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ABSTRACT
In this paper, we develop tools to analyze stability properties of

discrete-time switched linear systems driven by switching signals

belonging to a givenω- regular language.More precisely, we assume

switching signals to be generated by a Büchi automaton where

the alphabet corresponds to the modes of the switched system.

We define notions of attractivity and uniform stability for this

type of systems and also of uniform exponential stability when

the considered Büchi automaton is deterministic. We then provide

sufficient conditions to check these properties using Lyapunov

and automata theoretic techniques. For a subclass of such systems

with invertible matrices, we show that these conditions are also

necessary. We finally show an example of application in the context

of synchronization of oscillators over a communication network.

CCS CONCEPTS
• Computing methodologies→ Computational control theory; •
Theory of computation → Automata over infinite objects.
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1 INTRODUCTION
Switched systems are dynamical systems with several modes of op-

erations where the active mode is determined by a switching signal.

In this paper, we consider discrete-time switched systems where

each mode corresponds to a linear system. This class of systems

is broadly considered in the literature as modeling framework for

cyber-physical systems as it makes it possible to describe faithfully
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the interaction between the physical dynamics and the cyber com-

ponents such as shared computing resources and communication

networks (see e.g. [1, 6, 13]).

Stability analysis of switched linear systems has been the ob-

ject of numerous studies. Early works focus on proving stability

of switched systems driven by arbitrary switching signals or by

switching signals with dwell-time conditions [11, 12, 17]. More

recent works have considered systems with constrained switch-

ing signals where the switching signals are generated by labeled

graphs [2, 5, 10, 15, 16].

Shuffled switching signals is also a class of constrained switch-

ing signals that has been considered in the literature [7, 8, 18].

A switching signal is said to be shuffled if all the modes of the

switched systems are activated infinitely often. The set of shuffled

switching signals cannot be generated by the labeled graphs con-

sidered in the works above (see [7]) but constitutes an example of

an ω-regular language, which can always be characterized using

Büchi automata [3]. Since ω-regular languages are frequently used

to specify properties, such as fairness, in scheduling algorithms or

communication protocols, e.g through linear temporal logic specifi-

cations [3], it is of interest for some cyber-physical systems appli-

cations, where multiple components must be granted access to a

shared resource infinitely often, to analyze the stability of switched

systems driven by switching signals belonging to a given ω-regular
language. Moreover, a practical application of systems driven by ω-
regular languages is consensus/synchronization over time-varying

(undirected) graphs, which can be seen as a switched system. It is

well known (see e.g. [4, 14]) that consensus/synchronization can

be reached if and only if, at every time instant, the union of future

interaction graphs is connected. This connectivity condition cannot

be described using labeled graphs as in [16] but can be specified

using deterministic Büchi automata.

Hence, in this paper, we consider discrete-time switched linear

systems whose switching signals are generated by a given Büchi au-

tomaton. The main contributions of the paper are as follows. First,

we define for this class of systems the notions of attractivity, uni-

form stability, and in the case of deterministic Büchi automaton, of

uniform exponential stability. We then establish sufficient stability

conditions using Lyapunov functions. For a particular class of such

systems with invertible matrices, we show that these conditions

are also necessary with a converse Lyapunov result. Our approach

is illustrated using a simple example of oscillator synchronization

over a communication network.
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The work presented in this paper can be seen as a generaliza-

tion of [7] from the particular case of shuffled switching signals

to the general case of arbitrary ω-regular languages. Although the

proof of the sufficient conditions is easily adapted from [7], the

proofs of the converse result require some novel techniques such

as the construction of a labeled graph based on accepting states of

a non-deterministic Büchi automaton, the lifting of results of [16]

to analyze a resulting constrained system, and the construction of

a Lyapunov function. Our paper also builds on the results of [16]

that are paramount to prove our converse Lyapunov result. In this

work, the authors consider switched systems where the switch-

ing signals are generated by labeled graphs, which correspond to

non-deterministic Büchi automata where all states are accepting.

However, not all ω-regular languages can be generated using la-

beled graphs. Hence, our results subsume those of [7] and [16]

and also apply to systems that cannot be handled by any of these

methods. Finally, stability analysis of discrete-time switched linear

systems constrained byω-regular languages have already been con-

sidered in the literature in [18] where it is shown that the stability

is equivalent to the stability of a lifted system driven by shuffled

switching signals. In comparison, our approach works directly on

the original state-space, and thus results in more tractable condi-

tions. Our Lyapunov functions also resembles that considered in [9].

However, in that work, the connection to ω-regular languages has
not been investigated.

The rest of the paper is organized as follows. Section 2 introduces

the class of systems under consideration and the associated stability

notions. In Section 3, we provide sufficient stability conditions given

by the existence of a Lyapunov function. In Section 4, we establish

a converse Lyapunov result for a particular class of systems. An

illustrative example is shown in Section 5.

Notations: We denote by ∅ the empty set, by R, R+
0
and N the

sets of real numbers, nonnegative real numbers and nonnegative

integers, respectively. ∥.∥ denotes an arbitrary norm on Rn and the

associated induced matrix norm defined forM ∈ Rn×n by ∥M ∥ =

supx,0
∥Mx ∥
∥x ∥ . In ∈ Rn×n denotes then dimensional identity matrix.

We use |.| to denote the cardinality of a finite set. Given an alphabet

Σ, a word σ = σ0σ1 . . . is a finite or infinite sequence of elements

of the alphabet, σi ∈ Σ for all i = 0, 1, . . . ; Σ+ denotes the set of all

finite words over the alphabet Σ exempted from the empty word ϵ ;
Σω denotes the set of all infinite words over the alphabet Σ.

2 STABILITY OF SWITCHED SYSTEMS WITH
ω-REGULAR SWITCHING SEQUENCES

In this section, we first introduce the class of systems under study

and define several associated notions related to stability.

A non-deterministic Büchi automaton (NBA) is a tuple B =

(Q, Σ, δ ,Q0, F ) where Q is a finite set of states, Σ is the alphabet,

δ : Q ×Σ → 2
Q
is a transition function,Q0 is the set of initial states

and F is the set of accepting states. A run associated with a finite

or infinite word σ ∈ Σ+ ∪ Σω is a sequence of states q0q1q2 . . .
such that q0 ∈ Q0 and qi+1 ∈ δ (qi ,σi ) for all i = 0, 1, . . . . A run

q0q1q2 . . . associated with an infinite word σ ∈ Σω is said to be

accepting if qi ∈ F for infinitely many indices i ∈ N. The language
of B, denoted by Lanд(B), is the set of all infinite words over the

alphabet Σ which have an accepting run. We note that an NBA is

called deterministic Büchi automaton (DBA) if |δ (q, i)| ≤ 1 for all

q ∈ Q , i ∈ Σ and |Q0 | = 1.

Let us consider a discrete-time switched linear system in which

the switching sequences are infinite words accepted by a given

NBA. Specifically, given a Büchi automaton B = (Q, Σ, δ ,Q0, F )
where the alphabet is the set Σ = {1, . . . ,m}, given a finite set of

matrices A = {A1, . . . ,Am } with Ai ∈ Rn×n , i ∈ Σ, the discrete-
time switched linear system with ω-regular switching sequences
(A,B) is described by the equation

x(t + 1) = Aθ (t )x(t),

where t ∈ N, x(t) ∈ Rn is the state and θ : N→ Σ is the switching

signal with θ ∈ Lanд(B) where, by abuse of notation, we say that

θ ∈ Lanд(B) if the infinite word θ (0)θ (1) · · · ∈ Lanд(B). We note

that, given an initial condition x0 ∈ Rn , and a switching signal

θ ∈ Lanд(B), the trajectory with x(0) = x0 is unique, denoted by

x(., x0, θ ) and given by

∀t ≥ 1 : x(t, x0, θ ) =
t−1∏
i=0

Aθ (i)x0,

where

t−1∏
i=0

Aθ (i) = Aθ (t−1) × · · · ×Aθ (0).

Now we introduce the following running Assumption:

Assumption 1. All the states of the Büchi automaton B are reach-
able from at least one initial state and for any finite run q0q1q2 . . .qk
there exists an infinite sequence of states qk+1qk+2 . . . such that
q0q1q2 . . . is an accepting run.

Note that there is no loss of generality to suppose that Assump-

tion 1 holds true since it can be shown easily that for any NBA

(resp. DBA), there exists an NBA (resp. DBA) with the same lan-

guage and satisfying Assumption 1. Hence, in the rest of the paper,

Assumption 1 is always supposed to be satisfied.

We start by defining some stability notions.

Definition 1. The system (A,B) is globally attractive (GA) if
for all switching signals θ ∈ Lanд(B) and for all initial conditions
x0 ∈ Rn , we have

lim

t→∞
∥x(t, x0, θ )∥ = 0.

Definition 2. The system (A,B) is globally uniformly stable
(GUS) if there exists a scalar α ≥ 1 such that for all switching signals
θ ∈ Lanд(B) and for all initial conditions x0 ∈ Rn , we have

∥x(t, x0, θ )∥ ≤ α ∥x0∥,∀t ∈ N.

Now, we define some quantities specific to a DBA B. For θ ∈

Lanд(B), we denote by q0q1 . . . its unique accepting run in B and

we define the sequence of return instants (τ θk )k ∈N, by τ
θ
0
= 0, and

for all k ∈ N

τ θk+1 = min{t > τ θk |qt ∈ F }.

The return index κθ (t) : N→ N is defined by

κθ (t) = max{k ∈ N|τ θk ≤ t}.

Intuitively, τ θk is the first instant where the run associated with

θ has visited an accepting state k times, and κθ (t) is the number of
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times the run associated with θ has visited an accepting state in B

up to time t . Since θ ∈ Lanд(B), the set F of accepting states will

be visited infinitely often, so τ θk is well defined for every k ∈ N and

lim

t→∞
κθ (t) = ∞.We note that an infinite word can have multiple

runs in an NBA, therefore κθ (t) and τ θk cannot be defined as above

for an NBA.

Let us define the following stability notion for a DBA.

Definition 3. The system (A,B), where B is a DBA, is globally
uniformly exponentially stable (GUES) if there exist a scalarC ≥

1 and a scalar 0 < λ < 1 such that for all switching signals θ ∈

Lanд(B) and for all initial conditions x0 ∈ Rn , we have

∥x(t, x0, θ )∥ ≤ Cλκ
θ (t )∥x0∥,∀t ∈ N.

It is clear that if the system (A,B) is GUES then it is GA and

GUS, we note that this type of stability cannot be defined for an

NBA since κθ (t) is not defined for these automata.

We have seen in this section several notions of stability of

switched linear systems with ω-regular switching sequences, some

of them concern the general case of an NBA, and the rest concerns

the DBA only. In the next sections, we will develop sufficient con-

ditions for stability using a Lyapunov approach and we will give a

converse result for a specific class of systems.

3 SUFFICIENT CONDITIONS FOR STABILITY
In this section, for a system (A,B), we establish sufficient condi-

tions for the notions of stability defined in the previous section

based on the following type of Lyapunov functions:

Definition 4. For the system (A,B), the functionV : Q ×Rn →

R+
0
, is called Lyapunov function if there exist scalars α1,α2 > 0

and 0 < ρ < 1 such that for all x ∈ Rn , the following hold:

α1∥x ∥ ≤ V (q, x) ≤ α2∥x ∥, q ∈ Q (1)

V (q′,Aix) ≤ V (q, x), q ∈ Q, i ∈ Σ,q′ ∈ δ (q, i) \ F (2)

V (q′,Aix) ≤ ρV (q, x), q ∈ Q, i ∈ Σ,q′ ∈ δ (q, i) ∩ F (3)

Theorem 1. If there exists a Lyapunov function for the system
(A,B) then (A,B) is GA and GUS. If in addition B is a DBA then
(A,B) is GUES.

Proof. Let us consider an initial condition x0 ∈ Rn and a switch-

ing signal θ ∈ Lanд(B), let q0q1q2 . . . be an accepting run associ-

ated with θ . Let t0 = 0 and 0 < t1 < t2 < . . . be the time instants

where qti ∈ F , for all i ≥ 1. We denote x(.) = x(., x0, θ ) and we

define the functionW : N→ R+
0
byW (t) = V (qt , x(t)) for all t ∈ N.

It follows from (2) and (3) thatW (t + 1) ≤W (t) for all t ∈ N. From
the monotonicity ofW , we get that

∀t ∈ N :W (t) ≤W (0).

Therefore, from (1) we conclude that

∀t ∈ N : ∥x(t)∥ ≤
α2
α1

∥x0∥,

and we get that the system (A,B) is GUS.
On the other hand, from (3), we get that

∀k ≥ 1 :W (tk ) ≤ ρW (tk − 1).

From the monotonicity ofW , we deduce that

∀k ≥ 1 :W (tk ) ≤ ρW (tk−1).

By induction on k , we get that

∀k ∈ N :W (tk ) ≤ ρkW (0).

SinceW is non-increasing and sinceW (t) ≥ 0 for all t ∈ N and

0 < ρ < 1, we get that

lim

t→∞
W (t) = 0.

Therefore, from (1) we get that the system (A,B) is GA.
Now ifB is a DBA, the sequence (tk )k ∈N defined above coincides

with the sequence of return instants (τ θk )k ∈N. Therefore, we get
that

∀k ∈ N :W (τ θk ) ≤ ρkW (0).

Now let t ∈ N, and let k ∈ N such that t ∈ [τ θk , τ
θ
k+1), then the

return index is κθ (t) = k . We get from the monotonicity ofW that

W (t) ≤ ρκ
θ (t )W (0). Finally from (1), we get, for all t ∈ N, x0 ∈ Rn

that

∥x(t)∥ ≤
α2
α1

ρκ
θ (t )∥x0∥. (4)

Hence (A,B) is GUES. □

Let us remark that (4) provides an upper bound on the conver-

gence rate of the state with respect to the number of visits to the

accepting set F given by the return index κθ (t). If we restrain to

Lyapunov functions of the form V (q, x) =
√
x⊤Pqx where, for ev-

ery q ∈ Q , Pq is a positive definite matrix, then the conditions in

Definition 4 are equivalent to a set of linear matrix inequalities

(LMI). In that case, stability of the switched system (A,B) can be

verified by solving a convex optimization problem.

4 NECESSARY CONDITIONS FOR STABILITY
In this section we show that, if all matrices inA are invertible, then

the existence of a Lyapunov function for (A,B) is not only suffi-

cient but also necessary for the attractivity and uniform stability

of the system. We introduce some quantities related to the NBA B.

We define Lqqf as the set of all words in Σ+ corresponding to a

run starting from q ∈ Q and reaching qf ∈ F without visiting any

accepting state between q and qf . Formally

Lqqf =

{
σ1 . . . σk ∈ Σ+

���� qi+1 ∈ δ (qi ,σi ) \ F , 1 ≤ i < k
where q1 = q and qf ∈ δ (qk ,σk )

}
.

Now we define L×
qqf as the set of all products of matrices in A

associated with words in Lqqf :

L×
qqf =

{
Aσk × · · · ×Aσ1

�� σ1 . . . σk ∈ Lqqf
}
.

Given a word l ∈ Lqqf the corresponding matrix in L×
qqf is de-

notedMl .

In order to establish necessary conditions, we apply a result

obtained in [16] based on labeled graphs. A labeled graph is a

tuple G = (V , L, E) where V is a set of nodes, L is a set of labels,

E ⊂ V × L × V is a set of edges or transitions. For an edge e =
(v, l,v ′) ∈ E, the node v ∈ V is the origin, l ∈ L is the label, v ′ ∈ V
is the end. A path in the labeled graph G is a set of consecutive
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Lq1q1 Lq2q2

Lq1q2

Lq2q1

q1 q2 q3

Lq3q3

Lq1q3

Lq3q1

Lq3q2

Lq2q3

Figure 1: The labeled graph G corresponding to an NBA B

with 3 accepting states q1,q2 and q3.

edges (v0, l1,v1), (v1, l2,v2), . . . where vi ∈ V for all i = 0, 1, . . . ,

its label is the wordw = l1l2 . . . .
In order to analyze the dynamics of the system (A,B), we use

the concept of constrained system [16]. A constrained system is

formed from a labeled graph G, and a set of matrices M where

each matrix of M corresponds to an element of the labels of G.

In our case, with a switched system (A,B) one can associate a

constrained system (MF
B
,G), where MF

B
=

⋃
q,p∈F

L×
qp and the

nodes of G are V = F , the labels L =
⋃

q,p∈F
Lqp , and the set of

edges is E =
{
(q, l,p)

��q,p ∈ F , l ∈ Lqp
}
.

Remark 1. In [16], the set of labels L is assumed to be finite. In
our case, this set can be infinite.

Figure 1 shows the labeled graph corresponding to an NBA B

with three accepting states q1,q2 and q3. In the figure, by an abuse

of notation, for qi ,qj ∈ F , the edge (qi ,Lqiqj ,qj ), denotes the set

of edges

{
(qi , l,qj )

�� l ∈ Lqiqj
}
. Note that, unlike [16], in our case

the set of edges of the labeled graph is usually infinite. We consider

the following stability notion.

Definition 5. We say that the constrained system (MF
B
,G) is

attractive if for all paths (qf0 , l1,qf1 ), (qf1 , l2,qf2 ), . . . we have

lim

k→∞
∥Mlk · · ·Ml1 ∥ = 0.

In the following we will make use of the following assumption.

Assumption 2. All the matrices in A are invertible.

The following lemma provides a uniform bound on the set of

matrix products that correspond to transitions from any state q ∈ Q
to an accepting state qf ∈ F .

Lemma 1. Under Assumption 2, if the system (A,B) is GUS, then
the set L×

qqf is either empty or bounded for all q ∈ Q,qf ∈ F .

Proof. Let q ∈ Q,qf ∈ F such that Lqqf , ∅. Let l ∈ Lqqf ,

by Assumption 1 we know that there exist a switching signal

θ (0)θ (1) · · · ∈ Lanд(B) and a corresponding run q0q1q2 . . . such
that qt ′

0

= q and qt0 = qf , for some t ′
0
< t0 and l = θ (t

′
0
) . . . θ (t0−1).

Without loss of generality we may assume that qi , qj for every
0 ≤ i < j ≤ t ′

0
since otherwise, if qi = qj , we can replace the

switching signal θ with θ (0)θ (1) . . . θ (i − 1)θ (j) . . . and consider

the corresponding runq0q1q2 . . .qiqj+1 . . . . Hence wemay assume

t ′
0
≤ |Q | − 1.

From the definition of global uniform stability we get that there

exists α ≥ 1 such that

∥Aθ (t0−1) · · ·Aθ (t ′
0
)Aθ (t ′

0
−1) · · ·Aθ (1)Aθ (0)∥ ≤ α

Using the fact that, for A,B in Rn×n with B invertible, one has

∥A∥ ≤ ∥AB∥∥B−1∥ and since Ml = Aθ (t0−1) · · ·Aθ (t ′
0
), we obtain

from the previous inequality

∥Ml ∥ ≤ α ∥(Aθ (t ′
0
−1) · · ·Aθ (1)Aθ (0))

−1∥

= α ∥(Aθ (0))
−1(Aθ (1))

−1 · · · (Aθ (t ′
0
−1))

−1∥

≤ α

(
max

A∈A
∥A−1∥

)t ′
0

≤ α max

{
1,

(
max

A∈A
∥A−1∥

) |Q |−1
}
.

We have thus obtained a uniform bound on the set of matricesL×
qqf

whenever Lqqf , ∅. □

We will analyse the attractivity of the constrained system

(MF
B
,G) by making use of the concept of multinorm, defined below.

Definition 6. (Definition 1 in [16]) A multinorm of the con-
strained system (MF

B
,G), denoted by H , is a set of |F | norms in Rn ,

that is H = {∥.∥q ,q ∈ F }. The value of the multinorm γ ∗(H) is
defined as

γ ∗(H) = inf

{
γ > 0

���� ∥Mx ∥p ≤ γ ∥x ∥q , ∀x ∈ Rn,
∀q,p ∈ F s.t. Lqp , ∅, ∀M ∈ L×

qp

}
.

This definition coincides with Definition 1 in [16] except for the

fact that here the matrixM takes values on a possibly infinite set.

Theorem 2. Suppose that Assumption 2 holds true and that (A,B)

is GUS. Then the constrained system (MF
B
,G) is attractive iff it

admits a multinorm H with value γ ∗(H) < 1.

Proof. The result follows from Proposition 2.2 and Theorem 1.1

in [16], where these results are proven assuming that the number

of labels going from a state to another is finite and that the graph

G is strongly connected. The arguments of the proofs still apply

in our case, although the set L×
qp is bounded but not necessarily

finite and we do not require G to be strongly connected. □

Now we relate the attractivity of (A,B) with that of (MF
B
,G)

using the following lemma.

Lemma 2. Under Assumption 2, if the switched system (A,B) is
GA then the constrained system (MF

B
,G) is attractive.

Proof. Let (qf0 , l1,qf1 ), (qf1 , l2,qf2 ), . . . be a path in (MF
B
,G).

By Assumption 1 there exist q0 ∈ Q0, a switching sequence θ ∈

Lanд(B) and a sequence of instants (tk )k ∈Z+ with 0 < t1 < t2 . . .
such that

∀k ∈ Z+, x0 ∈ Rn : x(tk , x0, θ ) = Mlk−1 · · ·Ml1Ml0x0,

whereMl0 ∈ L×
q0qf

0

. Since (A,B) is GA we have

lim

k→∞
∥Mlk · · ·Ml0 ∥ = 0.

By submultiplicativity we have

∥Mlk · · ·Ml1 ∥ ≤ ∥Mlk · · ·Ml0 ∥∥M
−1
l0

∥
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which implies

lim

k→∞
∥Mlk · · ·Ml1 ∥ = 0,

concluding the proof of the lemma. □

We next provide a converse result to Theorem 1.

Theorem 3. Under Assumption 2, if the switched system (A,B)

is GUS and GA, then it admits a Lyapunov function.

Proof. Under the assumptions of the theorem we get from The-

orem 2 and Lemma 2 that, for the constrained system (MF
B
,G),

there exists a multinorm H = {∥.∥qf ,qf ∈ F } with a value strictly

less than 1, that is γ ∗(H) < 1.

Consider the function V : Q × Rn → R+
0
defined as follows

∀q ∈ Q, x ∈ Rn : V (q, x) = max

qf ∈F
Lqqf ,∅

sup

M ∈L×
qqf

∥Mx ∥qf .

Note that V is well defined thanks to Assumption 1. Let us prove

that V is a Lyapunov function for (A,B), namely that V satisfies

equations (1), (2) and (3) in Definition 4 for all x ∈ Rn , for some

positive constants α1,α2 and ρ such that γ ∗(H) < ρ < 1.

Concerning (1), since the system is GUS and thanks to Assump-

tion 2 we know from Lemma 1 that the set L×
qqf is bounded

for all q ∈ Q and qf ∈ F . Hence there exists B > 0 such that

V (q, x) ≤ B max

qf ∈F
∥x ∥qf . Furthermore, from the equivalence of

norms in Rn and since F is finite, we get that there exists a constant

α2 > 0 such that V (q, x) ≤ α2∥x ∥ for all q ∈ Q and x ∈ Rn .
On the other hand, for q ∈ Q , there exists qf ∈ F such that

Lqqf , ∅. Taking Mq ∈ L×
qqf we get, from the equivalence of

norms in Rn and since F is finite, that there exists a scalar α > 0

such that for all x ∈ Rn it holds

V (q, x) ≥ α ∥Mqx ∥.

From Assumption 2, we then obtain

V (q, x) ≥ α
∥x ∥

∥Mq
−1∥

≥ α min

q∈Q

1

∥M−1
q ∥

∥x ∥.

By taking α1 = α min

q∈Q
1

∥Mq
−1 ∥

we get that (1) holds true.

We next show (2). Let q ∈ Q and q′ ∈ δ (q, i) \ F for some i ∈ Σ.
For every qf ∈ F such that Lq′qf , ∅ andM ∈ L×

q′qf
we have that

the productMAi is an element of the set L×
qqf . In particular

{qf ∈ F | Lq′qf , ∅} ⊆ {qf ∈ F | Lqqf , ∅}

and

sup

M ∈L×
q′qf

∥MAix ∥qf ≤ sup

M ′∈L×
qqf

∥M ′x ∥qf , ∀x ∈ Rn .

Then

max

qf ∈F
Lq′qf

,∅

sup

M ∈L×
q′qf

∥MAix ∥qf ≤ max

qf ∈F
Lq′qf

,∅

sup

M ′∈L×
qqf

∥M ′x ∥qf

≤ max

qf ∈F
Lqqf ,∅

sup

M ′∈L×
qqf

∥M ′x ∥qf

Hence (2) is satisfied.

Finally, let us prove (3). Let q ∈ Q and q′ ∈ δ (q, i) ∩ F for some

i ∈ Σ. Let qf ∈ F ,M ∈ L×
q′qf

. Letting ρ such that γ ∗(H) < ρ < 1

we get that ∥Mx ∥qf ≤ ρ∥x ∥q′ for all x ∈ Rn . SinceAi ∈ L×
qq′ , then

∥MAix ∥qf ≤ ρ∥Aix ∥q′ ≤ ρ sup

M ′∈L×
qq′

∥M ′x ∥q′

≤ ρ max

q′f ∈F
Lqq′f

,∅

sup

M ′∈L×

qq′f

∥M ′x ∥q′f

Taking the supremum overM ∈ L×
q′qf

and then the maximum

over all qf ∈ F such that Lq′qf , ∅ on the left-hand side, we get

that (3) is satisfied, concluding the proof of the theorem. □

Corollary 1. Under Assumption 2, let B be deterministic. Then,
the (A,B) is GUES if and only if it is GA and GUS.

Proof. The fact that GUES implies GA and GUS follows di-

rectly from the definitions. Then, if (A,B) is GA and GUS. Then
from Theorem 3, there exists a Lyapunov function. Theorem 1 gives

that (A,B) is GUES. □

5 NUMERICAL EXAMPLE
We consider a multi-agent system consisting of 3 discrete-time

oscillators whose dynamics is given by:

zi (t + 1) = Rzi (t) + ui (t), i = 1, 2, 3 (5)

where zi (t) ∈ R
2,ui (t) ∈ R

2
and R =

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
with ϕ = π

6
.

The input ui (t) is used for synchronization purpose and is based on

the available information at time t. There exist 3 communication

channels between agent 1 and agent 2 (channel 1), 2 and 3 (channel

2) and 1 and 3 (channel 3). At each instant, only one of these chan-

nels is active and the active channel is selected by a switching signal

θ : N→ Σ = {1, 2, 3}. Then, the input value is given as follows:

u1(t) =


γ (z2(t) − z1(t)), if θ (t) = 1

0, if θ (t) = 2

γ (z3(t) − z1(t)), if θ (t) = 3

u2(t) =


γ (z1(t) − z2(t)), if θ (t) = 1

γ (z3(t) − z2(t)), if θ (t) = 2

0, if θ (t) = 3

u3(t) =


0, if θ (t) = 1

γ (z2(t) − z3(t)), if θ (t) = 2

γ (z1(t) − z3(t)), if θ (t) = 3

whereγ = 0.05 is a control gain. Denoting the vector of synchroniza-

tion errors as x(t) = (x1(t)
⊤, x2(t)

⊤)⊤ with xi (t) = zi+1(t) − zi (t),
the error dynamics is described by a 4-dimensional switched linear

system of the form:

x(t + 1) = Aθ (t )x(t)

where the 3 matrices describing the 3 modes of communication

are given by:

A1 =
(
R−2γ I2 0

γ I2 R

)
,A2 =

(
R γ I2
0 R−2γ I2

)
,A3 =

(
R−γ I2 −γ I2
−γ I2 R−γ I2

)
.
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Figure 2: Deterministic Büchi automaton B.

As for the communication protocol, we impose a fairness con-

straint that the switching signal cannot keep activating the same

communication channel:

∀t ∈ N, ∃t ′ ≥ t, θ (t ′) , θ (t).

Note that this property can be formulated as the following linear

temporal logic formula:

3∧
i=1

¬ (♢□(θ = i)) .

This is equivalently described by a deterministic Büchi automaton,

B, where the set of states is Q = {q0,q1,q2,q3}, the alphabet Σ =
{1, 2, 3}, Q0 = {q0}, F = Q0. Figure 2 shows the corresponding

Büchi automaton which describes the switching logic in this system.

We want to show that the agents synchronize if the state q0 in B is

visited infinitely often. This can be done by studying the stability of

(A = {A1,A2,A3},B). We then look for a Lyapunov function of the

form V (q, x) =
√
xT Pqx where Pq is a positive definite symmetric

matrix. The conditions in Theorem 1 translate into the following

linear matrix inequalities:

I4 ≤ Pq , q ∈ Q

A⊤
i Pq′Ai ≤ Pq , q ∈ Q, i ∈ Σ,q′ ∈ δ (q, i) \ F

A⊤
i Pq′Ai ≤ ρ2Pq q ∈ Q, i ∈ Σ,q′ ∈ δ (q, i) ∩ F

By solving these 16 LMIs, we find for ρ = 0.96 :

Pq0 =
(
1.98I2 0.98I2
0.98I2 1.98I2

)
, Pq1 =

(
2.26I2 0.99I2
0.99I2 1.98I2

)
,

Pq2 =
(
1.98I2 0.99I2
0.99I2 2.26I2

)
, Pq3 =

(
2.22I2 1.22I2
1.22I2 2.22I2

)
.

From Theorem 1, we get that the switched system (A,B) is GUES
which means the oscillators synchronize well after sufficient time.

We now consider the following scenario: for the first 50 time

units, the communication channel 1 is constantly active, then at

t = 50 a switch occurs and for the next 50 time units the channel

2 is active, then at t = 100 another switch occurs and the commu-

nication channel 3 stays active for the next 50 time units. After

t = 150, the switching signal randomly activates channel 1 and

channel 2 with equal probability so that the accepting state q0 is
visited infinitely often. The simulation results are shown in Figure

3. It is interesting to remark that when the switching signal remains

constant the synchronization error does not go to zero, however af-

ter t = 150, when q0 is visited more frequently, the synchronization
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Figure 3: Time evolution of the synchronization error x(t)
(top figures), switching signal θ (t) (bottom left), and the Lya-
punov function V (qt , x(t)) (bottom right).

error starts to converge towards zero. As expected, the Lyapunov

function V (qt , x(t)) is non-increasing and, as soon as the state q0
is visited frequently enough, it starts approaching zero.

6 CONCLUSION
In this paper, we established some results concerning the stability of

discrete time switched systems where the switching signal is gener-

ated by a Büchi automaton. We developed sufficient conditions for

attractivity and uniform stability for this type of systems and also of

uniform exponential stability when the considered Büchi automa-

ton is deterministic, all based on Lyapunov arguments, Note that

these conditions can readily be extended to the case of nonlinear

systems. Moreover, we proved that these conditions are also neces-

sary for a subclass of such systems with invertible matrices. Finally,

we have shown through a numerical example, how these Lyapunov

functions can actually be computed using a convex optimization

problem based on linear matrix inequalities.

The current work opens several research directions for the future.

First, the development of numerical techniques to compute more

complicated Lyapunov functions is necessary for cases where the

simple linear matrix inequalities approach used in this paper proves

unsuccessful. Finally, it should be possible to define a joint spectral

radius for this class of switched systems. In this case, it would be

interesting to investigate its properties and how it relates to the

convergence of the system trajectories.
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