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Abstract –We report on the experimental observation of solitons propagating along a torus of
fluid. We show that such a periodic system leads to significant differences compared to the
classical plane geometry. In particular, we highlight the observation of subsonic elevation solitons,
and a nonlinear dependence of the soliton velocity on its amplitude. The soliton profile, velocity,
collision, and dissipation are characterized using high resolution space-time measurements. By
imposing periodic boundary conditions onto Korteweg-de Vries (KdV) equation, we recover these
observations. A nonlinear spectral analysis of solitons (periodic inverse scattering transform) is
also implemented and experimentally validated in this periodic geometry. Our work thus reveals
the importance of periodicity for studying solitons and could be applied to other fields involving
periodic systems governed by a KdV equation.

Introduction. – Since their first observation on the
surface of water [1], solitons have been widely studied
in various domains (including acoustics [2], plasmas [3],
carbon nanotubes [4], Bose–Einstein condensates [5, 6],
or blood vessels of living organisms [7]). Korteweg and
de Vries (KdV) first provided an analytical description
of solitons [8], which can be observed as either waves of
elevation [9] or depression [10] on the surface of a fluid.
Although KdV solitons have mainly been investigated ex-
perimentally in rectilinear geometries [9–13], examples in
both curved and periodic media remain elusive.

A stable torus of fluid is a good experimental system
to study solitons in a curved and periodic geometry. We
manage to create such a stable torus of liquid by means of
an original technique. We have previously studied linear
waves propagating along the inner and outer torus bor-
ders [14]. Here, using this technique, we experimentally
discover unreported periodic KdV solitons along a sta-
ble torus of liquid whose properties are fully characterized
(profile, velocity, collision, and dissipation), and described
with an experimentally validated model taking into ac-
count both the curved and periodic conditions. Our work
thus paves the way to observe other nonlinear phenomena
such as wave turbulence [15, 16], and soliton gas [17–21]
in this specific geometry. Note that KdV solitons can be
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reached experimentally in curved geometries without peri-
odicity (e.g., along the border of a liquid cylinder [22–24]),
whereas trials have been attempted for periodic conditions
in plane geometry (e.g., in an annular water tank [25,26]),
as well as for a curved and periodic system but only in a
nonstationary regime and by applying a strong constraint
to the liquid ring [27–29].

Theoretical works on solitons have yielded advanced
mathematical techniques to study solutions to various
integrable nonlinear equations [e.g., KdV, Nonlinear
Schrödinger (NLS), Kadomtsev-Petviashvili], in particu-
lar the inverse scattering transform (IST) [30–33]. This
nonlinear spectral analysis has been applied to experi-
mental NLS solitons [21, 33], but remain scarce for KdV
ones [34–36], and, so far, have not been applied to a
periodic experimental system, a more complex setting
which has recently received numerical and theoretical at-
tention [33,37–39].

Experimental setup. – We manage to create a sta-
ble torus of fluid by depositing distilled water on a su-
perhydrophobic duralumin plate machined with a slightly
sloping triangular groove along the perimeter (see fig. 1a-
c) [14]. The radius of the groove center, R, is either 4 cm
or 7 cm using two different substrates. The small an-
gle α of the groove to the horizontal is 4.5◦. We use a
commercial superhydrophobic coating yielding a contact
angle of 160◦–170◦ between liquid and substrate [14, 40]
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(a)

Fig. 1: a) Schematic profile of the experimental setup. b)
Solitons propagating along the torus borders. c) Stable liquid
torus on a plate (Ro = 7.9 cm, R = 7 cm, W = 1.8 cm).

allowing the liquid torus to move with almost no con-
straint. To generate waves, the torus is impulse pulled
(or pushed) horizontally using a linear actuator with a
teflon plate attached to its end (see fig. 1a). By de-
forming the meniscus, the actuator creates two counter-
propagating solitons along the outer, and two along the
inner, border of the torus (see fig. 1b and movies in Supp.
Mat. [41]). A camera located above the torus records the
displacements of the two interfaces. Using a border de-
tection algorithm [42], we extract the azimuthal displace-
ment η(θ, t), in the horizontal plane, of both the inner and
outer torus borders. Measurements are made for various
pulse amplitudes and for different torus widths, W , by
adding water. We set χ = Ro/R in order to quantify the
system curvature, with Ro the outer radius of the torus,
and Ro = R +W/2 with W the torus width (see fig. 1a).
KdV solitons in the toroidal geometry will be character-
ized using the R = 7 cm case. The effects of periodicity
on the solitons will be evidenced by decreasing the radius
to R = 4 cm.

Soliton solutions. – When weak dispersion is bal-
anced by weak nonlinearity in a shallow water regime, az-
imuthal waves η(θ, t) along a torus of fluid are governed at
the leading order by an ad hoc KdV equation with periodic

boundary conditions as

ηt + Ω0

[
ηθ +

5χ2

4W̃
ηηθ +

χ2W̃ 2

2R2
δBoηθθθ

]
= 0 , (1)

with W̃ = W/2, δBo = Boc − Bo, and Ω0 = (geffW̃ )1/2/R
the angular phase velocity of linear gravity waves. The
Bond number reads Bo = `2eff/(W̃

2χ4), Boc ≈ 1/6, where

`eff ≡
√
σeff/(ρgeff) is the effective capillary length, ρ =

103 kg m−3 is the fluid density, geff = g sinα is the effective
gravity, and g = 9.81 m s−2. σeff ' 60 mN m−1 is an effec-
tive surface tension inferred from the low-amplitude (lin-
ear regime) measurement of the dispersion relation. geff

and σeff are strongly linked to the substrate geometry and
renormalization effects [24]. We obtain eq. (1) using a
Taylor expansion of the gravity-capillary dispersion rela-
tion along a liquid torus [14], and adapting nonlinear cor-
rections introduced in [24] for a rectilinear fluid cylinder
to our torus geometry (see Supp. Mat [41]).

Cnoidal wave solutions to eq. (1) read

η(θ, t) = A cn2

(
θ − Ωt

∆
√
m

∣∣∣m) with ∆2 =
24

5

W̃ 3

AR2
δBo, (2)

where A is the (signed) amplitude and ∆ the (angular)
width of the solitary wave. The sign of A is given by that
of δBo. The velocity of the soliton of eq. (2) reads

Ω = Ω0

[
1 +

5A

6W̃m
χ2

(
1− m

2
− 3 E(m)

2 K(m)

)]
. (3)

K(m) [resp. E(m)] is the complete elliptic integral of the
first (resp. second) kind. m ∈ [0, 1] is the elliptic pa-
rameter for which the cnoidal function cn(θ|m) is cos(θ)
for m = 0, and sech(θ) for m = 1 [13, 44]. Although
the cnoidal wave is a periodic function, the 2π-periodicity
condition on the circle (i.e., torus border) still has to be
ensured, and reads

2π

Nθ∆
= 4K(m), i .e., π = 2Nθ

√
6W̃ 3mδBo

5R2A
K(m) , (4)

with Nθ the number of solitons. The parameter m and
the amplitude A have thus a nontrivial relationship (see
below). The periodic elliptic solutions of eq. (2) are
close to sech2 for large enough R (e.g., for R = 7 cm,
1−m ' 10−12). In that case, eqs. (2) and (3) reduce to the
classical solitary wave profile η(θ, t) = A sech2[(θ−Ωt)/∆]

and velocity Ω = Ω0[1 + 5Aχ2/(12W̃ )]. However, for
smaller R (e.g. 4 cm), this classical solution cannot be
used since the effect of periodicity, through eq. (4), has
to be taken into account (see below). Note that the ex-
perimental parameters used here are in the range of va-
lidity required for the derivation of eq. (1) assuming weak

dispersion µ = W̃ 2χ2δBo/(∆
2R2) ∈ [0.05, 0.3] � 1 (i.e.,

shallow-water limit), weak nonlinearity ε = Aχ2/W̃ ∈
[0.005, 0.2] � 1, both of the same order of magnitude

µ/ε = W̃ 3/(∆2R2A) ∈ [1, 3].
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Fig. 2: a) (+) Experimental soliton profile at a fixed time. (−)
Theoretical profile of eq. (2) with no fitting parameter. b) Su-
perimposition of rescaled soliton profiles during its propagation
along one torus perimeter. (−) eq. (2). c) Exponential damp-
ing of the soliton for different W ∈ [2.2, 3] cm (2 mm step).
R = 7 cm. Dashed line of slope τ = 2.8 s.

Soliton profile. – The pulse profile, η(θ, t), is ex-
tracted from the outer torus border (e.g., from the de-
pression in fig. 1b). Figure 2a shows that the experimental
profile is well described by the theoretical soliton profile
of eq. (2) with no fitting parameter. Since a soliton bal-
ances theoretically dispersion and nonlinearity, it should
also have a self-similar profile during its propagation. Fig-
ure 2b shows the superimposed rescaled profiles of a soli-
ton during its propagation along almost one torus perime-
ter. The soliton (with this appropriate rescaling) thus
conserves a self-similar shape during its propagation that
is well described by eq. (2), even if its amplitude decreases
due to unavoidable dissipation. To quantify the latter, we
plot in fig. 2c the soliton amplitude as a function of time,
A(t), during two rounds along the torus. A(t)/A(0) is
found to decrease exponentially as A(t) = A(0) exp[−t/τ ],
with a damping time τ found to be independent of the vis-
cosity of the fluid used (ν ∈ [10−7, 10−6] m2/s, i.e., mer-
cury or water). This suggests that dissipation does not
come from viscous dissipation, but probably from the pin-
ning of the triple contact line [43]. Indeed, the capillary
number Ca = ρνΩR/σeff ∈ [10−6, 10−3] leads to dominant
interfacial forces with respect to viscous ones.

Fourier spectrum. – We now compute the space-
and-time Fourier transform, η̃(kθ, ω), of the signal η(θ, t)
as shown in fig. 3. The energy is found to be concen-
trated around a line of slope Ω = ω/kθ corresponding to
the pulse velocity. This quasi-nondispersive feature is a
spectral signature of a soliton. The soliton velocity, Ω, is
found to be slightly slower than long linear waves propa-
gating at velocity Ω0 (see fig. 3), meaning the presence of
a subsonic soliton. Note that a broadening of the soliton
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Fig. 3: Space-time Fourier spectrum η̃(kθ, ω) of the signal
η(θ, t) (outer border). Dashed line: velocity Ω0 = 1.37 rad/s of
long linear waves. The energy is concentrated around a linear
branch of slope Ω < Ω0, signature of a subsonic soliton.
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Fig. 4: Experimental soliton width squared ∆2 for different
amplitudes A and different widthsW ∈ [1.9, 4] cm (2 mm step).
R = 7 cm. Solid line: eq. (2) with no fitting parameter (slope
1).

branch occurs due to nonlinearities, whereas low-intensity
vertical traces (at low kθ) correspond to mechanical noise.

Soliton width and velocity. – We now measure the
typical soliton width ∆ by fitting eq. (2) to the experimen-
tal profile (as in fig. 2a). ∆2 is plotted in fig. 4 for different
pulse amplitudes, A, and torus widths W . ∆ is found to
scale as

√
W 3/A in good agreement with eq. (2)b with no

fitting parameter (see solid line), thus justifying our ad hoc
model that will lead to further predictions (see below). We
also measure the soliton velocity by time of flight during
its propagation. The dimensionless pulse velocity, Ω/Ωo
(i.e., Froude number), is displayed in fig. 5 for various A
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Fig. 5: Dimensionless soliton velocity Ω/Ωo versus Aχ2/W for
various A and W for R = (+) 4 and (◦) 7 cm. Dashed lines:
eq. (3) for different W ∈ [2.8, 3.9]. Solid line: classical KdV
solution (slope 5/12). Occurrence of subsonic elevation solitons
is due to effects of the periodic geometry.

and W . For large tori (i.e., using the substrate R = 7 cm
for variousW ), the soliton velocity of eq. (3) reduces to the

classical KdV linear relationship, Ω/Ω0 = 1+5Aχ2/(12W̃ )
(see solid line), which is well verified experimentally (open
circles). Depression solitons (A < 0) moving slower than
linear waves (Ω/Ω0 < 1 or subsonic) are observed for
Bo > Boc, whereas elevation solitons (A > 0) are su-
personic (Ω/Ω0 > 1) for 0 ≤ Bo < Boc, as predicted for
KdV in straight geometry [8, 10]. For smaller tori (i.e.,
R = 4 cm substrate), the relationship of eq. (3) between
velocity and amplitude is no longer linear (see dashed lines
from eq. (3) for different W ). In particular, we clearly ob-
serve subsonic elevation solitons due to the effects of the
periodic geometry (see + in the bottom right quadrant).

Periodicity effects on the soliton velocity. – The
transition from subsonic to supersonic solitons occurs,
from eq. (3), at m∗ = 2− 3E(m∗)/K(m∗) ' 0.96 regard-
less of Bo. This leads to different solutions of the periodic
KdV equation as follows

δBo Type 0 < m < m∗ m∗ < m < 1
> 0 Elevation Subsonic Supersonic
< 0 Depression Supersonic Subsonic

An additional effect of the periodicity condition eq. (4)
is that certain types of solitons are unreachable experi-
mentally due to our finite ranges of W and of A. This
can be seen by plotting the dependence of the soli-
ton amplitude A on the elliptic parameter m, A/W =
3
5mK

2(m)δBo

(
NθW
πR

)2
from eq. (4), as shown in fig. 6 for

different widths W for which elevation solitons are ob-
served. Due to the finite size of the torus, the soliton am-
plitude is experimentally limited typically to A/W < 0.2.
As m increases with A, this also limits the reachable val-
ues of m, and thus the experimentally reachable solution
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Fig. 6: Theoretical dependence of the elevation soliton am-
plitude A on the parameter m for different torus widths W ,
using eq. (4) with Nθ = 2 and R = 4 cm. m∗ = 0.96 corre-
sponds to the transition between subsonic and supersonic eleva-
tion solitons. The horizontal line (A/W = 0.2) corresponds to
the maximal soliton amplitude reachable experimentally. This
thus limits attainable values of m, thus restricting the obser-
vation to the subsonic case for elevation solitons (δBo > 0, i.e.,
Bo < Boc).
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Fig. 7: Phase diagram of the different solutions of the periodic
KdV equation. Solid lines: eq. (4) with A/W = 0.2, m = 0.999
and Nθ = 2. (×) Torus widths for which depression (red)
and elevation (blue) solitons are experimentally observed for
the two tested substrates corresponding to a torus radius of
R = 4 cm or R = 7 cm (vertical dashed lines). The torus
minimal width is limited by the Plateau–Rayleigh instability
(PRI).

types, as corroborated by the results of fig. 5 (e.g., no ob-
servation of elevation supersonic soliton for R = 4 cm).
An equivalent plot to fig. 6 can be obtained for the de-
pression soliton case (δBo < 0, i.e., Bo > Boc) provided
that the subsonic and supersonic regions are swapped.
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√
δBo/A for various A and

W . Solid line slope is 0.33 s/m1/2. Ro = 8.2 cm.

Figure 7 sums up the experimentally observable cases in
a phase diagram in the (R,W ) parameter space. Inserting
the experimental maximal soliton amplitude A/W = 0.2,
and m = 0.999 [separating cnoidal soliton solutions (m <
0.999) from quasi-sech ones (m > 0.999)], into the period-
icity condition of eq. (4) leads to green regions for cnoidal
soliton solutions and salmon-pink one for quasi-sech solu-
tions. The experimental data for small tori (R = 4 cm) fall
in both the cnoidal and quasi-sech regions whereas those
for a large tori (R = 7 cm) fall completely in the quasi-sech
region, justifying well the velocity observations in fig. 5.
Note that, for m far from 1, we still refer to solutions as
solitons since they experimentally propagate around the
torus as solitary waves and undergo nonlinear interaction,
although displaying a nontrivial amplitude dependence ve-
locity (see fig. 5). It is worth noting that, according to
eq. (4), the limit of m = 1 is unreachable under periodic
conditions since it would require an infinite amplitude.

Critical Bond number. – The critical Bond num-
ber corresponds to the transition between elevation and
depression soliton solutions [10]. It is remarkable that
the theoretical value of the critical Bond number Boc ≈
1/6 for a torus (see Supp. Mat. [41]) differs from the
value 1/3 for the plane geometry case [8]. Indeed, Boc
strongly depends on the substrate slope α as found nu-
merically [24]. Equating the Bond expression to 1/6 and

inserting W̃ = Ro−R, we find the critical outer radius Rco
of the torus separating elevation and depression solitons
as Rco

3 − Rco2R −
√

6`effR
2 = 0, and thus Rco = 8.43 cm

for our parameters. Experimentally, we have a range of
Bo ∈ [0.09, 0.5] by varying Ro, and we look for the oc-
currence of the transition from depression (Ro < Rco) to
elevation (Ro > Rco) solitons by increasing Ro. For small
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Fig. 9: PIST detection of solitons. Tr[M(λ)]/2 (red line) for
the signal of fig. 8 at t0 = 2.7 s, with the associated nonlinear
spectrum (bullets). Two solitons are detected (bullets with
λ < 0). Inset: Soliton index s for different azimuthal wave
numbers j revealing two solitons (s > 0.99). Lin-Logit scale.

Ro, depression solitons are indeed observed, whereas el-
evation solitons are detected above a certain radius. We
find a critical experimental radius of Rco = 8.4 ± 0.02 cm
in good agreement with the above predictions. This cor-
responds to Boc = 0.17 close to the theoretical value 1/6.
This result is also confirmed when using the other sub-
strate (R = 4 cm).

Soliton collision. – The nonlinear nature of the soli-
tons is further confirmed by observing the collisions of two
depression solitary waves as illustrated in fig. 8. Figure 8
(top right) shows an enlargement of the two solitary wave
minima as they collide. The collision evidences a long
residence time tr (of the order of 0.1 s) during collision,
and a slight phase shift, a feature of solitons. We exper-
imentally show in fig. (8) (bottom right) that tr scales

as tr ∼ W̃
√
δBo/A, matching our prediction (see Supp.

Mat. [41]) and extending the pure gravity prediction [45].

Direct scattering. – We have shown above that soli-
tons observed along a liquid torus are well described by
eqs. (2)-(4), the solutions of the periodic KdV eq. (1). We
now implement a nonlinear spectral analysis, using the
periodic inverse scattering transform (PIST), to find the
discrete eigenvalue λ of each soliton in our signals [32]. To
the best of our knowledge, such a method has not been
applied so far to an experimental periodic system with
a significant discreteness in Fourier space. We associate
with eq. (1) the following eigenvalue problem [32,37]

ψxx + [βη(x, t = t0) + λ]ψ = 0 , (5)

subjected to periodic boundary conditions, with period
L = 2πRo, and β = 5/(12W̃ 3χ2δBo). The eigenvalues
correspond to either bounded solutions, i.e., solitons, for
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λ < 0, and Stokes waves or radiative phonons for λ ≥
0 [31]. We use a periodic scattering matrix M(λ) (called
monodromy matrix) to translate the solutions of eq. (5) by
one period. The nonlinear spectrum is then given by the
condition Tr[M(λ)]/2 = ±1. The experimental nonlinear
spectrum is displayed in fig. 9 (bullets), along with the
half-trace of the matrix M (solid line) for the signal in
fig. 8 at a time t0. Two solitons are detected in fig. 9
for which Tr[M(λ)]/2 = ±1 (four eigenvalues or two band
gaps), corresponding to two distinct values λ < 0. From
this nonlinear spectrum, we compute the soliton index s,
for each nonlinear mode, as [34]

s =
λ2j+1 − λ2j

λ2j+1 − λ2j−1
, (6)

which corresponds to solitons if s > 0.99, Stokes waves if
0.5 < s < 0.99, or linear radiative modes if s < 0.5 [46].
We are thus able to count the number of solitons included
in a given signal, e.g., the one in fig. 8. Indeed, the inset
of fig. 9 confirms the presence of two solitons, as expected.
Beyond the validity of PIST to detect KdV solitons in a
periodic system, PIST could be also be applied to directly
generate a KdV soliton gas in such a geometry.

Conclusion. – We demonstrated the existence of soli-
tons in a system with periodic and curved boundary condi-
tions. They are observed propagating along a stable torus
of fluid (created by a technique we developed) and are
fully characterized (profile, velocity, collision, dissipation
and nondispersive features). These unexplored solitons
are found to be governed by a KdV equation with peri-
odic boundary conditions leading to significant differences
with infinite straight-line KdV solitons, such as the obser-
vation of subsonic elevation solitons, and the prediction
of a nonlinear dependence of the soliton velocity on its
amplitude. We show that the system periodicity (through
the parameter m) selects the soliton velocity type (sub-
sonic or supersonic), whereas the Bond number selects the
soliton profile (depression or elevation). A nonlinear spec-
tral analysis of solitons is also implemented (PIST) and
is experimentally validated for the first time for a KdV
equation with periodic conditions. Our work is not re-
stricted to hydrodynamics, and thus could be applied to
other domains involving periodic systems governed by a
KdV equation. Quantifying the role of dissipation break-
ing integrability is also of primary interest [47]. In the fu-
ture, this new system could address the possible existence
of KdV soliton gas [17–21] in periodic systems, and their
collision [48], as well as of Kaup-Boussinesq bidirectional
solitons [20, 49–51] with corresponding finite-gap spectral
methods [52].
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In this supplemental material, we present movies (Sec. I) and images (Sec. II) of solitons propagating on a torus
of fluid. Details on the form of the Korteweg-de Vries (KdV) equation for a torus (Sec. III) are discussed, which is
followed by information on the residence time of a soliton during collision in the capillary case (Sec. IV). Methods
used to obtain the nonlinear spectral analysis are described (Sec. V).

I. MOVIES

• soliton large.mp4 (10 s): Two depression solitons along a torus of width 2.7 cm. R = 7 cm substrate.

• soliton small depression.mp4 (10 s): Two depression solitons along a torus of width 2.5 cm. R = 4 cm substrate.

• soliton small elevation.mp4 (12 s): Two elevation solitons along a torus of width 3.4 cm. R = 4 cm substrate.

II. IMAGES

• torus still.png: View of a still torus of liquid on a substrate (groove at R = 7 cm).

• torus soliton.jpg: Two solitons propagating on each border of the torus. Same substrate (groove at R = 7 cm).

• torus small.jpg: View of still torus of liquid on another substrate (groove at R = 4 cm).

torus still.jpg torus soliton.jpg torus small.jpg

III. KORTEWEG-DE VRIES EQUATION FOR A TORUS

Using the same notation as in the main text, ω the angular frequency and kθ the azimuthal wave number, the
dispersion relation of gravity-capillary waves along a torus of fluid reads

ω2 =

(
geff

kθ
Ro

+
σeff

ρ

k3
θ

R3
o

)
φ

(
kθ
Ro

χ2W̃

)
. (S1)

with φ(x) a monotonic function that has properties [φ(x) ∼ x for x→ 0; φ(x)→ 1 for x→∞] similar to tanh(x) [1].
Expanding for kθ → 0, using φ(x) ≈ x− x3φ′′′(0)/6, eq. (S1) reads

ω2 = Ω2
0k

2
θ

[
1 +

k2
θ

R2
o

W̃ 2χ2(Bo− Boc)

]
, (S2)
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with the critical Bond number Boc = φ′′′(0)/6 ≈ 1/6. After taking the square root of eq. (S2), we find

ω ≈ Ω0kθ

[
1 +

k2
θ

2R2
o

W̃ 2χ2(Bo− Boc)

]
. (S3)

By replacing ω and kθ with i∂t and −i∂θ respectively, we recover the linear terms of the KdV eq. (1). We introduce

the nonlinear term as in [1], then adapte it for a torus geometry, and normalize it with W̃ . Note that with each kθ
there is an associated factor of χ2 for the dispersive terms, which leads us to include it within the nonlinear term as
well, giving our ansatz KdV eq. (1) in the main text. The numerical factor of 5/4 comes from the groove shape of the
substrate, as numerically and experimentally verified in a straight geometry [1].

IV. RESIDENCE TIME OF COLLISION

For pure gravity waves, i.e. Bo� Boc, the residence time during a head-on collision between two KdV solitons in
a straight geometry is approximately given to the first order by [2]

tr = ln

(√
3 + 1√
3− 1

)
2µ

k
√

3ghε
, (S4)

where µ is the dispersion parameter, ε is the nonlinearity one, h is the water depth and k is the typical wavenumber.
Writing the gravity-capillary KdV eq. (1) in a nondimensional form yields the values of ε and µ, and thus

tr = 2

√
6

5
ln

(√
3 + 1√
3− 1

)
W̃√
geffA

√
δBo ' 0.33

[
s/m

1/2
]
W̃

√
δBo

A
, (S5)

since the derivation of eq. (S4) is independent of the prefactors in the KdV equation.

V. NUMERICAL METHODS FOR NONLINEAR SPECTRAL ANALYSIS

We largely follow [3, 4] in order to obtain the PIST detection of solitons within our experimental signal. As
mentioned before, we are looking for eigenvalues of the associated Schrödinger problem, at fixed time t = t0,

ψxx + [βη(x, t = t0) + λ]ψ = 0, (S6)

subjected to periodic boundary conditions, with period L = 2πRo, and β = 5/(12W̃ 3χ2δBo). Floquet’s theorem
allows us to write for the fundamental solution matrix Φ as

Φ(x+ L;x0, λ) = M(x0, λ)Φ(x;x0, λ), (S7)

where we have introduced the monodromy matrix

M(x0, λ) =

(
a b
b∗ a∗

)
(x0, λ). (S8)

It follows that we obtain periodic or antiperiodic solutions when

|Tr(M)| = 2. (S9)

In practice we consider a signal η(x) consisting of N points on an interval discretized by ∆x. Since we do not have
direct access to the monodromy matrix, we are led to look at the following closely related scattering matrix

S =

0∏
i=N−1

T where T =

(
cos(k∆x) sin(k∆x)/k
−k sin(k∆x) cos(k∆x)

)
(x, λ), (S10)
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where k =
√
βη(x) + λ. The monodromy matrix M and the above scattering matrix are related through

Tr(M) = Tr(S), (S11)

M21 = S12. (S12)

For a given signal η(x), with N = 3801, we calculate the matrix S and its trace for each value of λ in an interval
[λmin, λmax], where λmin = −β[max(η)−〈η〉x] and λmax = λmin + 2|λmin|, in order to obtain Fig. 6 of the main paper.

To obtain the soliton spectrum of Fig. 6, we look for zeros of |Tr(M)|/2 − 1. This is done by first finding the
maxima and minima for a set of |Tr(M)|/2 calculated on N points in the given interval. We use the pairs of λ of
those extrema as bounds for the bisection method, through which we then find the zeros to a tolerance of 10−12.
These methods should remain valid, despite the bidirectionality of the system, as long as solitons are locally KdV [5],
namely far enough from interacting with each other.
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