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Mining database provides valuable information such as frequent patterns and especially associative rules. The associative rules have various applications and assets mainly data classification. The appearance of new and complex data support such as evidential databases has led to redefine new methods to extract pertinent rules. In this paper, we intend to propose a new approach for pertinent rule's extraction on the basis of confidence measure redefinition. The confidence measure is based on conditional probability basis and sustains previous works. We also propose a classification approach that combines evidential associative rules within information fusion system. The proposed methods are thoroughly experimented on several constructed evidential databases and showed performance improvement.

Introduction

Data mining domain allows extracting pertinent information within databases [START_REF] Agrawal | Fast algorithm for mining association rules[END_REF]. The provided information are represented in a set of rules, where each one is associated with a pertinence measure denoted Confidence. Among their purposes, those associative rules are used for data classification [START_REF] Li | CMAR: Accurate and efficient classification based on multiple class-association rules[END_REF][START_REF] Bouzouita | GARC: A new associative classification approach[END_REF]. The classification process from those associative rules is denoted associative classification. Associative classification offers one of the best classification rate and measure membership [START_REF] Bouzouita | GARC: A new associative classification approach[END_REF]. Recently, new databases have appeared proposing data suffering from imperfection. Those types of data fit reality where opinions are no longer represented with Boolean values. In addition, it has added more complexity in their treatment. The imperfection is handled with several theories such as fuzzy [START_REF] Zadeh | Fuzzy sets[END_REF] and evidential theory [START_REF] Dempster | Upper and lower probabilities induced by multivalued mapping[END_REF][START_REF] Shafer | A Mathematical Theory of Evidence[END_REF]. In [START_REF] Lee | Imprecise and uncertain information in databases: an evidential approach[END_REF], the author introduced a new type of databases that handle both imprecise and uncertain information thanks to the evidential theory. Those types of databases were denoted as the Evidential database. The evidential databases were shortly studied from a data mining view [START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF] and not so much attention was paid to that issue. In literature, two major works [START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF][START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF] stand by proposing new measures for itemsets' support. Indeed, in [START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF], Hewawasam et al. proposed a methodology to estimate itemsets' support and modelize them in a tree representation: Belief Itemset Tree (BIT). The BIT representation brings easiness and rapidity for the estimation of the associative rule's confidence. In [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF], the authors introduced a new approach for itemset support computing and applied on a Frequent Itemset Maintenance (FIM) problem. Only [START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF] paid attention to associative classification where the authors introduced evidential associative rules. A new measure for rule's confidence was introduced based on conditional belief [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF]. In this work, evidential data mining problem is tackled by putting our focus on the associative classification. We highlight problems existing in current measure of evidential rule's confidence which are based on conditional belief. A new confidence measure is proposed based on Bayesian assumption. We also introduce a new associative classification method that reduces the overwhelming number of generated rules. The retained rules are then used for classification purposes and tested on several benchmarks. This paper is organized as follows: in section 2, the main principles of the evidential database are recalled. In section 3, several state of art works on confidence measure are scrutinized and we highlight their limits. In addition, we introduce an alternative confidence measure based on probabilistic definitions. In section 4, we introduce a new method for evidential rule generation. The provided rules are filtrated and combined through a fusion system. The performance of this algorithm is studied in section 5. Finally, we conclude and we sketch issues of future work.

Evidence database concept

An evidential database stores data that could be perfect or imperfect. Uncertainty in such database is expressed via the evidence theory [START_REF] Dempster | Upper and lower probabilities induced by multivalued mapping[END_REF][START_REF] Shafer | A Mathematical Theory of Evidence[END_REF]. An evidential database, denoted by EDB, with n columns and d lines where each column i (1 ≤ i ≤ n) has a domain θ i of discrete values. Cell of line j and column i contains a normalized BBA as follows:

m ij : 2 θi → [0, 1] with    m ij (∅) = 0 A⊆θi m ij (A) = 1. (1) 
Table 1. Evidential transaction database EDB

Transaction Attribute A Attribute B T1 m11(A1) = 0.7 m21(B1) = 0.4 m11(θA) = 0.3 m21(B2) = 0.2 m21(θB) = 0.4 T2 m12(A2) = 0.3 m22(B1) = 1 m12(θA) = 0.7
In an evidential database, as shown in Table 1, an item corresponds to a focal element. An itemset corresponds to a conjunction of focal elements having different domains. Two different itemsets can be related via the inclusion or the intersection operator. Indeed, the inclusion operator for evidential itemsets [START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF] is defined as follows, let X and Y be two evidential itemsets:

X ⊆ Y ⇐⇒ ∀x i ∈ X, x i ⊆ y i .
where x i and y i are the i th element of X and Y . For the same evidential itemsets X and Y , the intersection operator is defined as follows:

X ∩ Y = Z ⇐⇒ ∀z i ∈ Z, z i ⊆ x i and z i ⊆ y i .
An Evidential associative rule R is a causal relationship between two itemsets that can be written in the following form R :

X → Y fulfilling X ∩ Y = ∅. In Table 1, A 1 is an item and {θ A B 1 } is an itemset such that A 1 ⊂ {θ A B 1 } and A 1 ∩ {θ A B 1 } = A 1 . A 1 → B 1 is an evidential associative rule.
Several definitions for the support estimation were defined for the evidential itemsets such as [START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF][START_REF] Bach Tobji | Incremental maintenance of frequent itemsets in evidential databases[END_REF]. Those methods assess the support based on the belief function applied on the evidential database BBA m EDB3 :

Support EDB (X) = Bel EDB (X) (2) 
such that:

Bel : 2 θ → [0, 1] (3) 
Bel(A) = ∅ =B⊆A m(B). (4) 
In a previous work [START_REF] Samet | Mining frequent itemsets in evidential database[END_REF], we introduced a new metric for support estimation providing more accuracy and overcoming several limits of using the belief function. The Precise support P r is defined by:

P r : 2 θ i → [0, 1] (5) 
P r(x i ) = x⊆θi |x i ∩ x| |x| × m ij (x) ∀x i ∈ 2 θi . (6) 
The evidential support of an itemset

X = i∈[1...n]
x i in the transaction T j (i.e., P r Tj ) is then computed as follows:

P r Tj (X) = xi∈θi,i∈[1...n] P r(x i ) (7) 
Thus, the evidential support Support EDB of the itemset X becomes:

Support EDB (X) = 1 d d j=1 P r Tj (X). ( 8 
)
The confidence is the measure assigned to the associative rules and it represents its relevance [START_REF] Agrawal | Fast algorithm for mining association rules[END_REF]. As originally introduced in Boolean databases, the confidence measure was relying on conditional probability [START_REF] Agrawal | Fast algorithm for mining association rules[END_REF]. Indeed for a rule R : R a → R c , such that R c and R a are respectively the conclusion and the antecedent (premise) part of the rule R, the confidence is expressed as follows:

Conf idence(R) = P (R c |R a ) = d i=1 P (R a ∩ R c ) d i=1 P (R a ) (9) 
In addition, even in fuzzy data mining, the associative rule's confidence is built with conditional fuzzy measures [START_REF] Hong | A fuzzy AprioriTid mining algorithm with reduced computational time[END_REF]. In this respect, evidential associative rules were initially introduced in [START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF]. The authors defined the structure of an evidential associative rule and estimated its relevance following a confidence metric. The confidence of a rule R in the set of all rules R, i.e., R ∈ R, is computed as follows:

Conf idence(R) = Bel(R c |R a ) (10) 
where Bel(•|•) is the conditional Belief. The proposed confidence metric is hard to define where several works have tackled this issue and different interpretations and formulas were proposed such as those given respectively in [START_REF] Dempster | Upper and lower probabilities induced by multivalued mapping[END_REF][START_REF] Fagin | A new approach to updating beliefs[END_REF]. In [START_REF] Dempster | Upper and lower probabilities induced by multivalued mapping[END_REF], the conditional belief is defined as follows:

Bel(R c |R a ) = Bel(R c ∪ R a ) -Bel(R a ) 1 -Bel(R a ) (11) 
In [START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF], the authors used Fagin et al.'s conditional belief such that:

Bel(R c |R a ) = Bel(R a ∩ R c ) Bel(R a ∩ R c ) + P l(R a ∩ Rc ) . ( 12 
)
where P l() is the plausibility function and is defined as follows:

P l(A) = B∩A =∅ m(B). ( 13 
)
Example 1. Through the following example, we highlight the inadequacy of the conditional belief use. We consider the Transaction 1 of Table 1 from which we try to compute the confidence of A 2 → B 1 (i.e., Bel(B 1 |A 2 )). The conditional belief introduced in [START_REF] Dempster | Upper and lower probabilities induced by multivalued mapping[END_REF] gives the following results:

Bel(B 1 |A 2 ) = Bel(B 1 ∪ A 2 ) -Bel(A 2 ) 1 -Bel(A 2 ) = Bel(B 1 ) 1 = 0.4
The result of the belief of B 1 knowing A 2 is true is equal to that of Bel(B 1 ) due to the independence between A 2 and B 1 . On the other hand, both hypothesis might be correlated so that the event B 1 does not occur knowing already the happening of A 2 .

In the following, we propose a new metric for the confidence estimation based on our Precise support measure [START_REF] Samet | Mining frequent itemsets in evidential database[END_REF] and probability assumption:

Conf idence(R) = d j=1 P r Tj (R a ) × P r Tj (R c ) d j=1 P r Tj (R a ) ( 14 
)
where d is the number of transactions in the evidential database. Thanks to its probabilistic writing, the proposed metric sustains previous confidence measure such as that introduced in [START_REF] Agrawal | Fast algorithm for mining association rules[END_REF].

Example 2. Let us consider the example of the evidential database in Table 1. The confidence of the evidential associative rule R 1 : A 1 → B 1 is computed as follows:

Conf idence(R 1 ) = P r T1 (A 1 ) × P r T1 (B 1 ) + P r T2 (A 1 ) × P r T2 (B 1 ) P r T1 (A 1 ) + P r T2 (A 1 ) = 0.75

The generated rules with their confidence could find several applications. In the following, we tackle the classification problem case and a based evidential rule classifier is introduced.

Associative Rule Classifier

One of the main characteristics of the evidential database is the great number of items that it integrates. The number of items depends from the frame of discernment of each column. This asset makes from the evidential database more informative but more complex than the usual binary database. In [START_REF] Samet | Mining frequent itemsets in evidential database[END_REF], we have shown the significant number of generated frequent patterns that may be drawn even from small databases. Indeed, from a frequent itemset, of size k, 2 k -2 potential rules are generated. In order to use the generated evidential rules for a classification purposes, we first have to reduce their number for a more realistic one. In the following, we propose two processes for classification rule's reduction.

Classification rules

From the obtained rules, we retain only the classification ones. From a rule such that i∈I X i → j∈J Y j , we only keep those matching a class hypothesis at the conclusion part (i.e., Y j ∈ θ C and θ C is the frame of discernment).

Example 3. Let us consider the following set of the association rules

S = {A 1 → C 1 ; A 1 , B 2 → C 1 ; A 1 → B 1 } and the class frame of discernment θ C = {C 1 , C 2 }.
After classification rule reduction, the set

S becomes S = {A 1 → C 1 ; A 1 , B 2 → C 1 }.

Generic and Precise rules

Generic rules: the rule's reduction can assimilate the redundant rules. A rule R 1 is considered as a redundant rule if and only if it does not bring any new information having at hand a rule R 2 . R 2 is considered as more informative as far as its antecedent part is included in that of R 1 . The retained rules from the reduction process constitute the set of Generic rules R extracted from the set of frequent itemsets FI.

Example 4. Let us consider the previous set of the association rules

S = {A 1 → C 1 ; A 1 , B 2 → C 1 ; A 1 → B 1 }. After redundant rule reduction, the set S becomes S = {A 1 → C 1 ; A 1 → B 1 }.
Precise rules: A rule is considered as precise if the rule's premise is maximized. Thus, from the set of all possible rules, we retain only those having the size of their premise part equal to n (number of columns of EDB).

Algorithm 1 sketches the process of rule's generation as well as rule reduction. The algorithm relies on the function Construct Rule(x, θ C ) (Line 10) that generates associative rules and filtrates out them by retaining only the classification ones. The function F ind Conf idence(R, P r T able) (Line 22) computes the confidence of the rule R following the P r T able that contains all transactional support of each item (for more details see [START_REF] Samet | Mining frequent itemsets in evidential database[END_REF]). Finally, the function Redundancy(R, R) (Line 42) builds the set of all classification rules R which are not redundant and having the confidence value greater than or equal to the fixed threshold minconf .

Classification

Let us suppose the existence of an instance X to classify represented a set of BBA belonging to the evidential database EDB such that:

X = {m i |m i ∈ X, x j i ∈ θ i } (15)
where x j i is a focal element of the BBA m i . Each retained associative rule, in the set of rules R, is considered as a potential piece of information that could be of help for X class determination. In order to select rules that may contribute to classification, we look for rules having a non null intersection with X such that:

RI = {R ∈ R, ∃x j i ∈ θ i , x j i ∈ R a } (16) 
Each rule found in the set RI constitutes a piece of information concerning the instance X membership. Since several rules can be found and fulfilling the return R 50: end function intersection condition, it is of importance to benefit from them all. In our work, we assume that all information is valuable and should be handled within the information fusion problem. From the set RI, we extract the set of generic or precise classification rules (see Subsection 4.2). Indeed, each rule from the computed set R l ⊂ RI, l ∈ [1 . . . L] and L < |RI|, that brings a new information (different R a ) is transformed into a BBA following the frame of discernment θ C (frame of discernment of R c ):

m θ C R l ({R c }) = α × conf idence(R l ) m θ C R l (θ C ) = 1 -(α × conf idence(R l )) (17) 
where R c is the conclusion part of the rule R l and α ∈ [0, 1] is a discounting factor.

The L constructed BBA are then fused following the Dempster rule of combination [START_REF] Dempster | Upper and lower probabilities induced by multivalued mapping[END_REF] as follows:

m ⊕ = ⊕ L l=1 m θ C R l . (18) 
⊕ is the Dempster's aggregation function where for two source's BBA m 1 and m 2 :

m ⊕ (A) = 1 1-K B∩C=A m 1 (B) • m 2 (C) ∀A ⊆ Θ, A = ∅ m ⊕ (∅) = 0 ( 19 
)
where K is defined as:

K = B∩C=∅ m 1 (B) • m 2 (C). ( 20 
)

Experimentation and results

In this section, we present how we managed to conduct our experiments and we discuss comparative results.

Evidential database construction

In order to perform experimental tests, we construct our own evidential databases from UCI benchmarks [START_REF] Frank | UCI machine learning repository[END_REF] based upon ECM [START_REF] Masson | ECM: An evidential version of the fuzzy c-means algorithm[END_REF]. Interested reader may refer to [START_REF] Samet | Mining frequent itemsets in evidential database[END_REF] for more details on evidential database construction. The transformation was operated on Iris, Vertebral Column, Diabetes and Wine databases. The studied databases are summarized on Table 2 in terms of number of instances and attributes. 

Comparative results

In the following, we compare the classification result performance between the Generic and Precise rules. Table 3 shows the difference in classification result between the generic and the precise associative rules. The precise rules highlight better results than do the generic ones. Indeed, the larger the rule's premise is, the more pertinent the rule is. On the other hand, the generic rule based approach fuse much more rules than do the precise one. In addition, all generic rules are considered with the same weight within the fusion process despite their pertinence difference. These characteristics with Dempster's combination behavior mislead the fusion process to errors. Indeed, as shown in Figure 1, the high number of fused rules depends highly from the minsup value. Unlike the generic approach, the number of precise rule is defined by number of larger premise's rule which is dependent from the treated evidential transaction. 

Conclusion

In this paper, we tackled associative rule's extraction from evidential databases. We proposed a new confidence measure for associative rules in evidential databases.

The proposed measure is based on Precise support (i.e., probability measure) providing coherence and sustains previous work on fuzzy and binary databases. The rules are then filtrated to retain only classification and non redundant rules. A classification method based on evidential associative rules is introduced. The classification approach is based on a fusion system that represents interesting rules. As illustrated in the experimentation section, the proposed method provides an interesting performance rates. In future work, we plan to study the development of a new method to estimate the reliability of each combined associative rule. Indeed, each rule has a precision relatively to the instance to classify. The precision is measured by the intersection between the premise and the instance itself. A reliability measure for rule BBA is under study.

Fig. 1 .

 1 Fig. 1. Generic associative rule's number for different support values

  Algorithm 1 Evidential Associative Rule Generation algorithm

	Require: P r T able, minconf, FI, θC	27:	den ← 1		
	Ensure: R		28:	for all i ∈ P r(j).f ocal element
	1: for all x ∈ FI do	do			
	2:	R ← Construct Rule(x, θC )	29:	if P r(j).f ocal element ∈
	3:	if R = ∅ then	R.premise then		
	4:	Conf	← F ind Conf iden-	30:	num	←	num ×
		ce(R, P r T able)	P r(j).val		
	5:	if Conf > minconf then	31:	den ← den × P r(j).val
	6:	R ← Redundancy(R, R)	32:	else		
	7:	end if		33:	if P r(j).f ocal element ∈
	8:	end if		R.conclusion then		
	9: end for		34:	end if		
	10: function Construct Rule(X , θC )	35:	end if		
	11:	for all x ∈ X do	36:	end for		
	12:	if x / ∈ θC then	37:	numer ← numer + num
	13:	prem ← prem + {x}	38:	denom ← denom + den
	14:	else		39:	end for		
	15:	concl ← concl + {x}	40:	return numer denom		
	16:	end if		41: end function		
	17:	end for		42: function Redundancy(R,R)
	18:	R.premise ← prem	43:	for all rule ∈ R do	
	19:	R.conclusion ← concl	44:	if R.premise ⊂ rule.premise &
	20:	return R		R.conclusion = rule.conclusion then
	21: end function		45:	R ← R\rule	
	22: function Find Confidence(R, P r)	46:	R ← R ∪ R		
	23:	numer ← 0		47:	end if		
	24:	denom ← 0		48:	end for		
	25:	for j=1 to d do	49:			
	26:	num ← 1				

Table 2 .

 2 Database characteristics

	Database	#Instances #Attributes #Focal elements
	Iris EDB	150	5	40
	Vertebral Column EDB	310	7	116
	Diabetes EDB	767	9	132
	Wine EDB	178	14	196

Table 3 .

 3 Comparative result between Generic and Precise classification rules

	Database Iris EDB Vertebral Column EDB Diabetes EDB Wine EDB
	Precise rules 80.67%	88.38%	83.20%	100%
	Generic rules 78.67%	67.74%	65.10%	51.68%

A BBA constructed from Cartesian product applied on the evidential database. Interested readers may refer to[START_REF] Hewawasam | Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections[END_REF].