define for any H > 0 the stopping time as

σ H = inf{n ≥ 1 : n k=1 b 2 k ≥ H} . (3.20)
Finally, we define the sequential procedure (N H , θ * H ) as

N H = τ σ H and θ * H = 1 σ H k=1 b 2 k σ H k=1 b 2 k θ k 1 {σ H <∞} . (3.21)
The properties of this procedure are given in this theorem from [START_REF] Konev | Sequential Identification Procedures for the Parameters of Dynamic Systems[END_REF].

Theorem 3.2. If the condition (3.11) holds, then the sequential procedure (3.21) for any H > 0 satisfies the following properties:

1. N H < ∞ a.s.;
2. the estimator θ * H has a fixed mean square accuracy, i.e.

E θ θ * H -θ 2 ≤ ρ H , (3.22) 
where the coefficient ρ is defined in (3.13).

Proof. First, note, that the condition (3.11) directly implies

lim n→∞ τ n c n = 1 trF and lim n→∞ b n = 1 |F -1 | trF a.s.
Therefore, N H < ∞ a.s. for any H > 0. Moreover, note, that on the set (3.17) the estimator (3.18) can be represented as

θ k = θ + G -1 k ξ k and ξ k = τ k -1 j=1 X j ε j + β τ k X τ n ε τ k .
Then, from (3.19) and (3.21) we obtain, that

|θ * H -θ| ≤ 1 σ H k=1 b 2 k σ H k=1 b 2 k | G -1 k | |ξ k | ≤ 1 σ H k=1 b 2 k σ H k=1 b k |ξ k | c k .
Note here, that for any k ≥ 1 similarly to (3.8) the variance of ξ k can be estimated from above as

E θ |ξ k | 2 ≤ c k .
Therefore, using the Cauchy-Bunyakovsky-Schwarz inequality and the definition of σ H we obtain that

E θ |θ * H -θ| 2 ≤ E θ 1 σ H k=1 b 2 k σ H k=1 b k |ξ k | c k 2 ≤ 1 H k≥1 E θ |ξ k | 2 c 2 k ≤ 1 H k≥1 1 c k ,
i.e. we obtain the bound (3.22). Hence Theorem 3.2.

Exercises 3

1. Let us consider the random regression model (2.1) with the predictable sequence (x j ) j≥1 with respect to the filtration generated by the observations, i.e. F j = σ{y 1 , . . . , y j } for j ≥ 1. Show, that for this model σ{y 1 , . . . , y j } = σ{ε 1 , . . . , ε j } for j ≥ 1.

2. Show, that the rule (3.3) is stopping time for any H > 0 with respect the filtration generated by the observations, defined in Exercice 3.1.

3. Show, that the coefficient β defined in (3.5) is F τ measurable.

4. Show, that if in the model (3.2) the parameter |θ| < 1, then

P -lim n→∞ 1 n n j=1 y 2 j = 1 1 -θ 2 .
To conclude from this, that

P -lim H→∞ τ H H = 1 -θ 2 .
5. Show, that the random moment N H defined in (3.21) is a stopping time.

6. Construct the sequential estimator (3.21) for the parameter µ in the model

y j = µ + λ y j-1 + ε j ,
where |λ| < 1 and (ε j ) j≥1 is i.i.d random variables with E ε j = 0 and E ε 2 j = 1.

Hypothesis Testing

In this section we consider the testing problem for the observations which are i.i.d. random variables (X j ) j≥1 defined on some probability space (Ω, F, P) with values in the sample space (X , A, µ), where µ is a σ -finite measure. In this case the filtration (F j ) j≥0 is generated by the observations (X j ) j≥1 , i.e.

F 0 = {∅, Ω} and F j = σ X 1 , . . . , X j for j ≥ 1 . (4.1)
We assume, that the random variables (X j ) j≥1 have a density f with respect to the measure µ, i.e. for any Γ ∈ A

P(X j ∈ Γ) = Γ f (x)dµ .
The density f is unknown, it is only known that it is either f 0 or f 1 , where f 0 and f 1 are X → R + known probability densities. The problem is to decide which density of observations (X j ) j≥1 is true f 0 or f 1 , i.e. one has to study the following hypothesise testing problem

H 0 : f = f 0 ; H 1 : f = f 1 . (4.2) 
In the classical setting one needs to accept or reject H 0 or H 1 on the basis of the observations (X 1 , . . . , X n ).

Definition 4.1. We call any measurable X n → {0, 1} mapping d n a statistical test for testing between hypotheses H 0 and H 1 .

We denote by P (n) 0

and

P (n) 1
the probability measures on A n = A ⊗ • • • ⊗ A corresponding to the densities f 0 and f 1 , which for any Γ ∈ A n are defined as

P (n) ι (Γ) = Γ f (n) ι (x) µ (n) (dx) , ι = 0, 1 , (4.3) 
where the density

f (n) ι (x) = n j=1 f ι (x j ), µ (n) (dx) = µ(dx 1 ) • • • µ(dx n
) and the vector x = (x 1 , . . . , x n ) ∈ X n . According to the statistical test we accept H 0 if d n = 0 and H 1 for d n = 1. The quality of a hypothesis test d n can be measured by the following error probabilities

P (n) 0 (d n = 1) and P (n) 1 (d n = 0) . (4.4)
The probability P 

(n) 1 (d n = 1) = 1 -P (n) 1 (d n = 0
) is called power of the test. Now, to construct the test function we need the following condition. C 0 ) The density f 0 and f 1 are positive on X , i.e. f 0 (x) > 0 and f 1 (x) > 0 for all x ∈ X and µ (x ∈ X : f 1 (x) = f 0 (x)) > 0.

Remark 4.1. Note, that we can always to reduce the sample space X to the set defined as {x ∈ X : min(f 0 (x) , f 1 (x)) > 0}. Moreover, it should be noted also, that if µ (x ∈ X :

f 1 (x) = f 0 (x)) = 0, then P (n) 0 = P (n) 1
and the hypothesises H 0 and H 1 are the same. Therefore, Condition C 0 ) is not restrictable.

For the problem (4.2) we construct the Neyman -Pearson test procedure (see, for example, in [START_REF] Borovkov | Mathematical Statistics[END_REF][START_REF] Lehmann | Testing Statistical Hypotheses[END_REF]). To this end we set the likelihood as

Λ n = n j=1 f 1 (X j ) f 0 (X j )
and

λ n = ln Λ n = n j=1 z j , (4.5) 
where i.i.d. variables z j = ln f 1 (X j )/f 0 (X j ). Now we set

d * n = 1 , if Λ n ≥ c ; 0 , if Λ n < c , (4.6) 
where c > 0 is threshold which will be specified later.

Theorem 4.1. Assume, that for 0 < α 1 there exists c = c α such, that

P (n) 0 (Λ n ≥ c α ) = α . (4.7) 
Then the test function (4.6) with the threshold defined in (4.7) has the maximal test power in the class of all test procedures having the error probability of type I less than α.

Proof. Indeed, let d n test function for which

P (n) 0 (d n = 1) ≤ α. We set S 1 = {x ∈ X n : d n > d * n } and S 2 = {x ∈ X n : d n < d * n } . Now, setting ∆ n = P (n) 1 d * n = 1 -P (n)
1 (d n = 1) and using the definitions (4.3), we can represent this difference as

∆ n = E (n) 1 d * n -d n = S 1 ∪S 2 d * n -d n dP (n) 1 = S 1 ∪S 2 d * n (x) -d n (x) f (n) 1 (x)µ (n) (dx) .
Moreover, note here, that the function

d * n (x) -d n (x) f n 1 (x) -c α f n 0 (x) ≥ 0 for any x ∈ S 1 ∪ S 2 . Therefore, ∆ n ≥ c α S 1 ∪S 2 d * n (x) -d n (x) f (n) 0 (x)µ (n) (dx) = c α X n d * n (x) -d n (x) f (n) 0 (x)µ (n) (dx) = c α E (n) 0 d * n -E (n) 0 d n .
Taking into account the condition (4.7), we obtain that the last term in the right side of this inequality can be estimated from below as

E (n) 0 d * n -E (n) 0 d n = α -P (n) 0 (d n = 1) ≥ 0 .
Hence Theorem 4.1.

Exercises 5

1. Show, that under Condition C 0 ) the probability measure

P (n) 1
is absolutely continuous with respect to the measure P (n) 0 and the radnom variable Λ n defined in (4.5) is the Radon -Nikodym derivative dP

(n) 1 /P (n) 0 .

Write the the Neyman -Pearson test for

H 0 : N (0, 1) and H 1 : N (m, 1) , where N (µ, σ 2 ) is the gaussian distribution with the parameters (µ, σ 2 ) and m = 0.

Write the the Neyman -Pearson test for

H 0 : E(λ 0 ) and H 1 : E(λ 1 )
, where E(λ) is the exponential distribution with the parameter λ > 0 and λ 0 = λ 1 .

Sequential Hypothesis Testing

In this section we consider the problem (4.2) in the sequential analysis setting proposed by Wald in [START_REF] Wald | Sequential Analysis[END_REF], i.e. we don't fixe the number of observations in advance the number of observations, but we chose it as a stopping time with respect to filtration (4.1). Therefore, for this problem we need to use in the sample space the field generated by all observations, i.e. A ∞ = σ ∪ n≥1 A n . Moreover, in this case we denote by P 0 and P 1 the probability measures on A ∞ defined by its finite dimension distributions (P (n) 0 ) n≥1 and (P (n) 1 ) n≥1 . In this case we need to construct a sequential procedure δ = (T, d T ) in which the number of observations T is stopping time with respect to the filtration (4.1) and d T is a test function, i.e. F T measurable random variable with value in the set {0, 1}. The problem is to find a sequential procedure with the minimal mean observations and the bounded I and II type errors probabilities. To this end for some fixed 0 < α 0 , α 1 < 1 we introduce the class of sequential procedures

C(α 0 , α 1 ) = {δ : P 0 (d T = 1) ≤ α 0 , P 1 (d T = 0) ≤ α 1 P 0 (T < ∞) = P 1 (T < ∞) = 1} .
(5.1)

The Wald procedure τ * , d * τ * for fixed thresholds 0 < A 0 < 1 < A 1 is defined as

τ * = inf {n ≥ 0 : Λ n / ∈ (A 0 , A 1 )} = inf {n ≥ 0 : λ n / ∈ (-a 0 , a 1 )} , (5.2)
where inf{∅} = +∞, the sequences Λ n and λ n are defined in (4.5) and the thresholds a 0 = -ln A 0 , a 1 = ln A 1 . In this case the test decision rule is defined as

d * τ * = 1 if λ τ * ≥ a 1 ; 0 if λ τ * ≤ -a 0 .
(5.

3)

It should be noted, that under Condition C 0 )

P 0 (z 1 = 0) = {x∈X : f 0 (x)=f 1 (x)} f 0 (x)µ(dx) < 1 and P 1 (z 1 = 0) = {x∈X : f 0 (x)=f 1 (x)} f 1 (x)µ(dx) < 1 .
Therefore, in view of Lemma A.1 we obtain that for any a 0 and a 1

E 0 τ * < ∞ and E 1 τ * < ∞ .
Now we study the type I and II error probabilities

q * 0 = P 0 d * τ * = 1 and q * 1 = P 1 d * τ * = 0 . (5.4) 
As we already seen, the random variables Λ n is the Radon -Nikodym density dP 1 /dP 0 on the field F n . This means, that for any F n measurable bounded random variable η n , i.e. η n = g n (X 1 , . . . , X n ) and g n is a X n → R function, we get using the definitions (4.3), that

E 1 η n = X n g n (x) f n 1 (x)µ (n) (dx) = E 0 η n Λ n .
Therefore, for any stopping time T any bounded random variable η T = g T (X 1 , . . . , X T ) we can conclude that

E 1 η T = ∞ n=0 E 1 η n 1 {T =n} = ∞ n=0 E 0 η n Λ n 1 {T =n} = E 0 η T Λ T .
Similarly, we can obtain, that E 0 η T = E 1 η T Λ -1 T . Therefore, asymptotically as a 0 , a 1 → ∞,

q * 1 = E 1 1 {d * τ * =0} = E 0 e λ τ * 1 {d * τ * =0} ≈ e -a 0 P 0 (d * τ * = 0) = e -a 0 (1 -q * 0 )
and

q * 0 = E 0 1 {d * τ * =1} = E 1 e -λ τ * 1 {d * τ * =1} ≈ e -a 1 P 1 (d * τ * = 1) = e -a 1 (1 -q * 1 ) .
This implies, that, asymptotically, as a 0 , a 1 → ∞,

q * 0 ≈ e a 0 -1 e a 0 +a 1 -1 and q * 1 ≈ e a 1 -1 e a 0 +a 1 -1 .
Therefore, setting in the Wald procedure (5.2),

a 0 = ln 1 -α 0 α 1 and a 1 = ln 1 -α 1 α 0 , (5.5) 
we obtain, that that the errors (5.4) satisfy the following properties lim

α 0 +α 1 →0 q * 0 α 0 = 1 and lim α 0 +α 1 →0 q * 1 α 1 = 1 .
Therefore, asymptotically, as α 0 + α 1 → 0, the Wald procedure δ * = (τ * , d * τ * ) belongs to the class (5.1).

Properties of E 0 τ *

Now we define the Kullback informations

I 0 = -E 0 z 1 = -E 0 ln f 1 (X 1 ) f 0 (X 1 ) (5.6) 
and

I 1 = E 1 z 1 = E 1 ln f 1 (X 1 ) f 0 (X 1 ) . (5.7) 
We assume that I 0 > 0 and I 1 > 0 .

(5.8)

Note, that the conditions (5.8) imply that P 0 (z 0 = 0) < 1 and P 1 (z 1 = 0) < 1. Therefore, by the Stein lemma we obtain that

E 0 τ * < ∞ and E 1 τ * < ∞ .
To study the properties of the mean time E 0 τ * note that in view of Wald's identity

E 0 λ τ * = E 0 τ * j=1 z j = E 0 z 1 E 0 τ * = -I 0 E 0 τ * (5.9) 
and

E 1 λ τ * = E 1 τ * j=1 z j = E 1 z 1 E 0 τ * = I 1 E 1 τ * . (5.10) 
Let us calculate now the expectation E 0 λ τ * . We have

E 0 λ τ * = E 0 λ τ * 1 {λ τ * ≤-a 0 } + E 0 λ τ * 1 {λ τ * ≥a 1 } ≈ -a 0 P 0 (λ τ * ≤ -a 0 ) + a 1 P 1 (λ τ * ≥ a 1 ) = -a 0 (1 -q * 0 ) + a 1 q * 0 ≈ -a 0 (1 -α 0 ) + a 1 α 0 Using here, that a 0 = ln 1 -α 0 α 1 and a 1 = ln 1 -α 1 α 0 ,
we obtain .11) Note here that, the function V (x) = -ln x is convex, i.e. for any 0

E 0 λ τ * ≈ -(1 -α 0 ) ln 1 -α 0 α 1 + α 0 ln 1 -α 1 α 0 = -β(α 0 , α 1 ) , where β(x, y) = (1 -x) ln 1 -x y + x ln x 1 -y . ( 5 
< θ < 1, b 1 and b 2 V ((1 -θ)b 1 + θb 2 ) ≤ (1 -θ)V (b 1 ) + θV (b 2 ) .
So, using this property with

θ = x , b 1 = y 1 -x and b 2 = 1 -y x .
we obtain

β(x, y) = (1 -θ)V (b 1 ) + θV (b 2 ) ≥ V ((1 -θ)b 1 + θb 2 ) = V (1 -y + y) = -ln 1 = 0 .
Finally, asymptotically, as α 0 + α 1 → 0, we obtain, that

E 0 τ * = E 0 λ τ * I 0 ≈ β(α 0 , α 1 ) I 0 .
(5.12)

Properties of E 1 τ *

Let us calculate now the expectation E 1 λ τ * . We have

E 1 λ τ * = E 1 λ τ * 1 {λ τ * ≤-a 0 } + E 1 λ τ * 1 {λ τ * ≥a 1 } ≈ -a 0 P 1 (λ τ * ≤ -a 0 ) + a 1 P 1 (λ τ * ≥ a 1 ) = -a 0 q * 1 + a 1 (1 -q * 1 ) ≈ -a 0 α 1 + a 1 (1 -α 1 )
. Using here, that

a 0 = ln 1 -α 0 α 1 and a 1 = ln 1 -α 1 α 0 ,
we obtain

E 1 λ τ * ≈ (1 -α 1 ) ln 1 -α 1 α 0 + α 1 ln α 1 1 -α 0 = β(α 1 , α 0 ) ,
where the function β is defined in (5.11). Finally, we obtain that, asymptotically, as α 0 + α 1 → 0,

E 1 τ * = E 1 λ τ * I 1 ≈ β(α 1 , α 0 ) I 1 . (5.13) 
Now we have to study the lower bounds for arbitrary procedure.

Optimality properties

First we show the following lemma.

Lemma 5.1. Let (X , A) be a measurable space with two equivalent probability measures P and Q, i.e. P ∼ Q. Then for any set Γ ∈ A Therefore, using this inequality in (5.15) with Γ c we obtain the bound (5.14). Hence lemma 5.1.

E ln ρ ≥ P(Γ) ln P(Γ) Q(Γ) + (1 -P(Γ)) ln P(Γ c ) Q(Γ c ) ( 5 
Using this lemma we show now the following Theorem 5.1. Assume that the conditions (5.8) hold. Then, the class of the sequential decisions (5.1) for any 0 < α 0 + α 1 < 1 admits the following lower bounds inf δ∈C(α 0 ,α 1 )

E 0 T ≥ β(α 0 , α 1 ) I 0 (5.16) and inf δ∈C(α 0 ,α 1 ) E 1 T ≥ β(α 1 , α 0 ) I 1 , (5.17) 
where the function β is defined in (5.11).

Proof. Let δ = (T, d T ) be some fixed sequential procedure from C(α 0 , α 1 ), i.e.

q 0 (δ) = P 0 (d T = 1) ≤ α 0 and q 1 (δ) = P 1 (d T = 0) ≤ α 1 .

(5.18)

We start with the inequality (5.16). Assume that E 0 T < ∞. If non, this inequality is obvious. We use now Lemma 5.1 on the probability space (Ω, F T , P, Q) with

P = P 0 | F T , Q = P 1 | F T and Γ = {ω ∈ Ω : d T = 0} ,
where the probabilities P 1 | F T and P 0 | F T are reductions of these probabilities on the field F T . Note that, in this case

ρ = dP dQ = dP 0 dP 1 | F T = Λ -1 T ,
where the density λ n is defined in (4.5). Therefore, in view of Lemma 5.14

E 0 λ T = -E 0 ln ρ ≤ -P(Γ) ln P(Γ) Q(Γ) -P(Γ c ) ln P(Γ c ) Q(Γ c ) = -P 0 (d T = 0) ln P 0 (d T = 0) P 1 (d T = 0) -P 0 (d T = 1) ln P 0 (d T = 1) P 1 (d T = 1) = -(1 -q 0 (δ)) ln (1 -q 0 (δ)) q 1 (δ) -q 0 (δ) ln q 0 (δ) 1 -q 1 (δ) = -β(q 0 (δ), q 1 (δ)) ,
where the function β(•, •) is defined in (5.11). Note here, that

β x (x, y) = ln xy (1 -x)(1 -y)
< 0 and β y (x, y) = x + y -1 y(1 -y) < 0 for x + y < 1. So, taking into account that α 0 + α 1 < 1 and the inequalities (5.18), we obtain that E 0 λ T ≤ -β(α 0 , α 1 ) .

(5.19)

Note here that, similar to (5.9) through the Wald identity we can get

E 0 λ T = -I 0 E 0 T
and, therefore, from the inequality (5.19) it follows the lower bound (5.16).

To show the bound (5.17) use again Lemma 5.1 on the probability space (Ω, F T , P, Q) with

P = P 1 , Q = P 0 and Γ = {ω ∈ Ω : d T = 0} .
Then, Lemma 1 yields the following lower bound

E 1 λ T = E 1 ln dP 1 dP 0 ≥ P 1 (d T = 0) ln P 1 (d T = 0) P 0 (d T = 0) + P 1 (d T = 1) ln P 1 (d T = 1) P 0 (d T = 1) = q 1 (δ) ln q 1 (δ) 1 -q 0 (δ) + (1 -q 1 (δ)) ln (1 -q 1 (δ)) q 0 (δ) = β(q 1 (δ), q 0 (δ)) .
Taking into account the inequalities (5.18), we get

E 1 λ T ≥ β(α 1 , α 0 ) .
Using here again the Wald identity we obtain

E 1 λ T = I 1 E 1 T
and, therefore, the bound (5.17). Hence Theorem 5.1.

Theorem 5.2. Assume that the conditions (5.8) hold. Then, the Wald procedure δ * = (τ * , d τ * ) defined in (5.3) and (5.4) is optimal in the minimum mean time sense among the sequential procedures defined in (5.1) as α 0 + α 1 → 0, i.e.

lim α 0 +α 1 →0 inf δ∈C(α 0 ,α 1 ) E 0 T E 0 τ * = 1 (5.20) and lim α 0 +α 1 →0 inf δ∈C(α 0 ,α 1 ) E 1 T E 1 τ * = 1 . (5.21) 
Proof. This theorem directly follows from the asymptotic properties (5.12) -(5.13), Theorem 5.1 and the fact that the the function β(α 0 , α 1 ) → +∞ and β(α 1 , α 0 ) → +∞ as α 0 + α 1 → 0.

Remark 5.1. It should be noted that Theorem 5.2 means that the Wald rule gives for the Neyman-Pearson procedure the minimal mean observations number which provides errors (5.4) less than the sufficiently small fixed levels 0 < α 0 , α 1 < 1.

Exercises 5

Write the Wald procedure and calculate the mean times E 0 τ * and E 1 τ * for the following problems 1.

H 0 : N (0, 1) and H 1 : N (m, 1) ,

where N (µ, σ 2 ) is the gaussian distribution with the parameters (µ, σ 2 ) and m = 0.

2.

H 0 : E(λ 0 ) and H 1 : E(λ 1 ) ,

where E(λ) is the exponential distribution with the parameter λ > 0 and λ 0 = λ 1 .

3.

H 0 : Bern(p 0 ) and H 1 : Bern(p 1 ) ,

where Bern(p) is the Bernoulli distribution with 0 < p < 1 and p 0 = p 1 .

4.

H 0 : Bin m (p 0 ) and H 1 : Bin m (p 1 ) ,

where Bin m (p) is the Bernoulli distribution with the parameters m ≥ 1 and 0 < p < 1 and p 0 = p 1 .

5.

H 0 : Gm(p 0 ) and H 1 : Gm(p 1 ) ,

where Gm is the geometric distribution with the parameter 0 < p < 1 and p 0 = p 1 .

A Appendix

A.1 Stein lemma

Let (Y j ) j≥1 be i.i.d. random variables and τ a 0 ,a 1 = inf{n ≥ 1 : S n / ∈ [-a 0 , a 1 ]} ,

where S n = n j=1 Y j , a 0 > 0 and a 1 > 0 are some fixed constants. Lemma A.1. If P(Y 1 = 0) < 1, then for any a 0 > 0 and a 1 > 0 there exist 0 < < 1 and c > 0 such that for any n ≥ 1 P τ a 0 ,a 1 > n < c n .

Proof. Note, that if P(Y 1 = 0) < 1, then there exists y 0 > 0 such that P(Y 1 ≥ y 0 ) = > 0. If non,, we can always to pass to the sequence -Y j . Let now m ≥ 1 such, that m y 0 > a 0 + a 0 . Therefore, P (S m > a 0 + a 1 ) ≥ P (S m ≥ m y 0 ) ≥ P(Y 1 ≥ y 0 , . . . , Y m ≥ y 0 ) = m . Moreover, note, that for any k ≥ 1 P(τ a 0 ,a 1 > m k) = P ∩ mk n=1 {-a 0 ≤ S n ≤ a 1 } ≤ P (Γ k ) , where Γ k = ∩ k l=1 D l and D l = {-a 0 ≤ S ml ≤ a 1 } . Note here, that for any l ≥ 2 the sum S ml can be represented as Taking into account here, that P | S m,k | ≤ a 0 + a 1 ≤ 1 -P (|S m | > a 0 + a 1 ) ≤ 1 -m := q , we get, that for any k ≥ 2 P (Γ k ) ≤ P Γ k-1 q , i.e. for any k ≥ 1 P (Γ k ) ≤ P (Γ 1 ) q k-1 ≤ q k . Note here, that, any n > m can be represented as n = k m + l with k ≥ 1 and 0 ≤ l < m, i.e.

P(τ a 0 ,a 1 > n) ≤ P(τ a 0 ,a 1 > k m) ≤ q k ≤ q -1 n , where = q 1/m . Taking into account, that for 0 ≤ n ≤ m this upper bound q -1 n ≥ q -1 m = 1 ≥ P(τ a 0 ,a 1 > n), we obtain that the last inequality holds true for any n ≥ 0. Hence Lemma A.1.

  n = 1) is called the error probability of type I or size oftest and P (n) 1 (d n = 0) is called the error probability of type II. Moreover, the probability P

  -Nykodym derivative.Proof. First, note thatE ln ρ = E1 Γ ln ρ + E1 Γ c ln ρ = P(Γ) Γ ln ρ(x)dP 1 + P(Γ c ) Γ c ln ρ(x)dP 2 ,whereP 1 (A) = P(A ∩ Γ) P(Γ) = P(A|Γ)andP 2 (A) = P(A ∩ Γ c ) P(Γ c ) = P(A|Γ c ) .Moreover, note thatΓ ln ρ(x)dP 1 = E(ln ρ|Γ) = -E(ln ρ -1 |Γ)and, therefore,Eln ρ = P(Γ)E(ln ρ|Γ) + P(Γ c )E(ln ρ|Γ c ) . (5.15) Note here, that the function ln is concave, i.e. for any 0 ≤ α ≤ 1, x > 0 and y > 0 ln(αx + (1 -α)y) ≥ α ln x + (1 -α) ln y . Therefore, by the Jensen inequality E(ln ρ -1 |Γ) ≥ ln E(ρ -1 |Γ)

S 2 P

 2 ml = S (m-1)l + S m,l and S m,l = m j=1 Y (l-1)m+j .This means, that for any l ≥ 2 the intersectionD l-1 ∩ D l ⊆ D l-1 ∩ {| S m,l | ≤ a 0 + a 1 } , i.e. for any k ≥ (Γ k ) ≤ P Γ k-1 ∩ {| S m,k | ≤ a 0 + a 1 } = P Γ k-1 P | S m,k | ≤ a 0 + a 1 .
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