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We report on the experimental observation of solitons propagating along a torus of fluid. We
show that such a periodic system leads to significant differences compared to the classical plane
geometry. In particular, we highlight the observation of subsonic elevation solitons, and a nonlinear
dependence of the soliton velocity on its amplitude. The soliton profile, velocity, collision, and
dissipation are characterized using high resolution space–time measurements. By imposing periodic
boundary conditions onto Korteweg–de Vries (KdV) equation, we recover these observations. A
nonlinear spectral analysis of solitons (periodic inverse scattering transform) is also implemented
and experimentally validated in this periodic geometry. Our work thus reveals the importance of
periodicity for studying solitons and could be applied to other fields involving periodic systems
governed by a KdV equation.

Introduction.— Since their first observation on the
surface of water [1], solitons have been widely studied
in various domains (including acoustics [2], plasmas [3],
carbon nanotubes [4], Bose–Einstein condensates [5, 6],
or blood vessels of living organisms [7]). Korteweg and
de Vries (KdV) first provided an analytical description
of solitons [8], which can be observed as either waves of
elevation [9] or depression [10] on the surface of a fluid.
Although KdV solitons have mainly been investigated
experimentally in rectilinear geometries [9–13], examples
in both curved and periodic media remain elusive.

A stable torus of fluid is a good experimental system
to study solitons in a curved and periodic geometry. We
manage to create such a stable torus of liquid by means
of an original technique. We have previously studied lin-
ear waves propagating along the inner and outer torus
borders [14]. Here, using this technique, we experimen-
tally discover unreported periodic KdV solitons along a
stable torus of liquid whose properties are fully charac-
terized (profile, velocity, collision, and dissipation), and
described with an experimentally validated model taking
into account both the curved and periodic conditions.
Our work thus paves the way to observe other nonlinear
phenomena such as wave turbulence [15, 16], and soliton
gas [17–21] in this specific geometry. Note that KdV soli-
tons can be reached experimentally in curved geometries
without periodicity (e.g., along the border of a liquid
cylinder [22–24]), whereas trials have been attempted for
periodic conditions in plane geometry (e.g., in an annular
water tank [25, 26]), as well as for a curved and periodic
system but only in a nonstationary regime and by apply-
ing a strong constraint to the liquid ring [27–29].

Theoretical works on solitons have yielded advanced
mathematical techniques to study solutions to various
integrable nonlinear equations [e.g., KdV, Nonlinear
Schrödinger (NLS), Kadomtsev-Petviashvili], in partic-
ular the inverse scattering transform (IST) [30–33]. This
nonlinear spectral analysis has been applied to experi-
mental NLS solitons [21, 33], but remain scarce for KdV

(a)

FIG. 1. (a) Schematic profile of the experimental setup. (b)
Solitons propagating along the torus borders. (c) Stable liquid
torus on a plate (Ro = 7.9 cm, R = 7 cm, W = 1.8 cm).

ones [34–36], and, so far, have not been applied to a
periodic experimental system, a more complex setting
which has recently received numerical and theoretical at-
tention [33, 37–39].

Experimental setup.— We manage to create a stable
torus of fluid by depositing distilled water on a superhy-
drophobic duralumin plate machined with a slightly slop-
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ing triangular groove along the perimeter (see Fig. 1a-
c) [14]. The radius of the groove center, R, is either
4 cm or 7 cm using two different substrates. The small
angle α of the groove to the horizontal is 4.5◦. We use a
commercial superhydrophobic coating yielding a contact
angle of 160◦–170◦ between liquid and substrate [14, 40]
allowing the liquid torus to move with almost no con-
straint. To generate waves, the torus is impulse pulled (or
pushed) horizontally using a linear actuator with a teflon
plate attached to its end (see Fig. 1a). By deforming the
meniscus, the actuator creates two counter-propagating
solitons along the outer, and two along the inner, border
of the torus (see Fig. 1b and movies in Supp. Mat. [41]).
A camera located above the torus records the interface
displacement. Using a border detection algorithm [42],
we extract the azimuthal displacement η(θ, t), in the hor-
izontal plane, of both the inner and outer torus borders.
Measurements are made for various pulse amplitudes A
and for different torus widths, W , by adding water. We
set χ = Ro/R, with Ro the outer radius of the torus, and
Ro = R+W/2 (see Fig. 1a). χ thus quantifies the system
curvature.

Soliton solutions.— When weak dispersion is bal-
anced by weak nonlinearity, azimuthal waves η(θ, t) along
a torus of fluid is governed at the leading order by a KdV
equation with periodic boundary conditions as

ηt + Ω0

[
ηθ +

5χ2

4W̃
ηηθ +

χ2W̃ 2

2R2
δBoηθθθ

]
= 0 , (1)

with W̃ = W/2, δBo = Boc−Bo, and Ω0 = (geffW̃ )1/2/R
the angular phase velocity of linear gravity waves. The
Bond number reads Bo = `2eff/(W̃

2χ4), its critical value

Boc ≈ 1/6, where `eff ≡
√
σeff/(ρgeff) is the effective

capillary length, ρ = 103 kg m−3 is the fluid density,
geff = g sinα is the effective gravity, g = 9.81 m s−2,
σeff ' 60 mN m−1 is an effective surface tension inferred
by fitting the data; geff and σeff are, in particular, linked
to the substrate geometry. We obtain Eq. (1) by using
the dispersion relation of gravity-capillary waves along a
liquid torus [14], and the periodic KdV equation formal-
ism [24] (see Supp. Mat [41]).

Cnoidal wave solutions to Eq. (1) read

η(θ, t) = A cn2

(
θ − Ωt

∆
√
m

∣∣∣m) with ∆2 =
24

5

W̃ 3

AR2
δBo,

(2)

where A is the (signed) amplitude and ∆ the (angular)
width of the solitary wave. Its velocity reads

Ω = Ω0

[
1 +

5A

6W̃m
χ2

(
1− m

2
− 3 E(m)

2 K(m)

)]
, (3)

with K(m) [resp. E(m)] the complete elliptic integral
of the first (resp. second) kind. m ∈ [0, 1] is the el-
liptic parameter for which the cnoidal function cn(θ|m)
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FIG. 2. a) (+) Experimental soliton profile at a fixed time.
(−) Theoretical profile of Eq. (2) with no fitting parameter.
b) Superimposition of rescaled soliton profiles during its prop-
agation along one torus perimeter. (−) Eq. (2). c) Exponen-
tial damping of the soliton for different W ∈ [2.2, 3] cm (2 mm
step). R = 7 cm. Dashed line of slope τ = 2.8 s.

is cos(θ) for m = 0, and sech(θ) for m = 1 [13, 43].
In order to ensure 2π-periodicity, K(m) must satisfy
π/∆ = 4 K(m) making m a function of A, and thus Ω
a nonlinear function of A (see Supp. Mat. [41]). The
periodic elliptic solutions of Eq. (2) are close to sech2 for
large enough R (e.g., for R = 7 cm, 1 − m ' 10−12).
In that case, Eqs. (2)-(3) reduce to the classical solitary
wave profile η(θ, t) = A sech2[(θ − Ωt)/∆] and velocity

Ω = Ω0[1 + 5Aχ2/(12W̃ )]. However, for smaller R (e.g.
4 cm), this classical solution cannot be used since the ef-
fect of periodicity, through Eq. (2)-(3), has to be taken
into account (see below). Note that the experimental pa-
rameters used here are in the range of validity required
for the derivation of Eq. (1) assuming weak dispersion

µ = W̃ 2χ2δBo/(∆
2R2) � 1 (i.e., shallow-water limit),

weak nonlinearity ε = Aχ2/W̃ � 1, both of the same

order of magnitude µ/ε = W̃ 3/(∆2R2A) ∈ [1, 3].

Soliton profile.— The pulse profile, η(θ, t), is ex-
tracted from the outer torus border (e.g., from the de-
pression in Fig. 1b). Figure 2a shows that the experi-
mental profile is well described by the theoretical soli-
ton profile of Eq. (2) with no fitting parameter. Since
a soliton balances theoretically dispersion and nonlinear-
ity, it should also have a self-similar profile during its
propagation. Figure 2b shows the superimposed rescaled
profiles of a soliton during its propagation along almost
one torus perimeter. The soliton (with this appropriate
rescaling) thus conserves a self-similar shape during its
propagation that is well described by Eq. (2), even if its
amplitude decreases due to unavoidable dissipation. To
quantify the latter, we plot in Fig. 2c the soliton am-
plitude as a function of time, A(t), during two rounds
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FIG. 3. Space-time Fourier spectrum η̃(kθ, ω) of the signal
η(θ, t) (outer border). Dashed line: velocity Ω0 = 1.37 rad/s
of long linear waves. The energy is concentrated around a
linear branch of slope Ω < Ω0, signature of a subsonic soliton.

along the torus. A(t)/A(0) is found to decrease expo-
nentially as A(t) = A(0) exp[−t/τ ], with a damping time
τ found to be independent of the viscosity of the fluid
used (ν ∈ [10−7, 10−6] m2/s, i.e., mercury or water), sug-
gesting that dissipation probably comes from the triple
contact line and not from the viscous dissipation.

Fourier spectrum.— We now compute the space-and-
time Fourier transform, η̃(kθ, ω), of the signal η(θ, t) as
shown in Fig. 3. The energy is found to be concentrated
around a line of slope Ω = ω/kθ corresponding to the
pulse velocity. This quasi-nondispersive feature is a spec-
tral signature of a soliton. The soliton velocity, Ω, is
found to be slightly slower than long linear waves prop-
agating at velocity Ω0 (see Fig. 3), meaning the pres-
ence of a subsonic soliton. Note that a broadening of
the soliton branch occurs due to nonlinearities, whereas
low-intensity vertical traces (at low kθ) correspond to
mechanical noise.

Soliton width and velocity.— We now measure
the typical soliton width ∆ by fitting Eq. (2) to the
experimental profile (as in Fig. 2a). ∆2 is plotted
in Fig. 4 for different pulse amplitudes, A, and torus
widths W . ∆ is found to scale as

√
W 3/A in good

agreement with Eq. (2)b with no fitting parameter (see
solid line). We also measure the soliton velocity by
time of flight during its propagation. The dimensionless
pulse velocity, Ω/Ωo (i.e., Froude number), is displayed
in the inset of Fig. 4 for various A and W . For large
tori (i.e., using the substrate R = 7 cm for various W ),
the soliton velocity of Eq. (3) reduces to the classical

KdV linear relationship, Ω/Ω0 = 1 + 5Aχ2/(12W̃ )
(see solid line), which is well verified experimentally
(open circles). Depression solitons (A < 0) moving
slower than linear waves (Ω/Ω0 < 1 or subsonic) are
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FIG. 4. Experimental soliton width squared ∆2 for different
amplitudes A and different widths W ∈ [1.9, 4] cm (2 mm
step). R = 7 cm. Solid line: Eq. (2) with no fitting parameter
(slope 1). Inset: Dimensionless soliton velocity Ω/Ωo versus
Aχ2/W for various A and W for R = (+) 4 and (◦) 7 cm.
Dashed lines: Eq. (3) for different W ∈ [2.8, 3.9]. Solid line:
classical KdV solution (slope 5/12). Occurrence of subsonic
elevation solitons is due to effects of the periodic geometry.

observed for Bo > Boc, whereas elevation solitons
(A > 0) are supersonic (Ω/Ω0 > 1) for 0 ≤ Bo < Boc,
as predicted for KdV in straight geometry [8, 10]. For
smaller tori (i.e., R = 4 cm substrate), the relationship
of Eq. (3) between velocity and amplitude is no longer
linear (see dashed lines, and also Supp. Mat. [41]).
In particular, we clearly observe subsonic elevation
solitons due to the effects of the periodic geometry (see
+ in the bottom right quadrant). The transition from
subsonic to supersonic solitons occurs, from Eq. (3),
at m∗ = 2 − 3E(m∗)/K(m∗) ' 0.96 regardless of Bo.
We sum up the solutions of periodic KdV equation as

Bo < Boc: Elevation, 0 m∗
subsonic supersonic 1 m

Bo > Boc: Depression,
0 m∗

supersonic subsonic 1 m

Note that certain types of solitons are unreachable here
within our finite ranges of W̃ and of A.

Critical Bond number.— The critical Bond number
corresponds to transition between elevation and depres-
sion soliton solutions [10]. It is remarkable that our the-
oretical value of the critical Bond number Boc ≈ 1/6 for
a torus differs from the value 1/3 for the plane geometry
case [8]. Indeed, Boc strongly depends on the slope α as
found numerically [24]. Equating the Bond expression to

1/6 and inserting W̃ = Ro−R, we find the critical outer
radius Rco of the torus separating elevation and depres-
sion solitons as Rco

3 − Rco2R −
√

6`effR
2 = 0, and thus

Rco = 8.43 cm for our parameters. Experimentally, we
have a range of Bo ∈ [0.09, 0.5] by varying Ro, and we
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FIG. 5. Angle-time plot of a head-on collision between two
depression solitons propagating along a torus. Top: Enlarge-
ment (dashed square) showing the soliton minima, phase shift,

and residence time tr. Bottom: tr vs W̃
√
δBo/A for various

A and W . Solid line slope is 0.33 s/m1/2. Ro = 8.2 cm.

look for the occurrence of the transition from depression
(Ro < Rco) to elevation (Ro > Rco) solitons by increas-
ing Ro. For small Ro, depression solitons are indeed ob-
served, whereas elevation solitons are detected above a
certain radius. We find a critical experimental radius of
Rco = 8.4 ± 0.02 cm in good agreement with the above
predictions. This corresponds to Boc = 0.17 close to the
theoretical value 1/6. This result is also confirmed when
using the other substrate (R = 4 cm).

Soliton collision.— The nonlinear nature of the soli-
tons is further confirmed by observing the collisions of
two depression solitary waves as illustrated in Fig. 5.
The top inset shows an enlargement of the two solitary
wave minima as they collide. The collision evidences a
long residence time tr (of the order of 0.1 s) during colli-
sion, and a slight phase shift, a feature of solitons. Inset
of Fig. (5) shows that tr is experimentally found to scale

as tr ∼ W̃
√
δBo/A, matching our prediction (see Supp.

Mat. [41]) and extending the pure gravity prediction [44].
Direct scattering.— We have shown above that soli-

tons observed along a liquid torus are well described by
Eqs. (2)-(3), solutions of the periodic KdV Eq. (1). We
now implement a nonlinear spectral analysis, using the
periodic inverse scattering transform (PIST), to find the
discrete eigenvalue λ of each soliton in our signals [32].
Note that such a method has not been applied so far to
an experimental periodic system with a significant dis-
creteness in Fourier space. We associate with Eq. (1) the
following eigenvalue problem [32, 37]

ψxx + [βη(x, t = t0) + λ]ψ = 0, (4)

subjected to periodic boundary conditions, with period
L = 2πRo, and β = 5/(12W̃ 3χ2δBo). The eigenval-
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FIG. 6. PIST detection of solitons. Tr[M(λ)]/2 (red line) for
the signal of Fig. 5 at t0 = 2.7 s, with the associated nonlinear
spectrum (bullets). Two solitons are detected (bullets with
λ < 0). Inset: Soliton index s for different azimuthal wave
numbers j revealing two solitons (s > 0.99). Lin-Logit scale.

ues correspond to either bounded solutions, i.e., solitons,
for λ < 0, and Stokes waves or radiative phonons for
λ ≥ 0 [31]. We use a periodic scattering matrix M(λ)
(called monodromy matrix) to translate the solutions of
Eq. (4) by one period. The nonlinear spectrum is then
given by the condition Tr[M(λ)]/2 = ±1. The exper-
imental nonlinear spectrum is displayed in Fig. 6 (bul-
lets), along with the half-trace of the matrix M (solid
line) for the signal in Fig. 5 at a time t0. Two solitons
are detected in Fig. 6 for which Tr[M(λ)]/2 = ±1 (4
eigenvalues), corresponding to two distinct values λ < 0.
From this nonlinear spectrum, we compute the soliton
index s for each nonlinear mode as s =

λ2j+1−λ2j

λ2j+1−λ2j−1
[34]

which corresponds to solitons if s > 0.99, Stokes waves
if s > 0.5, or linear radiative modes if s < 0.5 [45]. We
are thus able to count the number of solitons included in
a given signal, e.g., the one in Fig. 5. Indeed, the inset
of Fig. 6 confirms the presence of 2 solitons, as expected.
Beyond the validity of PIST to detect KdV solitons in a
periodic system, PIST could be also be applied to directly
generate a KdV soliton gas in such geometry.

Conclusion.— We demonstrated the existence of soli-
tons in a system with periodic and curved boundary con-
ditions. They are observed propagating along a stable
torus of fluid (created by a technique we developed) and
are fully characterized (profile, velocity, collision, dissipa-
tion and nondispersive features). These unexplored soli-
tons are found to be governed by a KdV equation with
periodic boundary conditions leading to significant differ-
ences with infinite straight-line KdV solitons, such as the
observation of subsonic elevation solitons, and the predic-
tion of a nonlinear dependence of the soliton velocity on
its amplitude. A nonlinear spectral analysis of solitons is
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implemented (PIST) and is experimentally validated for
the first time for periodic conditions. Our work is not re-
stricted to hydrodynamics, and thus could be applied to
other domains involving periodic systems governed by a
KdV equation. Quantifying the role of dissipation break-
ing integrability is also of primary interest [46]. In the
future, this new system could address the possible exis-
tence of KdV soliton gas [17–21] in periodic systems, and
their collision [47], as well as of Kaup-Boussinesq bidirec-
tional solitons [20, 48, 49] with corresponding finite-gap
spectral methods [50].
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