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Solving the Greenberger-Horne-Zeilinger paradox: an explicit model of local hidden variables for the GHZ quantum state

The Greenberger-Horne-Zeilinger (GHZ) version of the Einstein-Podolsky-Rosen (EPR) paradox is widely regarded as a conclusive logical argument that rules out the possibility of describing quantum phenomena within the framework of any model of local hidden variables in which the observers are free to choose their own experimental settings. In this paper, we show, however, that the GHZ argument implicitly relies on a subtle, though crucial, assumption that is not required by fundamental physical principles, and which had gone unnoticed. Namely, we note that the argument implicitly assumes the existence of an absolute angular frame of reference with respect to which the polarization properties of the hypothetical hidden configurations of the entangled particles, as well as the orientations of the measurement devices that test them, can be defined. We further note that such an absolute frame of reference may not exist if the hidden configurations of the entangled particles spontaneously break the gauge rotational symmetry. Indeed, by skipping the disputed requirement we are able to build a model of local hidden variables for the GHZ state, which complies with the 'free-will' hypothesis and reproduces the quantum mechanical predictions. Our model, thus, completes -in the EPR sense -the quantum description of the GHZ state.

Introduction

The inability to accommodate the seemingly trivial notions of locality and physical realism within the current interpretation of the quantum mechanical wavefunction is at the core of a long lasting debate about the foundations of the quantum theory and the role played by measurements, whose origins go back to the formulation of the renowned Einstein-Podolsky-Rosen (EPR) paradox eighty five years ago 1 . Solving these key issues would require to develop a description of quantum phenomena in terms of a statistical model of local hidden variables. Nonetheless, according to the current wisdom, such a description is not possible in so far as we insist on keeping the notion, also seemingly trivial, that the observers' choice of their measurement settings is not constrained by the actual hidden configuration of the observed system (free-will). Indeed, several fundamental theorems state that generic models of hidden variables that share certain intuitive features cannot fully reproduce the predictions of quantum mechanics [2][3][4][5][6][7][START_REF] Greenberger | Bell's Theorem, Quantum Theory, and Conceptions of the Universe[END_REF][START_REF] Cabello | [END_REF][10][11] . Moreover, carefully designed experimental tests have consistently confirmed the predictions of the quantum theory and, thus, have ruled out all these generic models of hidden variables [12][13][14][15][16][17][18][19][20][21] .

The best known among these theorems is the Bell theorem [2][3][4][5] , which proves that such generic models of hidden variables cannot reproduce the statistical correlations predicted by quantum mechanics for the outcomes of long sequences of strong polarization measurements performed along certain relative directions on pairs of entangled qubits.

The Greenberger-Horne-Zeilinger version of the Bell theorem 8 is an even more conclusive proof of the limitations of these generic models of hidden variables, since it proves that such models cannot reproduce even single outcomes of strong spin polarization measurements performed along certain relative directions on three or more entangled qubits prepared in the so-called GHZ state,

GHZ⟩ ≡ ↑ ↑ ..... ↑ ⟩ + ↓ ↓ ..... ↓ ⟩ √ 2 . (1) 
However, in a series of recent papers [22][23][24] we have shown that the proof of the Bell theorem crucially relies on a subtle assumption that is not required by fundamental physical principles. Namely, we noted that the proof implicitly assumes the existence of an absolute angular frame of reference with respect to which we can define the polarization properties of the hypothetical hidden configurations of the pairs of entangled particles as well as the orientations of the measurement devices that test them. Furthermore, we showed that such an absolute frame of reference may not exist if the hidden configurations spontaneously break the gauge rotational symmetry along an otherwise arbitrary direction.

An illustrative example of the absence of an absolute frame is described in Fig. 3 in reference 22 . Let first consider a Bell-type game played between three parties located at the vertices of a triangle drawn on a plane. At the start of the game, each party sets at his/her vertex a reference unit vector contained within the plane. A long sequence of unit vectors randomly oriented within the plane are then produced at the center of each one of the three edges of the triangle and sent to the two parties located at their respective ends. Upon receiving a sampled random vector, each party compares its orientation to the local reference unit vector and produces a binary outcome, either +1 or -1, according to a deterministic response function. In this game, the affine structure of the euclidean plane allows comparing at once the relative orientations of the reference unit vectors at the three vertices, as well as the sampled random unit vectors, and, thus, it defines an "absolute frame of reference". It is then straightforward to derive the Bell inequality for the pairwise correlations between the binary outcomes of the parties. However, it can be readily seen that such an "absolute frame of reference" does not exist if we consider a similar Bell-type game played between parties located on the surface of a sphere: a tangent vector parallel-transported over a closed-loop drawn on the sphere may accumulate a non-zero geometric rotation phase due to a holonomy. Therefore, even though any two parties can calibrate and agree on a common frame of reference to describe the relative orientations of their reference unit vectors, as well as the orientation of the random vectors shared between them, there does not exist a common frame of reference upon which all the three parties can agree at once. In order to compare (and maybe constraint) the pairwise correlations that can be attained in the latter game, it is necessary to set the reference unit vector of one of the parties as a fixed common frame by taking advantage of the gauge degrees of freedom involved in the problem.

Following this insight, we built a statistical model of local hidden variables that fully reproduces the predictions of quantum mechanics for the Bell states of two entangled qubits, while complying with all the required symmetry demands and the hypothesis of 'free-will' [22][23][24] . Thus, our model completes the description of these quantum states in the sense advocated by Einstein, Podolsky and Rosen 1 . The hidden configuration of the pair of entangled qubits is represented in this model by a randomly oriented vector, whose orientation is described with respect to two reference unit vectors representing the settings of two detectors. The holonomy appears when tracking the orientation of the hidden vectors for the three or four possible settings of the detectors considered in the setup of the Bell experiment. This holonomy is allowed because any hidden configuration of the entangled qubits can be tested for only one of the possible settings of the two detectors.

In this paper we develop these ideas to build a model of local hidden variables for the GHZ state of three entangled qubits. The paper is organized as follows. In Section 2 we review the argument put forward by Greenberger, Horne and Zeilinger as a proof of the impossibility to reproduce the quantum mechanical predictions for the GHZ state within the framework of any model of local hidden variables. In Section 3 we introduce a simple explicit model of hidden variables that overcomes this argument. In Section 4 we extend this model and discuss it in detail. Our conclusions are summarized in section 5.

The GHZ paradox

The Greenberger-Horne-Zeilinger spin polarization state of three entangled qubits is described by the quantum wavefunction:

Π⟩ Φ = 1 √ 2 ↑⟩ (A) ⊗ ↑⟩ (B) ⊗ ↑⟩ (C) + e iΦ ↓⟩ (A) ⊗ ↓⟩ (B) ⊗ ↓⟩ (C) ,
where { ↑⟩, ↓⟩} denotes a basis of single particle spin polarization eigenstates along its locally defined Z-axis. In this state all the three outcomes in every single event of a long sequence of strong spin polarization measurements performed on each one of the three particles along their corresponding Z-axes must be consistently equal, either

S (A) Z (n) = S (B) Z (n) = S (C) Z (n) = +1, or S (A) Z (n) = S (B) Z (n) = S (C) Z (n) = -1,
for all n ∈ {1,...,N}, with each one of the two possibilities happening with a probability of 1/2.

In fact, in the GHZ state (2) the expected average values of long sequences of strong spin polarization measurements performed along any arbitrary directions

Ω (A) α , Ω (B) β , Ω (C) γ
in the XY-planes orthogonal to the local Z-axes are equal to zero: of the measurement devices that test them.

⟨S (A) Ω α (n)⟩ n∈N = ⟨S (B) Ω β (n)⟩ n∈N = ⟨S (C) Ω γ (n)⟩ n∈N = 0, (2) 2 
as well as their two-particles correlations:

⟨S (A) Ω α (n) ⋅ S (B) Ω β (n)⟩ n∈N = ⟨S (B) Ω β (n) ⋅ S (C) Ω γ (n)⟩ n∈N = ⟨S (C) Ω γ (n) ⋅ S (A) Ω α (n)⟩ n∈N = 0. (3) 
Notwithstanding, the three-particles correlation is non-zero, in general, and given by:

⟨S (A) Ω α (n) ⋅ S (B) Ω β (n) ⋅ S (C) Ω γ (n)⟩ n∈N = cos ∆ Ω (A) α + ∆ Ω (B) β + ∆ Ω (C) γ + Φ , where ∆ Ω (A) α , ∆ Ω (B) β and ∆ Ω (C) γ
describe the relative orientations of each one of the measurement devices with respect to some implicit local reference directions labelled as X-axes, see Fig. 1.

In particular,for Φ = 0 the following four relationships follow:

S (A) X (n) ⋅ S (B) X (n) ⋅ S (C) X (n) = +1, n = 1,....,N S (A) X (m) ⋅ S (B) Y (m) ⋅ S (C) Y (m) = -1, m = 1,....,M S (A) Y (k) ⋅ S (B) X (k) ⋅ S (C) Y (k) = -1, k = 1,....,K S (A) Y (l) ⋅ S (B) Y (l) ⋅ S (C) X (l) = -1, l = 1,....,L, (4) 
for any four sequences of strong measurements performed along directions (X,X,X) , (X,Y,Y ), (Y,X,Y ) and(Y,Y,X).

These four relationships (4) lie at the core of the Greenberger-Horne-Zeilinger paradox [START_REF] Greenberger | Bell's Theorem, Quantum Theory, and Conceptions of the Universe[END_REF] . On one hand, these relationships imply that we can gain certainty about the polarization properties of any of these three particles without in any sense disturbing them. Thus, according to the notion introduced by Einstein, Podolsky and Rosen 1 , these polarization properties are elements of reality whose values must be set at the time when the three entangled particles are produced. On the other hand, this notion seems to be inconsistent: by multiplying the last three equations in (4) and assuming that all polarization components must take values either +1 or -1, we would obtain that

S (A) X (n) ⋅ S (B) X (n) ⋅ S (C) X (n) = -1, n = 1,....,N (5) 
which is in contradiction with the first one.

This argument is widely considered as the most clear-cut evidence against the possibility of giving the wavefunction (2) an statistical interpretation within the framework of a local model of hidden configurations, in which the observers are free to choose the setting of their measurements. Figure 2. By symmetry considerations the orientation of one of the measurement devices, say A, can always be defined as a local X-axis for every one of the repetitions of the experiment. Moreover, the orientation of a second measurement device, say B, can also be always defined as a local X-axis since any rotation in it can be accounted for through the definition of the phase Φ that characterizes the source of the photons. In fact, as explained in paragraph 3, this is strictly necessary in order to properly define the quantum state (2). Thus, the experimental setting of the three measurement devices is described by a single angle ∆, while the expected correlation between their outcomes depends only on the linear combination ∆ + Φ.

The paradox revisited

The above argument crucially relies on the implicitly assumed existence of an absolute angular frame of reference, with respect to which the polarization properties of the hidden configurations of the triplets of entangled particles, as well as the orientations of the measurement devices that test them, can be defined. In such an absolute frame of reference all the polarization components of each possible hidden configuration must take a binary value, either +1 or -1, and relationships (4) immediately follow. However, as we already did notice i previous works [22][23][24] , the existence of such an absolute angular frame of reference is not required by fundamental physical principles. Indeed, the polarization properties of the hidden configurations may only be properly defined with respect to the reference directions set by the orientation of the corresponding measurement devices. Furthermore, the orientation of the measurement devices can only be properly defined with respect to each other, while their global orientation is actually a spurious gauge degree of freedom. Namely, the correlation between the binary outcomes of the three measurement devices,

⟨S (A) Ω α (n) ⋅ S (B) Ω β (n) ⋅ S (C) Ω γ (n)⟩ n∈N = cos(∆ + Φ), (6) 
is described by a single physical degree of freedom, the angle ∆ + Φ, where the angle ∆ is measured with respect to a set of locally defined X-axes at the sites of each one of the three measurement devices, for which the correlation is given by:

⟨S (A) X (n) ⋅ S (B) X (n) ⋅ S (C) X (n)⟩ n∈N = cos(Φ), (7) 
and, in particular, for Φ = 0 is given by

⟨S (A) X (n) ⋅ S (B) X (n) ⋅ S (C) X (n)⟩ n∈N = +1. (8) 
Actually, condition (7) defines the notion of parallel directions at the sites of each one of the three measurement devices. All sets of axes for which this condition is fulfilled are physically indistinguishable through measurements performed on triplets of entangled particles in the GHZ state and, hence, all such sets of axes are gauge equivalent. It is worth noticing at this point that the single-particle eigenstates ↑⟩ (A,B,C) , ↓⟩ (A,B,C) of the locally defined operators σ

(A,B,C) Z
are defined only up to a phase (as any normalized eigenvector of any operator) and, hence, the phase Φ in (2) is not, in principle, properly defined yet. In order to properly define this phase, it is necessary to set a reference setting (7) of the three measurement devices and experimentally obtain the threesome correlation. With respect to this reference setting of parallel directions it is possible to properly define a subsequent rotation of any one of the devices by an angle ∆, see Fig. 2.

Furthermore, also the polarization properties of the hidden configurations of the triplets of entangled particles may be properly defined only with respect to the local reference directions set by the three measurement devices. That is, the actual number described in 25 .

Before closing this section, it is worth noticing that eq. (16-17) is a coordinates transformation that relates the orientations of the hidden configurations of the triplets of entangled qubits with respect to the reference directions set by two different detectors oriented at an angle ∆ relative to each other. Hence, eq. (16-17) does not introduce any non-local interaction between the detectors. In order to clarify this issue consider a source that produces pairs of macroscopic arrows parallel to each other and randomly oriented within a locally defined XY plane. The twin arrows are then parallel-transported in opposite directions along the Z axis towards two distant detectors, each one of them consisting of an arrow that can also be arbitrarily oriented within the local XY plane. For every pair of twin arrows the following relationship must hold:

ω ′ = ω -∆, (31) 
where ω and ω ′ are the relative angles between the orientations of the incoming arrows and their corresponding detectors, and ∆ is the relative angle between the two detectors. This relationship (31) does obviously not introduce any non-local interaction between the detectors, since it is dictated by the euclidean structure of the macroscopic space, and, therefore, it is fulfilled no matter who decides how to orient the detectors or when these decisions are taken. Eq. (16-17) is nothing but a non-linear generalization of the euclidean relationship (31), and it simply means that the entangled particles might carry with them a non-euclidean metric. In this sense, it is useful to think about eq. (16-17) as somehow similar to the Lorentz transformation that relates, for example, the frequencies ν and ν ′ of a signal emitted by a source towards two detectors moving with relative velocity V ,

ν ′ = L(ν;V ). (32) 
Obviously, this non-linear relationship neither violates causality, since it is dictated by the Minkowski metric of space-time from which the very notion of causality stems. Finally, let us remind again that the non-linearity of the coordinates transformation eq. (16-17) introduces an holonomy (30) only in the un-physical gauge degrees of freedom, while the physical degrees of freedom that describe the settings of the detectors comply with all the usual symmetry demands.

Discussion

We have shown in this paper that the argument behind the renowned GHZ paradox crucially relies on an implicit assumption that is not required by fundamental physical principles. Hence, the argument can be overcome by giving up this unnecessary requirement. Namely, the argument put forward by Greenbereger, Horne and Zeilinger thirty years ago 8 implicitly assumes that there exists an absolute angular frame of reference with respect to which we can define the polarization properties of the hypothetical hidden configurations of the entangled qubits, as well as the orientations of the measurement devices that test them. However, we have remarked in this paper that in order to properly define the phase Φ that characterizes the state (2) of the triplets of entangled qubits it is necessary to fix a reference setting of the measurement devices that test their polarizations. Thus, only a subsequent relative rotation ∆ of one of the devices with respect to the fixed reference setting is a properly defined physical magnitude, see Fig. 2. Moreover, we have noticed that the polarization properties of each one of the qubits may be properly defined only with respect to the orientation of the measurement device that tests it. With these observations in mind we have built an explicit model of local hidden variables that complies with the 'free-will' assumption and reproduces the predictions of quantum mechanics for the GHZ state of three entangled qubits. The model, thus, completes -in the EPR sensethe quantum description of the GHZ state. This model closely resembles the model of hidden variables for the Bell polarization states of two entangled qubits that we recently described [22][23][24] .
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 1 Figure 1. The GHZ argument implicitly requires the existence of an absolute frame of reference with respect to which it is possible to describe the polarization properties (±1,±1,±1) of the hypothetical hidden configurations of the triplets of photons as well as the orientations Ω (A) α , Ω (B) β , Ω (C) γ

value s (A) Ω (Ω α ,ω) of the polarization component of, say, particle A along some direction Ω may be, in general, a function of the reference direction Ω α set by the measurement apparatus of observer A (and, of course, also of the coordinate ω ∈ S that labels the hidden configuration in which the system of three entangled particles occurs). This dependence does not conflict with the principles of locality and physical realism, which only demand that the value of the polarization components of particle A cannot depend on the orientations of the reference directions Ω β , Ω γ along which observers B and C choose to test their particles. Therefore, we must not restrict our models within the constraint that all polarization components of either one of the particles must take a binary value, either +1 or -1: only the polarization component of each one of the particles along the reference direction set by the orientation of the corresponding measurement device must take a binary value. That is, on all possible hidden configurations of the triplet we must have:

but the polarization components along any other directions must not necessarily take either one of these two values. Indeed, the only experimental access that we can have to the spin polarization components along these other directions is through weak measurements, whose outcome can have absolute values larger and smaller than one and may even be complex 26 . In fact, weak values of physical observables are complex numbers independently of the linear dimension of the Hilbert space of the described quantum system. Therefore, it is crucial to realize that in order to obtain a meaningful description of the system we must be careful to compare magnitudes defined with respect to the same reference directions. For example, we can state that with respect to a set of parallel reference directions X (A) , X (B) and X (C) defined by condition (8), the polarization components of the particles along the orthogonal directions Y (A) , Y (B) , Y (C) take values either +i or -i, according to the relationship:

X (X,ω) = ±1, see Fig. 3. Then, the four constraints (4) become trivially identical,

In other words, the argument put forward by Greenberger, Horne and Zeilinger as a proof of the impossibility to reproduce the predictions of quantum mechanics for the GHZ state within the framework of a model of local hidden variables can be overcome by realizing that there does not necessarily exist an absolute frame of reference with respect to which the hidden polarization properties of the entangled particles can be defined and, in consequence, allowing their actual values depend on the reference direction with respect to which they are described.

A statistical model for the GHZ state

In this section we build and discuss in detail an explicit statistical model of local hidden variables for the GHZ state of three entangled qubits. The model complies with the 'free-will' assumption and reproduces the quantum mechanical predictions for the average values and correlations of long sequences of strong spin polarization measurements performed on the three qubits along any three arbitrary directions.

Our statistical model consists of infinitely many possible hidden configurations continuously distributed over the unit circle S 1 , a well-defined density of probability for each one of these configurations to occur and locally defined binary response functions that specify the outcomes that each one of these hidden configurations would produce in each one of the three measurement devices as a function of their orientations.

We define two sub-populations within the space of all possible hidden configurations, which we label as η = ±1, each one occurring with probability of 1 2. These two sub-populations correspond, respectively, to the two possible outcomes of the measurement performed on one of the particles, say, particle A. That is,

5/10 The device that measures the polarization of particle B along an arbitrary direction orthogonal to its locally defined Z-axis fixes a reference frame of angular coordinates ω B ∈ [-π,π) over the circle S 1 . We assume that the density of probability for each one of the hidden configurations to occur is given by

and define the outcome of the measurement on particle B as:

with:

Similarly, the device that measures the polarization of particle C along some other arbitrary direction Ω orthogonal to its locally defined Z-axis sets its own frame of angular coordinates ω C ∈ [-π,+π) over the circle S 1 . By symmetry considerations we demand that the outcome of this measurement is described by the same response function:

). The two sets of angular coordinates ω B and ω C are related by the relationship:

where

and
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with

and the function y = arc-cos(x) is defined in its main branch, such that y ∈ [0,π] while x ∈ [-1,+1]. The parameter ∆ ≡ ∆ + Φ in this transformation law denotes the orientation of the measurement setting, as defined in (6,7).

It is straightforward to check that the probability density ( 13) remains invariant under the coordinates transformation (18,19), since

and

In fact, these equalities state in precise terms that the probability of each hidden configuration to occur does not depend on the orientation of the reference direction chosen by the observers to describe their particles or, in other words, that our model complies with the requirements of 'free-will'.

We can now define a partition of the circle S 1 into four disjoint regions,

as follows:

where we have assumed without any loss of generality that 0 ≤ ∆ ≤ π.

In each one of these four segments, the two measurements are fully correlated or anti-correlated:

Ω (ω C ,η)

Ω (ω C ,η)

• If η = -1,

Ω (ω C ,η)

Ω (ω C ,η)

It is straighforward to notice that

where µ(⋅) denotes the normalized measure over the circle according to the probability density distribution (13). Hence,

• Over the sub-population of states with η = +1, ⟨S

• Over the sub-population of states with η = -1,

Therefore, over the whole population the two measurements are completely uncorrelated,

since each one of the two sub-populations η = +1 and η = -1 happens with probability 1 2. Furthermore, the three-particles correlation is given by:

which reproduces the quantum mechanical prediction (6) for the GHZ state.

Let us remark that in the model that we have described here, like in the quantum formalism, the orientation of two of the three measurement devices sets a reference frame with respect to which the orientation of the third device is described, see Fig. 2. Hence, it does not make sense to compare two different orientations for the reference setting. The ultimate reason is the fact that the set of angular coordinates over the circle S 1 acquires a non-zero geometric phase α ≠ 0,π through certain cyclic transformations (18,19) due to an holonomy:

Such a geometric phase is allowed precisely because the orientation of the reference setting is, as we have noticed above, a gauge degree of freedom and each triplet of entangled qubits can be tested at only one setting of the detectors.

The possible appearance of a geometric phase in closed loops (in some parameter space) of gauge transformations is well-known, also in classical physics. A particularly beautiful example is the gauge theory of swimming at low Reynolds