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Ultrafast relaxation investigated by
Photoelectron Circular Dichroism :
an isomeric comparison of Camphor
and Fenchone

Valérie Blanchet, Dominique Descamps, Stéphane Petit,
Yann Mairesse, Bernard Pons, Baptiste Fabre∗

We study isomeric effects using time resolved photoelectron cir-
cular dichroism (PECD). By a (1+1’) pump-probe ionisation with
photoelectron collected by velocity map imaging technique, we
compare relaxation dynamics from the 3s-Rydberg state in 1R,4R-
(+)-camphor with the one in its chiral isomer, 1R,4S-(−)-fenchone
[Comby et al., 2016, JPCL,7,4514]. Our measurement reveals a
similar lifetime for both isomers. However, the circular dichroism
in the photoelectron angular distribution decays exponentially in
∼ 730 fs from a +9% forward amplitude during the first hundreds
of femtoseconds to reach an asymptotic−2% backward amplitude.
This time-scale is drastically shorter than in fenchone. Our analysis
pronges us to evaluate the impact of the anisotropy of excitation:
the relaxation dynamics, following the photoexcitation by the lin-
early polarized pump, is then compared to the ones induced by a
circularly polarized pump pulse (CPL). With such CPL pump, we
then retrieve time constants of our chiral observables similar to the
ones recorded in fenchone. Quantum and classical simulations are
developed and used to decipher the dependence of the PECD on
the anisotropy of excitation and the spatial distribution of the 3s-
Rydberg electron wavefunction. Our experimental investigations,
supported by our simulations, suggest that varying the pump el-
lipticity enables us to reveal the breakdown of the Franck-Condon
approximation.
1 Introduction
The photoionization of randomly oriented chiral molecules by
circularly polarized photons leads to an asymmetric photoelectron
momentum distribution with respect to the light propagation
direction1–4. This forward/backward asymmetry, known as Pho-
toElectron Circular Dichroism (PECD), has mainly been studied
in the Vacuum UltraViolet (VUV) spectral range where ionization
results from the absorption of a single photon with energy larger
than the Ionization Energy (IE) of the molecule. The PECD
reverses sign as the circularly-polarized light changes from left
(LCP) to right (RCP) in a given enantiomer, or equivalently, when
the molecular handedness is flipped for a fixed light helicity. In
this single-photon ionization regime, the PECD results from the
scattering of the outgoing electron onto the chiral potential. This
asymmetric scattering induces a chirosensitivity of the ionization
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time delays which differ by a few tens of attoseconds depending
on the emission angle 5. PECD depends on the orbital from
which the electron is pulled out as well as to the kinetic energy
of the emitted photoelectron 6. Importantly, PECD is remark-
ably sensitive to molecular structure, being able to distinguish
isomers7, conformers 8,9, chemical substitution 10, clustering 11

and vibrational excitation 12,13. VUV-PECD has been extended to
Resonance-Enhanced MultiPhoton Ionization regime (REMPI),
using ultraviolet femtosecond14,15 or nanosecond 16 laser pulses.
The resonant intermediate state(s) may strongly influence the
forward/backward asymmetry. Last, PECD has been shown to
persist in the strong-field regime 17 where ionization proceeds in
terms of tunneling through the ionic potential barrier lowered
by the laser field. In that case, the asymmetry is encoded in
the photoelectron distribution not only during the scattering of
the freed electron onto the chiral potential but also during the
primary tunneling process18. PECD is thus a universal feature
of the ionization of chiral molecules, occurring in all ionization
regimes17. Besides its fundamental importance, PECD can also be
employed as a quantitative probe of chemical and enantiomeric
composition of gas phase chiral mixtures 19–22. The high structural
sensitivity of PECD imaging makes it a promising spectroscopic
observable to track time-resolved dynamics induced in chiral
molecular systems.

In Time-Resolved PECD (TR-PECD), a pump pulse launches a
wavepacket in electronic state(s) and the ensuing relaxation dy-
namics are probed via photoionisation by monitoring the time-
dependencies of the PECD. In this respect, TR-PECD is an extension
of REMPI-PECD to the temporal domain. In the pioneer TR-PECD
experiment23, we studied the relaxation dynamics taking place
from the 3s-Rydberg state in fenchone (C10H16O)23,24. The tem-
poral features in the PECD observables were then associated to in-
ternal vibrational redistribution while it remained hidden in the
angle-integrated photoelectron spectrum-TR-PES (Time-Pesolved
PhotoElectron Spectrum). This first investigation established TR-
PECD as a new and unparalleled observable of relaxation dynam-
ics in excited chiral systems. In the present paper, we extend this
previous work to camphor molecules. Camphor is an isomer of
fenchone which only differs by the location of two methyl groups,
as shown in Figs. 1(a,b). As in fenchone experiment23, camphor is
photoexcited into its 3s-Rydberg state with a UV pump pulse before
being ionized by a delayed and circularly polarized probe pulse in
order to investigate the temporal evolution of PECD. The main ob-
jective of this pump-probe experiment is to observe the sensitivity
of PECD to relaxation dynamics and to isomerism.

In all the following, we are concerned with an ionization tak-
ing place around 9.2 eV, near the ionization energy of camphor
(IE=8.66±0.01 eV25). PECD in static camphor has been studied
in the VUV spectral range 7,10. At 9.2 eV, the VUV-PECD of 1R,4R-
(+)-camphor ionized by left-polarized light (LCP) has ∼ −5% am-
plitude – the electrons are preferentially emitted in the backward
hemisphere. Following the same Cahn-Ingold-Prelog sequence for
the first chiral center (in C1), the closest rigid isomer of 1R,4R-
(+)-camphor is 1R,4S-(−)-fenchone. The VUV-PECD of the latter
reaches ∼ +15% at 9.2 eV7. There is thus a huge isomerism effect
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Fig. 1 Two monoterpenoid isomers-the most abundant enantiomers in
nature: (a) 1R,4R-(+)-camphor and (b) 1R,4S-(−)-fenchone with the 1R
chiral carbon labelled in blue/red and 4R/4S in blue.
Similarities between the HOMO orbital of camphor (c) and fenchone (d).
The orbital 3s of camphor (e) and fenchone (f) populated by the pump
pulse.

in one-photon ionization of fenchone and camphor near the ion-
ization threshold. These two isomers have however very similar
Highest Occupied Molecular Orbitals (HOMO, see Figures 1(c,d))
from which the electron is pulled out. Therefore, this isomerism
effect recorded in the VUV range, stems from different electron
scatterings in fenchone and camphor, leading to different final pro-
jections of the electron in the molecular continuum. PECD in static
camphor has also been observed in a (2+1)-REMPI scheme where
the two first photons reach the 3s-Rydberg state and one addi-
tional photon ionizes the molecule 15,26. The (2+1)-REMPI-PECD
of 1R,4R-(+)-camphor reverses sign with respect to its VUV coun-
terpart, presenting a ∼ +8% amplitude. Such a behaviour is un-
derstood as the influence of the intermediate 3s resonance. Con-
versely, the (2+1)-REMPI-PECD of 1R,4S-(−)-fenchone reaches
similar values as its VUV one, with an amplitude of ∼ +12%24,26.
This comparison raises the question of the role of the intermedi-
ate 3s resonance on the PECD, which the present work aims at
re-examining in a time-resolved (1+1’)-REMPI scheme.
Here, camphor molecules will be promoted to their excited 3s state
through the absorption of one pump photon before being ionized
by one delayed probe photon of distinct energy. The relaxation dy-
namics of the 3s-Rydberg state will be observed through the tem-

poral dependence of both the symmetric and asymmetric parts of
the photoelectron momentum distribution. Comparison with our
previous experiments in fenchone 23 will enable us to reveal the
sensitivity of relaxation dynamics to isomerism, even if fenchone
and camphor are a priori excited to similar 3s-Rydberg state (see
Figs. 1(e,f)) with similar anisotropy of excitation and subject also
to vibronic relaxations. This will adequately complement the pre-
vious static studies.
The paper is structured as follows. In section 2, we describe
the experimental setup based on a Velocity-Map Imaging (VMI)
spectrometer and each steps involved to extract TR-PECD from
raw VMI-images. In Section 3, we present and discuss the ion
and PECD transients for three different polarizations of the pump
(S3 = ±1, 0), in line with the recent work on limonene27 in which
we investigated the influence of the anisotropy of excitation. In
Section 4, we introduce the theoretical background used to model
the photoelectron angular spectrum and associated PECD in the
static (1+1’)-REMPI regime. Special attention is paid to the ori-
gin of isomerism effects in this interaction scheme by comparing
the TR-PECD recorded on 1R,4R-(+)-camphor to the one obtained
in 1R,4S-(−)-fenchone. This Section also includes a theoretical
investigation on how the decay of the anisotropy of excitation im-
pacts the TR-PECD. Finally, we summarize our findings in Section
5.

2 Experimental description

2.1 Experimental setup

The experimental setup consists of a molecular beam chamber
with a 1 kHz Even-Lavie pulsed valve, coupled to a velocity-map
imaging (VMI) spectrometer and a 26 fs–1 kHz–Ti:Sapphire laser
system (Aurore facility 28- 800 nm). Enantiomerically pure sam-
ple of 1R,4R-(+)-camphor has been provided by Sigma-Aldrich
with a 98% of chemical purity and an optical rotation quoted at
α25
D = 44.1◦. The pulsed valve, with a 250 µm conical nozzle, is

used at 80◦C to get a significant vapour pressure and to avoid clus-
ter formation with the minimal 8 bars of helium required to get
a stable pulsed molecular beam. Typically this seeded supersonic
molecular beam (∼ 1000 km/s) generates a rotational temperature
on camphor of few tens of kelvin29,30.

One part of the laser beam is used to generate the pump pulse
at 6.16 eV (201.3 nm) with a 25 meV Full Width Half Maximum
(FWHM). With these UV pulse characteristics, the 3s-Rydberg state
of camphor is expected to be vibrationally excited with less than
100 meV31. To photoionize near 9.2 eV, the probe pulse is simply
the second harmonic of the fundamental pulse centered at 3.1 eV
(λ = 400 nm) with a 100 meV bandwidth. The (1+1’) total energy
is 600 meV above the IE and 440 meV below the dissociative ion-
ization threshold 7. This excitation scheme is summarized in Fig.
2. The pump and probe beams are focused on the molecular beam
with f = 250 mm and f = 600 mm focal lenses, respectively, and
crossed with a 4◦ angle. In order to restrain the excitation scheme
to (1+1’), the pump (3 µJ/p) and probe (8 µJ/p) intensities are
maintained quite low at 5 × 1011 and 1 × 1011 W/cm2, respec-
tively. This soft ionization produces only 9% of dissociative ion-
ization events via a (1+1’+1’)-scheme. The circular polarizations

2



have been obtained by introducing a zeroth order quarter wave-
plate on the probe beam and a Berek compensator adjusted to a
π/4 phase delay on the pump beam. The cross-correlation time
as well as the time overlap have not been determined on another
molecular compound but extracted from the fit of the transients of
the parent ion (C10H16O+). The cross-correlation time is ∼ 200 fs
due to the residual chirp of the UV pump pulse.

Fig. 2 Schematic of the excitation scheme used to measure TR-PECD
from the 3s-Rydberg state of camphor.

The photoelectrons have been collected in a direction perpen-
dicular to the plane defined by the laser and molecular beams,
and detected at the end of a 40 cm time-of-flight tube using an
imaging detector consisting of two micro-channel plates (MCP -
7 cm in diameter) coupled to a phosphor screen (P43) and a 16 bit
CCD camera. An energy resolution of 82 meV for photoelectrons
at 0.7 eV kinetic energy was determined by photoionizing krypton
atoms. The optimisation of ±45◦ angles relative to the neutral axis
of the quarter waveplate of the probe was first done optically with
a polarizer, and an accuracy better than one degree was achieved
via the optimization of the one-colour PECD images recorded at
400 nm14. This results in an electron yield of the 1+(1’-RCP) ion-
ization, 0.6% higher than the one associated to a 1+(1’-LCP). This
difference that stems from the quarter waveplate limitations, was
corrected by multiplying each pixel of the images recorded with
left-circularly polarized probe by a factor 1.006.

Ionization data were recorded by scanning the pump-probe de-
lays typically twenty times: at each delay, one pump-probe im-
age was recorded over 51000 laser shots with one probe helicity
before this latter one was switched. For each scan and due to
the commensurability between (1+1’) and (2’+1’) ionization, two
background images corresponding to the probe pulse alone at each
helicity were recorded and subtracted to each pump-probe image.

2.2 Data Processing

For a given pump-probe delay t, the VMI spectrometer provides
2D photoelectron angular distributions PS3,±1(Ekin, θ

′, t) in which
the third Stoke parameter S3 defines the amount of circularly po-
larized photons of the pump pulse, whereas the polarisation state

Fig. 3 (a) PECD being a normalized quantity, we need to measure the total
number of electrons produced for each kinetic energy. This is achieved
by the treatment of the symmetric part of the image-SS3 (Ekin, θ

′, t)-
shown here for the 100 fs delay and S3=0. (b) the antisymmetric part of
raw images-AS3 (Ekin, θ

′, t)- are post-processed with first a symetrization
relative to vertical direction contained in the polarization plane (similar to
the pump polarisation when S3 = 0), followed by an asymmetric operation
relative to the propagation axis as illustrated for the same 100 fs pump-
probe delay and S3=0. The same contrast sensitivity are used for the raw
and the processed images. (c) Fit of the antisymmetric images recorded in
1R,4R-(+)-camphor with a linearly polarized pump (S3 = 0) that shows
the quality of the fitting procedure of the images for two different delays
despite the 2m=0 restricted decomposition.

of the probe is equal to ±1 (RCP/LCP). Ekin is the kinetic en-
ergy of the photoelectron and θ′ is the polar angle in the VMI
detector plane. θ′ = 0 points to the (forward) direction of light
propagation while θ′ = 180◦ points backward. The VMI im-
ages are projections of the 3D differential ionization cross sections
PS3,±1(Ekin, θ, φ, t), where θ and φ are the spherical angles defin-
ing the direction of photoelectron ejection. This cross section, re-
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sulting from two-photon absorption, can be decomposed as:

PS3,±1(Ekin, θ, φ, t) =
4∑

ℓ=0

1∑
m=−1
|m|≤ℓ

BS3,±1
ℓ,2m (Ekin, t)Y2m

ℓ (θ, φ) (1)

where Y2m
ℓ (θ, φ) are cosine (m > 0) and sine (m < 0) real spher-

ical harmonics. It can be shown analytically, as in 32,33, that the
asymmetric part of the electron yield is directly related to the co-
efficients BS3,±1

ℓ,2m (Ekin, t) with either (ℓ odd and m ≥ 0) or (ℓ even
and m < 0), while the symmetric part depends on the remaining
ones. The coefficient BS3,±1

0,0 (Ekin, t) is the TR-PES. We detail in
the following the procedure which is implemented to link the 2D
PS3,±1(Ekin, θ

′, t) and the 3D PS3,±1(Ekin, θ, φ, t) distributions,
depending on the polarization state of the pump which can be lin-
ear (S3 = 0) or circular (S3 = ±1).

2.2.1 TR-PECD with circularly-polarized pump

When the pump beam is circularly polarized (S3 = ±1), the differ-
ential cross section has a cylindrical symmetry about the light prop-
agation axis. The decomposition (1) is then restricted to 2m = 0,
and its projection onto the VMI detector plane directly yields 34:

P±1,±1(Ekin, θ
′, t) =

4∑
ℓ=0

B±1,±1
ℓ (Ekin, t)Pℓ(cos θ′) (2)

where Pℓ(cos θ′) are projections of Legendre polynomials onto the
VMI plane. The parameters B±1,±1

ℓ (Ekin, t) with odd ℓ reverse
sign as the probe helicity changes from +1 to −1 , or equiva-
lently, as the enantiomeric nature of the sample changes from
(+) to (−) for a fixed helicity. The even parameters are inde-
pendent of both the probe helicity and the enantiomer. Further-
more, the values of all B±1,±1

ℓ (Ekin, t) coefficients do not de-
pend on the pump helicity. Therefore, we use the following con-
vention: Bℓ(Ekin, t) ≡ B±1,−1

ℓ (Ekin, t), keeping in mind that
B±1,+1

ℓ (Ekin, t) = (−1)ℓB±1,−1
ℓ (Ekin, t). The Bℓ parameters are

related to those entering the definition (1) of the differential cross
section by Bℓ =

√
2ℓ+ 1B±1,−1

ℓ,2m=0 because of the relationship be-
tween 2m = 0 spherical harmonics and Legendre polynomial pro-
jections.

The forward/backward symmetric part of (2), S±1(Ekin, θ
′, t),

is obtained by averaging the VMI signals associated to left-handed
and right-handed probe polarizations:

S±1(Ekin, θ
′, t) =

P±1,−1(Ekin, θ
′, t) + P±1,+1(Ekin, θ

′, t)

2
, (3)

which gives, according to (2),

S±1(Ekin, θ
′, t) =B0(Ekin, t)P0(cos θ′) +B2(Ekin, t)P2(cos θ′)

+B4(Ekin, t)P4(cos θ′). (4)

In order to avoid experimental artifacts, the S±1(Ekin, θ
′, t)

images are numerically up/down and forward/backward sym-
metrized, as illustrated in Fig. 3(a).

The antisymmetric chirosensitive part of the 2D VMI dis-
tribution, A±1(Ekin, θ

′, t), is obtained by subtracting the im-
ages recorded with opposite probe helicities P±1,−1(Ekin, θ

′, t) −

P±1,+1(Ekin, θ
′, t), which results in:

A±1(Ekin, θ
′, t) = 2B1(Ekin, t)P1(cos θ′) + 2B3(Ekin, t)P3(cos θ′).

(5)

Here again, in order to reduce the experimental uncertainties,
the antisymmetric part of the raw images is first artificially sym-
metrized along the vertical axis contained in the polarization
plane (which coincides with the pump polarization direction when
S3 = 0) and antisymmetrized along the light propagation axis (see
Fig. 3(b)).

The set of Bℓ(Ekin, t) coefficients are extracted from the sym-
metric and antisymmetric parts of the experimental images by us-
ing the relations (4) and (5). In practice, the symmetric and an-
tisymmetric parts of the experimental images are fitted using the
Legendre Polynomial projection basis {Pℓ(cos θ′)} with ℓ = 0 . . . 4.
The extracted Bℓ are then divided by

√
2ℓ+ 1 in order to get the

Bℓ,2m=0. Using Eq. (1), it is then possible to retrieve the 3D pho-
toelectron distribution associated to the experimental projections.

In the present experiment, the ionization yields a single photo-
electron peak located at a well fixed kinetic energy such that its
is easy to define an angle- and energy-integrated TR-PECD, char-
acterizing the degree of asymmetry of the whole ionization peak,
as23:

PECD(t) =
2 ⟨B1⟩ (t)− 0.5 ⟨B3⟩ (t)

⟨B0⟩ (t)
= 2b1(t)− 0.5b3(t) (6)

with ⟨Bℓ⟩ (t) =
∫
Bℓ(Ekin, t)dEkin, an integration performed over

130 meV centred at Ekin = 0.5 eV. Note that the difference be-
tween the multiplicative factors appearing in front of the coeffi-
cient B3(Ekin, t) in eq. (5) and ⟨B3⟩ (t) in eq. (6) comes from the
integration over the spherical angles to pass from the projected
representation of the asymmetry to its angularly-integrated form.

2.2.2 TR-PECD with linearly-polarized pump

For a pump whose polarization state is x̂, corresponding to a Stokes
parameter S3 = 0, the 3D photoelectron momentum distribution
does not fulfill cylindrical symmetry anymore. The VMI-projected
image in the (x̂, ẑ)-plane is then:

P0,±1(Ekin, θ
′, t) =

4∑
ℓ=0

1∑
m=−1
|m|≤ℓ

B0,±1
ℓ,2m(Ekin, t)P

2m
ℓ (cos θ′) (7)

where P 2m
ℓ (cos θ′) are projections of the real spherical harmonics

introduced in (1). In practice, some of the P 2m
ℓ (cos θ′) projections

are linearly dependent, which prevents to obtain a unique set of
B0,±1

ℓ,2m(Ekin, t) parameters for a given t. We circumvent this issue
by restricting the decomposition (7) to 2m = 0, yielding

P0,±1(Ekin, θ
′, t) =

4∑
ℓ=0

B̃0,±1
ℓ (Ekin, t)Pℓ(cos θ′) (8)

where tilde notations are employed to emphasize that this decom-
position is biased with respect to the genuine physical symme-
try of the interaction. Similarly to what has been done for TR-
PECD with circularly-polarized pump, we use the following con-
vention: B̃ℓ (Ekin, t) = B̃0,−1

ℓ (Ekin, t), with B̃0,+1
ℓ (Ekin, t) =

4



(−1)ℓB̃0,−1
ℓ (Ekin, t).

The symmetric and antisymmetric parts of the VMI images are
obtained as in the case of circularly polarized pump (see Eqs. (4)
and (5)),

S0 (Ekin, θ
′, t
)
=B̃0 (Ekin, t)P0(cos θ′) + B̃2 (Ekin, t)P2(cos θ′)

(9)

+ B̃4 (Ekin, t)P4(cos θ′),

A0 (Ekin, θ
′, t
)
=2B̃1 (Ekin, t)P1(cos θ′) + 2B̃3 (Ekin, t)P3(cos θ′).

(10)

We illustrate in Fig. 3(c) the accuracy of the reconstruction of the
VMI signals in terms of the 2m = 0-restricted decomposition. The
experimental A0(Ekin, θ

′, t) antisymmetries are nicely reproduced
by the fits (using Eq. 10) for t = 100 fs and t = 2 ps. The same
accuracy is fulfilled for the symmetric parts S0 (Ekin, θ

′, t) of the
distributions. These latter are not shown for sake of conciseness.
Contrary to the case where the excitation was induced by a circu-
lar polarization, when cylindrical symmetry is not maintained, i.e.
for linearly-polarized pump, there is no a priori direct correspon-
dence between the 3D electron distribution (1) involving B0,±1

ℓ,2m

coefficients and the experimental projections.

The integrated TR-PECD is defined similarly as before,

P̃ECD(t) =
2
〈
B̃1

〉
(t)− 0.5

〈
B̃3

〉
(t)〈

B̃0

〉
(t)

= 2b̃1(t)− 0.5b̃3(t).

(11)

P̃ECD(t) and b̃1,3(t) are the quantitative antisymmetric observ-
ables, normalized to the total number of photoelectrons. As es-
tablished in 23, while b̃1(t) describes the first-order asymmetric re-
sponse, b̃3(t) describes the anisotropy of the asymmetric signal,
induced by the pump excitation process.

Additionally to the comparisons made in Fig. 3(c), the reliability
of the 2m = 0-restricted decomposition (Eq. 8) of the collected
signals can be checked at the level of the integrated TR-PECD by
comparing the result of (Eq. 11) to the direct experimental value,
to which we refer to as ’raw’ PECD. This latter is obtained:

PECDraw(t) =

4

∫ π/2

−π/2

∫
(P0,−1(Ekin, θ

′, t)− P0,+1(Ekin, θ
′, t)) dEkindθ

′∫ π/2

−π/2

∫
(P0,−1(Ekin, θ′, t) + P0,+1(Ekin, θ′, t)) dEkindθ′

. (12)

3 Experimental results
We show in Fig. 4 the asymmetric part A0(Ekin, θ

′, t) of the
projected photoelectron momentum distributions obtained in (+)-
camphor and (-)-fenchone for S3=0 and prototypical pump-probe
delays t = 0.1, 1 and 2 ps. These asymmetries are nothing else than
unnormalized versions of the projected two-dimensional PECDs.
Note that the normalized versions will be shown for other typical
delays in Fig. 5(a).
At first glance, Fig. 4 is enough to observe qualitatively large iso-

Fig. 4 The photoelectron images recorded on 1R,4R-(+)-camphor and
1R,4S-(−)-fenchone for each probe helicity, left-circularly polarized (LCP )
and right-circularly polarized probe (RCP ), are subtracted one from the
other (LCP − RCP ), then processed as explained in Fig.3 to get the
photoelectron forward-backward asymmetric A0(Ekin, θ

′, t) images rela-
tive to the propagation axis k⃗ of the laser pulses. Here S3(pump) = 0.
These A0(Ekin, θ

′, t) images plotted with the same contrast sensitivity,
show a drastic change as a function of the pump-probe delay:(a) a forward
asymmetry of photoelectron before 1 ps to a backward one at longer delays
in camphor, (b) while fenchone maintains a forward asymmetry whatever
the delay.

meric effects between camphor and fenchone. First, at short delay,
the 2D PECD of camphor exhibits a 6-lobe angular structure while
its counterpart in fenchone has a fixed sign within the whole for-
ward and backward hemispheres. Second, the angular structure of
the PECD is maintained in both isomers between t = 100 fs and
t = 1 ps, but the maximal amplitude of the 2D PECD decays faster
in camphor than in fenchone. Third, the angular structure of the
2D PECD is lost between t = 1 and t = 2 ps in camphor while it
hardly changes in fenchone within the same time interval. Finally,
the overall preferential direction of electron ejection, defined as
the integrated signal in the backward and forward hemisphere, is
reversed between t = 100 fs and t = 2 ps in camphor, while elec-
trons are preferentially emitted in the forward direction at all times
in fenchone.

In order to get a quantitative analysis of the ongoing dynamics,
we now employ Eqs. (9) and (10) to extract from the symmetric
S0(Ekin, θ

′, t) and antisymmetric A0(Ekin, θ
′, t) parts of the VMI

signals, the B̃i(Ekin, t) coefficients underlying the time-dependent
photoelectron distribution in camphor. The same procedure was
employed and illustrated in 23 for fenchone. These coefficients are
shown in Fig. 5(b). All the coefficients peak about a photoelec-
tron kinetic energy Ekin = 0.5 eV in agreement with the previ-
ous (2+1)REMPI14,15. This value is 0.1 eV lower than the one ex-
pected from vertical ionization from the 3s Rydberg intermediate
state fulfilling the ∆Evib = 0 propensity rule. No salient feature
depending on the electron kinetic energy shows up in Fig. 5(b). In-
deed, our probe photon energy does not allow to probe the rising
population in the valence states originated from Rydberg-valence
vibronic relaxation since these states lie too low on the energy
scale. The TR-PES, B̃0(Ekin, t), thus illustrates the monotonous
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decrease of the 3s-state population. B̃2(Ekin, t) corresponds to
the anisotropy of symmetric differential electron ejection and re-
mains significant as long as the 3s state is significantly populated,
i.e. up to t ∼ 7 ps. The higher-order anisotropy B̃4(Ekin, t), re-
sulting from two-photon ionization, is very small (with a maximum
of amplitude less than 1/7 of B̃2(Ekin, t)) throughout the interac-
tion. Accordingly, it is not displayed in Fig. 5(b). The analysis
of the time-resolved symmetric photoelectron signal does not fi-
nally provide further information than the (expected) relaxation
of the intermediate 3s state. Our previous study on TR-PECD in
fenchone23 led to the same conclusion.

Fig. 5 TR-PECD in 1R,4R-(+)-Camphor with S3(pump) = 0 : (a) for
each delay t, the previous A0(Ekin, θ

′, t) images are now normalized to
the maximum of the corresponding S0(Ekin, θ

′, t) images; (b) Time and
energies dependencies of the factors B̃0(R), B̃2(R), B̃1(R) and B̃3(R)

with R, radius of the images being transformed in the kinetic energy of
the photoelectrons.

We thus turn to the time-resolved antisymmetric part of VMI sig-
nals, and associated B̃1(Ekin, t) and B̃3(Ekin, t) Legendre coeffi-
cients. In fenchone 23, we found that B̃3(Ekin, t) < B̃1(Ekin, t) for
all pump-probe delays t, which explains the shape of the 2D PECD
that looks like the Legendre polynomial P1(cos(θ′)) (see Figs. 4
(b)). Moreover, the asymmetry, mainly dictated by B̃1(Ekin, t) in
that case, was found to stay forward for all pump-probe delays.
On the contrary to fenchone, Fig. 5(b) shows that in camphor, the
absolute value of B̃3(Ekin, t) is stronger than the B̃1(Ekin, t) one
at short delays. The anisotropy of the asymmetry, rationalized by
B̃3(Ekin, t), is thus important in camphor at small t, yielding the 6-
lobe angular structure observed in the 2D PECD of Figs. 4(a) and
5(a). This strong anisotropy of A0(Ekin, θ

′, t) observed at small
delay, is the first isomeric effect raised in the TR-PECDs of fen-

chone and camphor, consistently with the raw data shown in Fig.
4 .

The main other difference between the two isomers is the sign
reversal of B̃1(Ekin, t) in camphor at long delay. This sign switch
appears around 1.2 ps and is concomitant with B̃3(Ekin, t) con-
verging to zero (see Fig. 5(b)). This results in a TR-PECD which
rapidly looses its angular structure and reverses the preferential
direction of electron to become backward as previously observed
in Figs. 4(a) and 5(a).

In order to quantitatively extract the characteristic timescales of
the dynamics, we now turn our attention to the time-dependencies
of the photoelectron yield

〈
B̃0

〉
(t) and normalized asymmet-

ric coefficients b̃1(t) and b̃3(t) entering the definition (11) of
P̃ECD(t). These transients, shown in Fig. 6(a), have mono-
exponential time-dependencies that can be fitted as:

f(t) = y0 +A× exp(−t/τ)×
[
1 + erf

(
2
√

ln 2

τcc

(
t− τ2cc

8τ ln 2

))]
(13)

where τ is the decay constant inherent to each observable and τcc
is the cross-correlation time of the pump and probe pulses. τcc and
t = 0 have been determined by fitting the cation signal collected at
the output of the time-of-flight detector (shown in 6(b)), leading
to τcc = (190± 10) fs.

Table 1 summarizes all the decay times τ and the asymptotic
values extracted from the time-transients, as well as their coun-
terparts for fenchone23. In the case where the 3s-Rydberg state
is populated through the interaction with a linearly-polarized
pump (S3=0), the decay time measured for the parent cation is
τ(C10H160+) = 2.2 ps while the photoelectron signal

〈
B̃0

〉
(t) de-

cays within 2.36 ps. These decay times coincide, as expected for
non-dissociative ionization, and characterize the timescale of vi-
bronic relaxation of the 3s-Rydberg state onto the valence states.
As shown in Table 1, the 3s state relaxation is 25% slower in fen-
chone than in camphor. This is counterintuitive since the pump
deposits more vibrational energy in the 3s state of fenchone than
in camphor – 250 vs 90 meV, according to the band origins of the
3s state in the respective isomers 15,20. Therefore, our results show
that internal conversion is sensitive to isomerism through the in-
tricate and different vibrational dynamics taking place in the tran-
sient electronic state.

A larger, and totally unexpected, isomerism effect shows up in
Table 1 as one compares the decay times of P̃ECD in fenchone
and camphor. In fenchone, τ(P̃ECD) ∼ 3.3 ps, which roughly
corresponds to the 3s relaxation time. This means that the chi-
ral asymmetry is encoded in the photoelectron yield almost as
long as the intermediate 3s state is populated. The anisotropy of
the asymmetry in fenchone, measured by b̃3, was found to decay
faster (τ(b̃3) = 1.4 ps) as expected by the rotational dephasing of
the molecules due to a non-zero rotational temperature of the fen-
chone23. But in camphor, P̃ECD decays much faster than the 3s
state relaxes: the time constants associated to

〈
B̃0

〉
and P̃ECD

are ∼ 2.4 ps and ∼ 0.7 ps, respectively. This means that the chi-
ral photoelectron asymmetry has converged to a finite value long
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Fig. 6 (a)Time dependencies of the factors B̃0(Ekin, t), b̃1(t) and b̃3(t). The P̃ECD percentage is then calculated by using the Eq. 11. The light
blue areas correspond to the 50% confidence bounds of the fits using Eq. 13. (b) Time-dependencies measured on the parent ion that are normalised
raw data without background subtraction on the contrary to the photoelectron images.

before the population of the transient 3s state, and subsequent
ionization, vanish. This result could be artificial and due to the
inadequacy of our analysis of the experimental images, based on
the 2m = 0-restricted decomposition of the photoelectron signal –
even if the reliability of this decomposition has been checked and
presented in Fig. 3(c). Therefore, we directly evaluated the raw
PECD according to Eq. (12), and extracted both its decay time
and asymptotic value. The agreement of raw and computed PECD,
presented in Table 1, is reasonable and proves that the rapid loss
of chiral asymmetry in (1+1’)-ionization of camphor is not artifi-
cially introduced by our 2m=0-restriction. This faster decay could
be rather due to fast internal vibrational relaxation (IVR), popu-
lating vibrational modes with inherent opposite PECDs and whose
superposition leads to a vanishing net asymmetry 12. In this re-
spect, we observed such a fast IVR in fenchone 23: the TR-PECD
was found to decrease within ∼ 400 fs before increasing smoothly
on a ps timescale, towards its asymptotic value. We assigned this
first 400 fs to a fast IVR, populating vibrational modes active in the
internal conversion (IC) from 3s state to the valence ones but with
opposite PECDs, while the subsequent ps increase of the net PECD
was related to long-lived vibrational spectator modes of this same
IC. In camphor, the TR-PECD continuously decreases from t = 0

onwards so that IVR and vibrationally selective internal conversion

cannot be differentiated as easily as in fenchone. While the de-
crease of the PECD at small t can be safely ascribed to IVR, its sub-
sequent evolution is monitored by both the vibrationally-selective
internal conversion and the lost of the anisotropy of molecular ori-
entations.

In order to gauge the influence of transient vibrational dynamics
in the fast decay of PECD in camphor, we performed TR-PECD mea-
surements with a circularly-polarized pump (S3 = ±1). Indeed,
changing the pump polarisation state from S3 = 0 to S3 = ±1
does not modify the vibrational excitation, which means that any
time dependencies related to IVR should be the same. Normal-
ized A±1 (Ekin, θ

′, t) images, for few delays, are presented on Fig.
7(a), while the associated temporal evolution of B0(t), b1,3(t) and
PECD(t) are displayed in Fig. 7(b,c) with their decay constants,
as well as their asymptotic values listed in Table 1. Within the er-
ror bars, the dynamics recorded through both symmetric (⟨B0⟩ (t))
and asymmetric (b1,3(t) and PECD(t)) observables do not depend
on the helicity of the pump pulse. This is consistent with the fact
that the 3s-state population, resulting from pump-induced sudden
excitation, is identical for S3(pump) =1 and for S3(pump) =-
1. The time constant associated to 3s-state internal conversion is
τ(B0) = (2.6±0.25) ps for S3 = ±1 while it was∼ (2.36±0.07) ps
for S3 = 0: the 3s state relaxes within the same timescale whatever
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Table 1 Time constants extracted from the fits shown in Figure 6 and 8 and for fenchone from ref 23 with a S3(pump)=0. The uncertainties correspond
to a 50% confidence bounds.

1R,4R-(+)-camphor - present work 1R,4S-(−)-fenchone 23

decay (ps) Converging value decay (ps) Converging value
Observables S3 = 0 S3 = −1 S3 = 1 S3 = 0 S3 = −1 S3 = 1 S3 = 0

C10H16O+(t) 2.20± 0.05 3.18± 0.04

B̃0(t) or B0(t) (PES) 2.36± 0.07 2.65± 0.25 2.60± 0.29 3.28± 0.05

b̃1(t) or b1(t) 0.75± 0.05 2.07± 0.25 2.30± 0.18 −0.01 −0.02 −0.02 3.25± 0.5 0.073

b̃3(t) or b3(t) 0.77± 0.04 1.28± 0.22 1.28± 0.20 0 0 0 1.4± 0.3 0

P̃ECD(t) or PECD(t) 0.73± 0.05 1.94± 0.19 2.10± 0.14 −1.94% −4.2% −5% 3.25± 0.5 +14.6%
PECDr(t) 0.84± 0.07 1.91± 0.40 2.05± 0.40 −1.36% −3% −3.6%

S3. However, while we observed that τ(b1) << τ(B0) for S3 = 0,
we now recover the intuitive result τ(b1) ∼ τ(B0) observed in fen-
chone23: chirality survives throughout electron emission from the
damped (relaxing) 3s state. We further observe that τ(b3) < τ(b1)

with τ(b3) ∼1.3 ps. As in fenchone 23, this latter timescale can
be assigned once again to rotational dephasing since camphor
has similar moments of inertia. We will come back to this loss
of anisotropy of excitation further. Finally, the angle-integrated
PECD, mainly monitored by b1, evolves with τ(PECD) ∼ τ(B0).
This comparison of S3(pump) =0 and ±1, reveals a strong pump-
polarization dependence of the temporal evolution of the PECD in
camphor and is the signature of an effect beyond a pure vibrational
dynamics.

The pump ellipticity induces a selective response of the
molecules randomly oriented within the sample. Only molecules
with an excitation dipole aligned along the polarization of the
pump will be efficiently excited, and subsequently ionized. For
S3 = 0, this results in an effective conical alignment along the
linear polarization while for S3 = ±1, this leads to an effective
planar alignment in the polarization plane. The PECD is known to
depend significantly on this effective alignment 27, and one expects
that its value increases for the strongest alignment. We indeed ob-
serve in Table 2 that S3=0 yields a higher value of PECD than
S3 = ± 1 does at short delays. The present values are similar to
the ones reported in previous experiments 14,15,26 using one-color
(2+1)-REMPI ionization schemes. In these experiments, the first
two photons are circularly polarized and allow to reach the inter-
mediate 3s state as in the present study. It should be further noted
that the 2D PECD images resulting from the (2+1)-experiments
are very similar to the ones presented here at t = 0 in (1+1’). This
similarity indicates that the molecular orientations selected by the
absorption of two circularly polarized photons looks like those se-
lected by the absorption of one linearly polarized photon. This
latter statement is confirmed by similar b2 and negligible b4 contri-
butions reported in (2+1) REMPI experiments 26. As time elapses
between excitation and ionization, the rotational distribution of
the molecules within the sample tends to be uniform and the influ-
ence of pump-induced initial alignment should vanish asymptoti-
cally – this is the rotational dephasing effect that can be monitored
only in a pump-probe scheme 35. However, we observe in Table 2
and Fig. 8, a noticeable difference at 4 ps between the PECDs with
S3 = 0 and S3 = ±1. Here again, there is something beyond,
or entangled with, rotational dephasing which tailors the temporal
evolution of PECD.

The analysis of the experimental results raises several funda-
mental questions. What is the origin of the isomerism effect in
PECD at short delay? How can we understand the dependence of
PECD decay on the pump polarization state in camphor? Does the
underlying mechanism involve the interplay between internal (vi-
brational) and external (rotational) degrees of freedom, and how
can it be extrapolated to the understanding of the isomerism effect
observed in the time evolutions of PECD in fenchone and camphor?

4 Model and discussion
Atomic units will be used throughout this Section unless otherwise
stated.

4.1 PECD and isomerism effect at short delays

We present in this Section the calculations we performed to under-
stand the origin of the isomerism effect observed in the angular
PECD of fenchone and camphor at short delays. In the framework
of (1+1’)-REMPI ionization, we consider non-overlapping pump
and probe pulses of respective durations Tpump and Tprobe and de-
layed by τ . Time t is referenced with respect to the time where the
pump field maximizes. We restrict our description of the interac-
tion to a (short) time range within which the nuclear structure of
the molecules is assumed to remain frozen. Furthermore, we as-
sume that the pump-induced excitation and the probe-induced ion-
ization, which both consist of absorption of one photon, are sudden
processes which can be described within the Franck-Condon ap-
proximation. Vibrational dynamics can then be factored out from
the transition amplitudes – they are described in terms of Franck-
Condon factors which do not need to be taken into account explic-
itly when only relative quantities such as PECD are computed36.

The photon absorption from low energy pulses can be fairly de-
scribed by first-order perturbation theory. The pump pulse, with
ellipticity S3, promotes the electron from the S0 ground state to
the 3s state whose population amplitude at time t ≥ Tpump/2 is,
for a molecular orientation R̂ in the laboratory frame:

aS3
3s (R̂, t) = idS0→3s · êmol

S3
Epump(ω)e

−iω(t−Tpump/2). (14)

ω = ϵ3s−ϵS0 is the energy difference between the 3s and S0 states,
and Epump(ω) is the spectral component of the pump pulse at fre-
quency ω. dS0→3s is the transition dipole between the ground and
the excited state in the molecular frame. This dipole, as well as
the energies ϵ3s and ϵS0 , have been computed using the GAMESS-
US quantum chemistry package 37 using Time-Dependent Density
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Table 2 Comparison of the REMPI-PECD, the VUV-PECD and the TR-P̃ECD of camphor at a total energy of photoionization around 9.3 eV and
analysed for the unique component of the PES at 0.60± 0.06 eV. The two last columns are for the chiral isomer fenchone for similar ionization. 23

1R,4R-(+)-camphor 1R,4S-(−)-fenchone
References 14 15 26 7 This work at 100 fs > 4 ps at 100 fs > 5 ps

Ionization scheme (2+1) (2+1) (2+1) VUV (1[S3 = 0/± 1]+1’) (1[S3 = 0/± 1]+1’) (1+1’)
b1 +0.025 +0.028 +0.026 −0.026 b̃1 = +0.03/0.014 −0.01/− 0.015 +0.057 +0.07

b3 −0.045 −0.048 −0.053 0 b̃3 = −0.06/− 0.05 0/0 +0.025 0

PECD +7.25% +8% +8% −5.2% P̃ECD = +9/ + 5% −1.94/− 2.9% +10% 14%

Functional Theory (TDDFT) theory38. The TDDFT calculations em-
ployed the CAM-B3LYP functional 39 and a 6-311++G∗∗ Gaussian
basis40 augmented with a set of diffuse Rydberg functions with
symmetries (s,p,d,f) and exponents (0.045, 0.015, 0.005), located
at the center of mass of the molecule. Note that the equilibrium
geometry of the molecule was previously determined using DFT
calculations with B3LYP functional 41,42 and 6-311++G∗∗ basis. In
Eq. (14), êmol

S3
is the polarization unit vector of the pump, êS3 , pas-

sively rotated into the molecular frame through êmol
S3

= R(R̂)êS3 ,
where R(R̂) is a rotation matrix acting on the usual Euler angles
(α, β, γ) which defines the molecular orientation R̂ in the labora-
tory frame 43.

A probe photon is subsequently absorbed and ionizes the
molecule from the 3s excited state. The population amplitude of
a continuum state defined by a wavevector kmol in the molecular
frame is then, for t ≥ τ + Tprobe/2:

aS3,±1(R̂,kmol, t) = iaS3
3s

(
R̂, τ − Tprobe/2

)
× dkmol · ê

mol
±1 Eprobe(ω

′)e−iω′(t−τ−Tprobe/2). (15)

The 3s state population amplitude enters the expression of the ion-
ization amplitude as initial condition of the ionization process.
Similarly as before, êmol

±1 is the polarization unit vector of the
circularly polarized probe pulse, passively rotated in the molec-
ular frame, and Eprobe(ω

′) is the spectral component of the probe
pulse, with ω′ = IE + ϵkmol − ϵ3s = IE + k2mol/2 − ϵ3s. dkmol

is the ionization dipole linking the exited state Ψ3s to the ingoing
continuum state Ψ−

kmol
, dkmol =

〈
Ψ−

kmol

∣∣∣r∣∣∣Ψ3s

〉
. The differential

ionization cross section is directly proportional to the square mod-
ulus of the ionization amplitude. It is then clear from Eqs. (14) and
(15) that this cross section does not depend on the time delay t.
Then, in a (1+1’)-REMPI scheme involving only one intermediate
state, the ionization cross section is stationnary within the assump-
tions we made: Franck-Condon approximation and related frozen
nuclear geometry for electronic transitions. Therefore, the expres-
sion of the ionization amplitude can be simplified by omitting all
time-dependent factors, yielding:

aS3,±1(R̂,kmol) = aS3
3s (R̂, t = Tpump/2)dkmol · ê

mol
±1 (16)

which does not include the unimportant spectral components of
the probe pulse. The calculation of the ionization dipole dkmol

involves a partial-wave expansion of the ingoing scattering state 44:

Ψ
(−)
kmol

(r) =
∑
l,m

ile−iσlΨ
(−)
kmollm

(r)Y m∗
l (θmol, φmol) (17)

where σl is the Coulomb phase shift for wavevector kmol and an-
gular momentum l, and (θmol, φmol) points to the spherical direc-
tion of electron ejection in the molecular frame. Ψ

(−)
kmollm

(r) are
spherical complex states, fulfilling ingoing boundary conditions.
Consistently with the partial-wave decomposition (17) of Ψ

(−)
kmol

onto spherical harmonics, the rotation of the unit polarization vec-
tor ê±1 in the molecular frame is expressed in the spherical basis
{êν}ν=−1,0,1 where the rotation matrix R reduces to its Wigner
D-form45, e.g. êmol

±1 =
∑

ν D
(1)
ν,±1êν . Inserting (17) into (16), one

thus obtains:

aS3,±1(R̂,kmol) = aS3
3s

(
R̂, t = Tpump/2

)
×
∑
lmν

(−i)leiσlD(1)
ν,±1(R̂)akmollmνY

m∗
l (θmol, φmol)

(18)

where akmollmν =
〈
Ψ

(−)
kmollm

∣∣∣r.êν

∣∣∣Ψ3s

〉
are the partial-wave ion-

ization amplitudes.

For a given molecular orientation, the cross section in the molec-
ular frame is then:

σmol
S3,±1(R̂,kmol) ∝

∣∣∣aS3,±1(R̂,kmol)
∣∣∣2

=PS3
3s

(
R̂, t = Tpump/2

)

×

∣∣∣∣∣∑
lmν

(−i)leiσlD(1)
ν,±1(R̂)akmollmνY

m∗
l (θmol, φmol)

∣∣∣∣∣
2

.

(19)

where PS3
3s (R̂, t = Tpump/2) is the population of the 3s state at the

end of the pump pulse whose ellipticity is defined by the Stokes
parameter S3. In the lab frame, the electron ejection is defined by
k = (k, θ, φ) with k = kmol. We thus apply a rotation from the
molecular to the lab frame to obtain the differential cross section
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Fig. 7 TR-PECD in 1R,4R-(+)-Camphor with S3(pump) = ±1 : (a) for
each delay t, A+1(Ekin, θ

′, t) images are now normalized to the maximum
of the corresponding S+1(Ekin, θ

′, t) images;
Time and energies dependencies of the coefficients B0, B2, B1 and B3

extracted from the symmetric and anti-symmetric images recorded with a
circularly polarized pump (b) S3=-1 and (c) S3=+1

in this latter:

σS3,±1(R̂,k) = PS3
3s

(
R̂, t = Tpump/2

)

×

∣∣∣∣∣∑
lmν

(−i)leiσlD(1)
ν,±1(R̂)aklmν

∑
µ

Dl∗
m,µ(R̂)Y µ

l (θ, φ)

∣∣∣∣∣
2

.

(20)

The target sample consists of a set of randomly oriented
molecules. The average cross section associated to the whole sam-
ple is thus:

PS3,±1(Ekin, θ, φ) =
1

8π2

∫
σS3,±1(R̂,k)dR̂ (21)

whereEkin = k2/2. Using algebra inherent to spherical harmonics
and Wigner rotation matrices 45, similar to the one employed e.g.
in32, one can further show that the differential cross section (20)
can be put into the form of eq. (1). In practice, the orientation
averaging (21) has been performed using a numerical quadrature
based on N -uniformly distributed orientations R̂i = (αi, βi, γi),
with i = 1, ...,N , and Euler angular spacing ∆α = ∆β = ∆γ =

π/24. Then,

PS3,±1(Ekin, θ, φ) =
∑
i

wiσS3,±1

(
R̂i,k

)
(22)

where wi are the integration weights.
Once the 3D cross section has been computed, we simulate
the 2D distributions collected on the VMI plane by integrating
PS3,±1(Ekin, θ, φ) along the TOF-dimension y perpendicular to the
detector plane:

PS3,±1(Ekin, θ
′) =

∫
PS3,±1(Ekin, θ, φ)dpy (23)

where θ′ is the polar angle in the VMI plane, used in the definitions
(2) and (8) of VMI images. The angularly-resolved 2D PECD is
then defined as:

PECD2D(Ekin, θ
′) = 2

PS3,−1(Ekin, θ
′)− PS3,+1(Ekin, θ

′)

Pmax
(24)

where Pmax is the maximum value of Pp,−1(Ekin, θ
′) +

Pp,+1(Ekin, θ
′) along θ′ for a given kinetic electron energy Ekin.

Using eq. (1), only enantio-selective terms appear in the expres-
sion of the 2D PECD:

PECD2D(Ekin, θ
′) =

4

Pmax
[B1,0(Ekin, θ

′)P 0
1 (θ

′)+ (25)

B2,−2(Ekin, θ
′)P−2

2 (θ′) + B3,0(Ekin, θ
′)P 0

3 (θ
′)+

B3,2(Ekin, θ
′)P 2

3 (θ
′) + B4,−2(Ekin, θ

′)P−2
4 (θ′)]

where P 2m
l (θ′) are projections of the real spherical harmonics

Y2m
ℓ (θ, φ) onto the VMI detector plane (see eq. (7)) and Bl,2m ≡
BS3,−1

l,2m to shorten the notation. The total, angularly-integrated,
PECD is defined as:

PECD(Ekin) = 4

∫ π/2

−π/2
dθ′ (PS3,−1(Ekin, θ

′)− PS3,+1(Ekin, θ
′))∫ π/2

−π/2
dθ′ (PS3,−1(Ekin, θ′) + PS3,+1(Ekin, θ′))

=
2
√
3B1,0(Ekin)−

√
7

2
B3,0(Ekin)

B0,0(Ekin)
(26)

which can be written as

PECD(Ekin) = 2b1(Ekin)−
b3(Ekin)

2
(27)
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Fig. 8 TR-PECD recorded with a circularly polarized pump pulse with S3=-1 (blue) and with S3=1 (red). The decay times as well as the converging
values are listed in Table 1. The data and fit in grey are the ones recorded with a linearly polarized pump from the Fig. 6 (a)

where b1(Ekin) =
√
3B1,0(Ekin)/B0,0(Ekin) and b3(Ekin) =√

7B3,0(Ekin)/B0,0(Ekin). Note that all coefficients Bl,2m with
2m ̸= 0 vanish in the expression of the angularly-integrated PECD
since

∫ π/2

−π/2
dθ′P 2m

l (cos θ′) ≡
∫ 2π

0
dφ
∫ π/2

0
dθ sin(θ)Y2m

ℓ (θ, φ) = 0

for 2m ̸= 0.

Calculations have been run for (+)-camphor and (-)-fenchone,
considering that (1+1’)-REMPI yields in both cases a photoelec-
tron signal centred about Ekin = 0.5 eV, as in the experiments.
In practice, the spherical ingoing states Ψ

(−)
kmollm

(r), involved in
the computation of akmollmν , are decomposed onto real states
ψkmollm(r) which are obtained by diagonalizing the coupled-
channel (multi-scattering) Schrödinger equation H0ψkmollm(r) =
k2
mol
2
ψkmollm(r). H0 is the unperturbed Hamiltonian. In the

TDDFT framework, the excited state Ψ3s only results from one-
electron excitations from the HOMO to virtual orbitals. There-
fore, we assume that the ionic core remains also frozen during
the transition from 3s to the continuum. Accordingly, H0 is an
effective one-electron Hamiltonian which can be decomposed as
H0 = − 1

2
∇+V where V is the effective potential of the ionic core

on the ejected electron. We employ an approximate description
of this potential, in terms of the so-called ElectroStatic Potential
(ESP) charges 46 which basically consists of non-integer charges
Zeff

i located on the nuclei of the molecule. The effective charges
are determined to fit the genuine potential on Van der Walls sur-
faces surrounding the atoms in the molecule according to :

V (r) = −
∑
i

Zi

|r −Ri|
+

∫
ρ(r′)

|r − r′|
dr′ ∼ −

∑
i

Zeff
i

|r −Ri|
. (28)

Zi and Ri are the real charges and locations of the nuclei while
ρ(r) is the ionic electron density.

The computed 2D PECD with S3(pump)=0 are shown in Figs.
9(a) and 9(b), respectively. The angular structure of the 2D PECD
associated to camphor is in excellent agreement with its experi-
mental counterpart, displayed in Fig. 4(a). Six lobes of alternating

Fig. 9 Theoretical angular PECD at t = 0 (a) in camphor and (b) in fen-
chone.(c) Decomposition of 3s-Rydberg state orbitals for camphor (blue)
and fenchone (red) as a function of l number at t=0.

sign are appearing along the photoelectron ring, which illustrates
the importance of anisotropic effects in the chiral asymmetric part
of the 3D differential cross section. These effects are quantified
by the ratio b̃3/b̃1 which is equal to −2 (see Table 2). The ex-
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cellent agreement found in camphor slightly deteriorates for fen-
chone. Even if the computed 2D PECD (shown in 9(b)) exhibits
a positive sign in the whole forward hemisphere, as in the experi-
ment displayed in 4(b), the computed PECD distribution is angu-
larly more structured. In fenchone, at the opposite of camphor,
the anisotropic part of chiral asymmetry (b3) is thus considerably
weaker than its isotropic part (b1) in both calculations and exper-
iments, but the isotropic/anisotropic relative sign is reversed. In-
deed while b3/b1 = −0.45 in the calculations, b̃3/b̃1 = +0.44 in
the experiment. The computed values of the angularly-integrated
PECDs shown in Fig. 9 are +5.7% and +5.6% in (+)-camphor and
(-)-fenchone, respectively. They are in reasonable agreement with
the measurements that yield +9% and +10% for the two respective
isomers. In the following, we rely on this experimental/theoretical
agreement of 2D PECDs to track the origin of the isomeric effect
observed between fenchone and camphor.
The 3D photoelectron angular distribution depends on three fac-
tors: (i) the anisotropy of the molecular spatial distribution in-
duced by the polarization of the pump in the primary excitation
process, (ii) the shape of the excited state orbital as initial con-
dition of the ionization process, and (iii) the structure of the chi-
ral continuum reached during ionization. As outlined above, the
chiral continuum is described in terms of ESP charges which are
obviously different in fenchone and camphor. However, we ran
some simulations where the continuum was described in terms
of hydrogenic wavefunctions in both isomers. These simulations
have yielded 2D PECDs in qualitative agreement with those of Figs.
9(a,b), still exhibiting very different angular shapes in both iso-
mers. This indicates that the structure of the continuum (iii) is not
primarily responsible for the isomeric effect. In our simulations,
both camphor and fenchone molecules are oriented such that the
3s ← S0 excitation dipole lies along the ẑmol direction in the
molecular frame. The pump, linearly polarized along x̂ in the lab-
oratory frame, thus leads to the same effective conical alignment
about x̂, so that (i) can be ruled out as the single source of iso-
meric effect. However, the dynamical alignment also determines
the preferential orientation of the intermediate 3s state as initial
condition of the ionization process. The influence of the shape
of the excited state orbital, whose orientation in the lab frame is
determined at the end of excitation, should thus mainly explain
the isomerism effect. In this respect, the isomeric effect observed
in usual one-photon XUV ionization experiments 7 is explained in
terms of isomer-dependent scattering of the escaping electron on
the chiral potential. Here this effect is strongly lowered since ion-
ization occurs from a Rydberg orbital whose diffuseness limits in-
teraction with the core chirality.

The excited state is directly involved in the defini-
tion of the partial-wave ionization amplitudes akmollmν =〈
Ψ

(−)
kmollm

∣∣∣r.êν

∣∣∣Ψ3s

〉
. These amplitudes are calculated employing

a partial-wave expansion of the excited state:

Ψ3s(r) =
∑
lm

Ψlm(r)Y m
l (θ, φ). (29)

The larger are the l-angular momenta involved in this decompo-
sition, the larger are the l′ momenta populated in the continuum

through akmoll
′m′ν because of the usual dipolar selection rules in-

herent to the r · êν operator. The angular momentum l′ in the
continuum controls the amplitude of the BS3,±1

ℓ,m coefficients deter-
mining the differential cross section (2) since |l′− l′′| ≤ ℓ ≤ l′+ l′′,
where l′ and l′′ are here both continuum momenta. Therefore,
an excited state whose partial-wave decomposition mainly con-
sists of one l-contribution will lead to a small BS3,±1

3,0 coefficient
while extended l-excited states are amenable to large anisotropy
coefficients. We estimate the l-contribution to the (normalized) 3s
excited state as:

Cl =
∑
m

∫ ∞

0

|Ψlm(r)|2dr. (30)

The Cl contributions are displayed in Fig. 9(c) for fenchone and
camphor. We observe that the l-distribution extends to larger l
in camphor than in fenchone, which basically explains the larger
BS3,±1

3,0 coefficient and related exacerbated anisotropy in the for-
mer isomer. We thus answer the first question raised in section 3:
in our (1+1’)-REMPI scheme, isomeric effects at short delays are
mainly due to the shape of the intermediate excited state.

4.2 TR-PECD and rotational dephasing at long delays

We now turn our attention to the time evolution of PECD in cam-
phor, with the aim to understand the mechanisms responsible for
the difference in the PECD decay observed for S3=0 and S3 = ±1 .
We also aim at understanding why the PECD switches sign around
t ∼ 1− 2 ps.

Taking into account the ps timescale involved here, we drew
from our description of PECD at short delays in the S0 equilib-
rium geometry and introduced in our model rotational dephas-
ing effects coupled to the effective alignment created by the pump
within the randomly oriented sample. Rotational dephasing con-
sists in describing the temporal evolution of the molecular ori-
entation, R̂(t), consistently with the temperature of the molec-
ular sample. Here, rotational dephasing is described classically,
as in47,48. At the end of the pump pulse, the molecular orien-
tation R̂(Tpump/2) = (α(Tpump/2), β(Tpump/2), γ(Tpump/2)) is
converted to the quaternion representation {qi}, with i = 1, ..443.
Rotational dynamics is then completely described in the represen-
tation in terms of the seven differential equations:

dq1
dt

dq2
dt

dq3
dt

dq4
dt

 =
1

2


q4 q3 −q2 −q1
−q3 q4 q1 −q2
q2 −q1 q4 −q3
q1 q2 q3 q4


−1

Ωx

Ωy

Ωz

0




dΩx
dt

dΩy

dt
dΩz
dt

 =


Iyy−Izz

Ixx
ΩyΩz

Izz−Ixx
Iyy

ΩzΩx

Ixx−Iyy

Izz
ΩxΩy

 (31)

where Ωi, with i = x, y, z, are the angular velocities along the
principal axis i of the molecule. The initial molecular distribu-
tion is represented by N (with N = 51 × 51 × 25) orientations
weighted by the transition amplitude aS3

3s (R̂, t = Tpump/2) (see
Eq. 14). For each weighted trajectory, Nv = 500 velocities Ωi are
choosen randomly to form a normal distribution centered around
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Ωi =
√

kBT
Iii

, where T is the rotational temperature and Iii is the
inertia momentum associated to the principal axis i. In camphor,
Ix,y,z = 1241, 1521 and 1639 amu.bohr2 for the S0 ground state
equilibrium geometry. The set of Ñ = N × 500 weighted tra-
jectories is propagated according to Eq. 31 until t = 5 ps. At a
given delay t, the Ñt orientations are extracted and quaternions
are converted back to Euler angles R̂j(t) = (αj(t), βj(t), γj(t)).
Ionization then occurs, and the differential cross section, averaged
on the Ñ orientations, is defined as:

PS3,±1(Ekin, θ, φ) =
1

Nv

∑
j

wjσS3,±1

(
R̂j(t),k

)
(32)

where wj , the integration weights, are identical for all the ve-
locities associated to a given initial orientation. The orientation-
dependent ionization cross section is adapted from Eq. (20):

σS3,±1(R̂j(t),k) = PS3
3s (R̂j(Tpump/2), t = Tpump/2)

×

∣∣∣∣∣∑
lmν

(−i)leiσlD(1)
ν,±1

(
R̂j(t)

)
aklmν

∑
µ

Dl∗
m,µ

(
R̂j(t)

)
Y µ
l (θ, φ)

∣∣∣∣∣
2

.

(33)

Importantly, we still do not account for vibrational dynamics -
the molecules remain frozen at their S0 equilibrium geometry. In
order to reduce the computational cost, the rotational temperature
has been set to 100 K in our simulations, which overestimates the
experimental one (∼ 10 − 30K). However, as shown in previous
studies49, this is not problematic and provides an appropriate il-
lustration of the impact of the rotational dephasing on the PECD.
In summary, at lower rotational temperature T , all the features
described below will occur but with a longer time constants.

The temporal evolution of the 2D PECD is shown in Fig. 10(a)
for S3(pump)=0. We observe that the angular structure of the
PECD, linked to a strong negative B3,0 changes drastically at
t ∼ 1.5 ps and vanishes for t > 3 ps. Asymptotically, all but
BS3,±1

1,0 coefficients are zero in the expression of the differential
cross section. This is fully consistent with the fact that at 3 ps,
the distribution of molecular orientations is then uniform. There-
fore ionization occurs from a randomly oriented 3s-state, yield-
ing a PECD shape similar to the well-known one-photon ionisation
(VUV-PECD restricted to b1). Fig. 10(a) also includes the simu-
lated images for S3 = ±1. We observe then that the loss of PECD
angular structuring decreases faster in that case, with the 6-lobes
patterns hardly visible for t ≳ 1 ps. In conclusion, the effective
molecular alignment does not impact identically a PECD undergo-
ing a rotational dephasing. However, this sensitivity vanishes as
time elapses beyond ∼ 3 ps resulting in 2D-PECD images almost
identical for S3 = 0 and S3 = ±1.

We present in Fig. 10(c) the angularly-integrated TR-PECD of
these images for S3=0 (line) and S3 = ±1 (dots). The PECD
reverses sign about t ∼ 1 ps. This is quite consistent with our ex-
periments where such a sign switch has been also observed (see
Table 2). However, while the magnitude of the computed PECDs
are in reasonable agreement with the experiments at t = 0, the
calculations overestimate it at long delays (∼ −7.5% vs ∼ −2%).

Fig. 10 Theoretical study of the influence of rotational dephasing in
camphor on (a) the 2D-PECD calculated in the S0 ground state geometry
for different pump polarization and as a function of the pump-probe delay,
(b) Same calculations but in the equilibrium geometry of the 3s Rydberg
state. (c) Evolution of angularly integrated TR-PECD, in percent, as a
function of the delay for linear (line) and circular (dots) pump polarization
for molecules in the S0 ground state equilibrium geometry (blue) and
molecules in the 3s Rydberg state geometry (red). In the inset are given
the 3s-Rydberg orbital l-decomposition for the S0 ground state equilibrium
geometry (blue) and 3s equilibrium geometry (red).

An immediate explanation for such a discrepancy could be that our
model neglects some dynamics such as the ongoing vibrational re-
laxation converging to the 3s-state equilibrium geometry. To par-
tially take into account such geometry change, we implemented
calculations where the ionization amplitudes and the moment of
inertia were computed at the 3s-state equilibrium geometry. The
results are shown in Figs. 10(b,c). Despite the little changes be-
tween the S0 and 3s equilibrium geometries – less than 3% of inter-
nuclear distances, the shape of the 3s state is significantly altered
between these two nuclear configurations. This has a drastic im-
pact on the 2D PECDs visible by comparing the Figs. 10(a,b) at
t = 0, for both S3 = 0 and S3 = ±1. For instance, in the 3s ge-
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ometry, the photoelectron asymmetries are backward whatever the
delay. We note also that the loss of PECD angular structuring takes
place on a shorter timescale compared to S0 geometry : the final
(b1) shape is reached as soon as t ∼ 1.5 ps. In conclusion, not only
the effective molecular alignment induced by the pump but also
the shape of the intermediate state are equally important for the
subsequent temporal evolution of the PECD. We show in the inset
of Fig. 10 that the l-distributions of the 3s state are indeed quite
different in S0 and 3s equilibrium geometries. This explains, ac-
cording to the conclusion of the previous section, the distinct mag-
nitudes and shapes of the PECDs associated to the different nuclear
geometries. Asymptotically, the angularly-integrated PECD com-
puted in the 3s equilibrium geometry (shown in 10(c)) is ∼ −3%,
which is closer to our experimental asymptotic values. Merging S0

results at short delays and 3s ones at long times could then provide
a temporal evolution of the TR-PECD qualitatively compatible with
our experimental measurements displayed on Fig.8.

However, a major shortcoming of our model appears in Fig.
10(c): contrarily to what the experiments have shown in Fig.8,
our simulations yield an angularly-integrated PECD which does
not depend on the polarization of the pump (within numerical
deviations due to the finite number of molecular orientations).
In practice, the computations indicate that the b1 and b3 coeffi-
cients, which define the angularly-integrated PECD according to
Eq. (27), do not depend on S3(pump). This last statement might
seem counter-intuitive since the angular patterns of the 2D-PECD
images shown in Figure 10(a,b) depend clearly on S3(pump). The
explanation is quite simple : these images include contributions of
projected spherical harmonics P 2m

ℓ (cos θ′), with 2m ̸= 0, which
depend on S3 but vanish as one performs the angular integration
to pass from the 2D PECD to its angularly-integrated form (see Eqs.
(25–29)). This explains why 2D-PECD images might depend on S3

while their integration leads to a same net asymmetry. We explic-
itly checked from a formal point of view that this is expected within
the framework of our model which employs the Franck-Condon ap-
proximation to model (1+1’)-ionization involving a single interme-
diate state.

On the other hand, our model does not include nuclear dynamics
which could lead to the experimentally observed S3-dependence of
the angularly-integrated PECD. Let’s introduce the basic equations
associated to these dynamics subsequent to the excitation process.
We consider Born-Oppenheimer molecular states Ψi,j(r,R) =

ϕi(r,R)χi,j(R) where ϕi(r,R) are electronic eigenfunctions and
χi,j(R) are vibrational states within the ith electronic surface.
First-order transitions from the ground (i = 0, j = 0) to the vi-
brationnaly excited (i = 3s, j) states lead to the formation of a
time-dependent vibrational wavepacket, after the pump ends:

ψ3s(R, t) =
∑
j

c3s,jχ3s,j(R)e−iϵ3s,j(t−Tpump/2) (34)

where ϵi,j are the total (electronic+vibrational) energies associ-
ated to Ψi,j(r,R). In the Franck-Condon approximation, the am-

plitudes c3s,j are:

c3s,j = −iEpump(ωj)

∫
dr ϕ∗

3s(r,R0)r · êmol
S3

ϕ0(r,R0)

×
∫
dR χ3s,j(R)χ0,0(R) (35)

where Epump(ωj = ϵ3s,j − ϵ0,0) and êmol
S3

are defined as in eq.
(14) and the electronic dipole

∫
dr ϕ∗

3s(r,R)r · êmol
S3

ϕ0(r,R) is
evaluated at the equilibrium geometry R0 of the molecule in its
ground state. This dipolar term thus consists of a global factor
which can be also factored out in the expression (34) of the vi-
brational wavepacket. In other words, nuclear dynamics do not
depend on S3 in the Franck-Condon approximation. However, our
Franck-Condon simulations do show that the 2D-PECD, projected
onto the VMI plane, depends on S3. This has to be related to the ef-
fective alignment (selection of molecular orientations according to
r · êmol

S3
) operated by the pump during the excitation process. This

anisotropy disappears at the level of angularly-integrated PECD, as
the usual b2-anisotropy remains hidden in measurements of total
cross sections.

Importantly, beyond the Franck-Condon approximation, the am-
plitudes c3s,j read:

c3s,j =− iEpump(ωj)×∫
dR χ3s,j(R)χ0,0(R)

∫
dr ϕ∗

3s(r,R)r · êmol
S3

ϕ0(r,R)

(36)

where ⟨ϕ3s|r · êmol
S3
|ϕ0⟩r is a function of R that depends on S3;

e.g., ⟨ϕ3s|r · êmol
S3=0|ϕ0⟩r (R) ̸= ⟨ϕ3s|r · êmol

S3=1|ϕ0⟩r (R). The elec-
tronic dipolar term cannot be longer factored out, so that both the
amplitude and phase of the vibrational wavepacket, i.e. the nu-
clear dynamics, now explicitly depend on the polarization state S3

of the pump. As a matter of fact, we have mimicked non-Franck-
Condon transitions by introducing two non-collinear dipoles in our
calculations. This amounts to a discretized version of c3s,j in eq.
(36) where

∫
dR →

∑
R1,R2

. Even if we did not include explic-
itly the vibrational wavefunctions, this allowed us to represent the
population of different regions of the 3s surface landscape, beyond
the Franck-Condon assumption. In practice, the first dipole has
been set to

√
0.7dS0→3s while the second one was

√
0.3dS0→3s

rotated in a direction perpendicular to the first one. The subse-
quent description of ionization has been made using S0 and 3s

nuclear geometries for R1 and R2, respectively. We then obtained
different angularly-integrated PECDs for S3 = 0 (+8.58%) and
S3 = ±1 (+4.87%), similarly to our experimental observations.
On the basis of these last simulations and previous discussions, we
conclude that non-Franck-Condon transition at play in the exper-
iments. Such non-Franck Condon transitions have already been
observed in standard VUV-PECD of methyloxirane 12, and in Pho-
toeXcitation Circular Dichroism (PXCD ) 50 involving a single inter-
mediate electronic state in camphor. Similar transitions could be
also at play in fenchone, but due to the weak b3, their fingerprint
is not as visible as in camphor.

It has to be noted that as soon as the intermediate excited state

14



is reached through absorption of n > 1 photons, the angularly-
integrated PECD does depend on the polarization state S3 of the
pump in the Franck-Condon framework. This can be already un-
derstood in a simple two-photon excitation scheme where the ab-
sorption cross section, averaged over the molecular orientations,
already depends on S3

51. This is highly beneficial to simulations
of multiphoton PECD using either linearly or circularly polarized
pump photons 32 since the vibrational dynamics, which can be fac-
tored out from the ionization amplitude, does not need to be ex-
plicitly taken into account.

In its present form, our model cannot explain in depth the
PECD time-transients observed in the (1+1’)-ionization process.
Since it employs the Franck-Condon approximation, it is reliable
for short delays and at asymptotic times where ionization oc-
curs as the molecules are in their S0 and 3s equilibrium geome-
tries, respectively (both regions are highlighted in Figs. 10(a,b)).
However, the model allows to understand how the rotational de-
phasing, coupled to the effective alignment induced by the pump
and the shape of the intermediate state involved in the (1+1’)-
ionization scheme, influence drastically the temporal evolution of
the angularly-resolved PECD and can also result in a switch of the
PECD.

5 Conclusions
We have investigated the sensitivity of TR-PECD to isomerism
effects using (-)-fenchone and (+)-camphor as prototypical
molecules primarily excited in their 3s state.

At short delays, strong differences are observed in the angular
PECD between the two isomers. In order to understand these
differences, we have developed a theoretical model, based on
first order perturbation theory, where the nuclear geometry of the
molecules is frozen throughout the (1+1’)-photon absorption. We
have thus been able to highlight the crucial role of the shape of the
intermediate excited state on this isomerism effect.

At longer delay, using a linearly-polarized pump, we found that
while no isomeric-dependent features appear in the TR-PES, the
TR-PECD is drastically different between the two isomers, in both
its time transients and temporal evolution of angular structure. We
varied the pump polarization, going from S3 = 0 to S3 = ±1, in
order to decorrelate the different degrees of freedom. Indeed, in
the context of a Franck-Condon vertical transition, the vibrational
excitation in the 3s state is expected to be the same in both cases,
and only the spatial molecular anisotropy, due to excitation, dif-
fers. The measurements showed that the time constants associ-
ated with the chiral observables are very different for S3 = 0 and
S3 = ±1 in camphor. The PECD decays much faster for S3 = 0

than for S3 = ±1, its time dependence being in the latter case close
to the behavior observed in fenchone. We extended our model to
take into account the rotational dephasing of the molecular ori-
entations after the excitation step. The temporal evolution of the
2D PECD showed that the rotational degree of freedom is coupled
to the pump-induced molecular alignment and to the shape of the
intermediate excited state. However, the model yields identical
integrated PECDs for S3 = 0 and S3 = ±1, contrarily to the ex-
periment. We traced back the root of this behaviour by the use of
the Franck-Condon approximation. Therefore, we inferred that the

experiments reveal that non Franck-Condon transitions are at play
in the (1+1’)-interaction scheme. The coupling of such vibrational
dynamics to the external (rotational) degree of freedom is con-
sistent with PECD time-transients depending on S3 and isomeric
effects between fenchone and camphor.

The influence of the loss of the anisotropy of excitation observed
here may have consequences for the high-resolution REMPI-PECD
measurements, which aim at addressing as a resonant intermedi-
ate state a given vibrational level of the electronic excited state. Re-
cent measurements have shown that using nanosecond pulses, the
REMPI-PECD was rather insensitive to the intermediate vibrational
levels16. As illustrated in Fig. 10, using shorter pulses may enable
keeping the benefit of the anisotropy of excitation and reveal the
influence of vibrational excitation. A trade off between spectral
resolution and a laser interaction duration shorter than the lost of
the anisotropy could be obtained by using tunable fourier-limited
picosecond pulses.

The high sensitivity of TR-PECD to molecular alignment revealed
by our study indicates that resolving the 3D distributions of the
PECD would provide more spectroscopic information, through the
evolution of the anisotropy of the chiral response. The contin-
uous variation of the degree of ellipticity of the exciting radia-
tion, in a multiphoton pump scheme, would allow manipulating
the anisotropy of excitation and the resulting dichroism20. Fur-
thermore, resolving the molecular alignment through coincidence
electron ion imaging 52 would enable drawing a complete picture
of the relaxation dynamics, even if such a goal remains experimen-
tally challenging in terms of acquisition time of the measurements.

Last, broadening the range of pump and probe photon ener-
gies would enable investigating other important processes, such
as the vibrational relaxation subsequent to inner-shell electronic
excitation, the photorelaxation of reactive excited states such as
π∗ states, or to track the chiral response around conical intersec-
tions. Such studies would make TR-PECD an observable of choice
to answer fundamental questions in photochemistry.
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