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Abstract

The NonNegative Canonical Polyadic Decomposition (NN-CPD) is used in many fields such as
in chemistry, biology and medicine. The data coming from these fields can be dynamic which
lead to use real-time or “online” decomposition. Even though there are a variety of online tensor
decomposition algorithms, the main assumption of all these algorithms is that the rank of the
decomposition is known and/or does not vary over time. However this should not be the case in
experimental conditions. In this work, we propose three algorithms to compute the online NN-
CPD based on sparse dictionary learning for tracking chemical components in water by using
a set of Emission and Excitation Matrices (EEMs) of fluorescence. The methods developed in
this work is not limited to this application field and it addresses the major challenges posed by
the variation of the CPD rank in real-time. First, the algorithms take into account the unknown
factors and the variation of tensor rank. Second, previous extracted information are used to
decompose upcoming new tensors. In addition to the development of these algorithms, one of the
contributions of this paper is the real-time acquisition of fluorescence data in a semi-controlled
environment. These algorithms were applied on these real datasets and compared to state of the
art algorithms.
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1. Introduction

In the last decade, the Canonical Polyadic Decomposition (CPD) also known as PARAFAC
(PARAIllel FActor analysis) has been successfully applied in many fields, including psychomet-
ric [14], neuroscience [8], chemometric [3], computer vision [46], data mining [50], biomedical
image processing [19], hyper-spectral imaging [54], telecommunications [30], etc. The data
from these fields can be put in a multidimensional data array (or tensor). Then, the CPD al-
lows to decompose this array into factors that can be interpreted by the user. Indeed one of
the main advantages of this approach is that the CPD is essentially unique under some mild as-
sumptions [20]. In environmental sciences the CPD of three-way fluorescence data tensors can
be used in order to characterize fluorescent dissolved organic matters (FDOM) in natural wa-
ter samples [41, 29, 38, 28]. Fluorescence data tensors are built by concatenation of 2D signals
called Emission and Excitation Matrices (EEMs) of fluorescence measured from a set of samples.
Each entry of an EEM corresponds to the fluorescence intensity of one sample at a given couple
of excitation and emission wavelengths. At low concentrations, the non-linear model based on
the Beer-Lambert law can be linearized and it then follows the CPD model [21]. The CPD of the
fluorescence data tensors allows to recover the individual emission and excitation spectra of the
fluorophores present in the different samples along with their respective contributions.

We can notably cite some of algorithms to compute the CPD: Direct TriLinear Decomposition
(DTLD) [39], SEmi-algebraic framework for approximate CP decompositions via SImultane-
ous matrix diagonalization (SECSI) [36], DIrect AlGorithm for canonical polyadic decomposi-
tion (DIAG) [24], Alternating Least Square (ALS) [14], Hierarchical Alternating Least Square
(HALS) [5, 9, 34], Alternating Direction Method of Multipliers (ADMM) [23] and also some
traditional descent algorithms adapted to the CPD problem [51, 17, 43].

In several applications such as fluorescence spectroscopy the decomposition factors have phys-
ical meaning and are known to be nonnegative. Indeed, in most algorithms nonnegative con-

straints can be easily implemented using penalty terms or a projection approach [15, 51, 49, 37,



49, 23]. Most of these algorithm suppose that the rank of the decomposition, that is, the pertinent
number of factors is known. However, in many practical situations, this value is unknown and
we can only assume an order of magnitude while an incorrect choice of this value can severely
affects factor estimations [2]. Two opposite approaches are traditionally used to deal with this
issue, namely rank estimation methods and overfactoring. Rank estimation consists in estimat-
ing the appropriate CPD rank before the decomposition. Among these methods, we can cite the
CORe CONsistency DIAgnostic (CORCONDIA) [4], split half validation [41] or AutoTen [32].
Though these approaches do not always allow to clearly decide between several possible rank
values. In the opposite, overfactoring can be seen as a posteriori rank estimation method because
the appropriate rank value is deduced from the CPD computation. In this approach an overesti-
mated value is chosen (that is supposed to be greater that the actual rank) and CPD algorithms
are designed to produce extra factors with null contributions [2]. Such algorithms usually resorts
to sparsity constraint upon the factors [48, 6, 13].

At this stage, we have talked about offline CPD. In the particular context of fluorescences spec-
troscopy and environmental sciences, this situation can correspond to a sampling campaign and
the following scheme: obtain K samples, measure the K corresponding EEM, correct eventual
non-linear effects, build a 3 way array with the K EEMs on the last mode and lastly compute the
CPD as in Figure 1.

However, in this work we are interested in an other practical situation, called online CPD where
the data tensor grows with time and its decomposition have to be updated regularly [31]. We now
precise the concept of online CPD in the particular context of fluorescence data and environmen-
tal sciences but it also applies in other scientific fields [1, 12]. First, we assume that the data
tensor is a 3-way array that gathers on its last mode a collection of EEMs and that new collec-
tions of EEMs called sub-tensors are recorded regularly as illustrated in Figure 2. A sub-tensor
is thus defined as a collection of consecutive EEMs measured during a given time interval. Of
course, in practice some fluorophores can appear and/or disappear from one sub-tensor to an-
other. As a consequence the number of fluorophores in the sub-tensors varies with time so that

the CPDs of two successive sub-tensors do not necessary share the same rank and factors. More-



over, these variations are unknown. The problem of rank variation has already been addressed in
the context of online Nonnegative Matrix Factorization (NMF) in [25, 16]. In this context, NMF
would allow to treat each new EEM acquisition as 2D signal. However, doing so, we would also
loose the uniqueness properly of the CPD (NMF factors are not necessary unique).

On one hand, the goal of online CPD is to update at each new time interval the CPD factors
previously estimated without performing the CPD of the whole tensor and taking into account
possible disappearance and/or appearance of some factors. Indeed, real-time performances are
required i.e the data processing time must be lower than the data acquisition time. On the other
hand, we can reasonably assume that consecutive EEMs share several common factors. Thus
we may not want to decompose each new sub-tensor independently in order to improve the fac-
tor estimation. To the best of our knowledge a few approaches have been proposed to compute
online CPD. In [31], the authors introduced two adaptive algorithms: Simultaneous Diagonaliza-
tion Tracking (SDT) and Recursive Least Squares Tracking (RLST): SDT incrementally tracks
the SVD of the unfolded tensor. RLST recursively updates the decomposition factors by min-
imizing the mean squared error. We can also cite the grid-based tensor factorization algorithm
(GridTF) [35] whose the principle is to partition the large tensor into a number of small grids
and to use ALS algorithm in parallel to decompose the grids. More recently in [55] authors pro-
posed OnlineCP which is a recursive computation of the factor matrices based on ALS. In [45],
the authors proposed a non-linear Least Squares Updating of the CPD based on a non-linear
least squares algorithm to update the last factor matrix (C matrix) in an alternate way. In [11],
the authors introduced SamBaTen and they assume that they receive slices on the third mode,
which in turn have to add new rows to the C matrix and update this matrix with a diagonal scal-
ing matrix and a permutation matrix. Lastly, in [12], the authors developed an approach name
OCTen based on parallel and compressing incremental decomposition method. However, all the-
ses approaches assume that the rank is known and does not vary with time. In [33], the authors
introduced an approach called SeekAndDestroy where the sub-tensors are treated independently
using AutoTen for rank estimation before each CPD. Eventually, in [44] authors introduced an

online Tucker decomposition with a fixed rank. In this paper, we propose an approach based on



sparse dictionary learning to compute the NonNegative Online CPD (NN-OCPD) and to be able
of handling unknown rank variation over time. We consider the most general case and we make
no assumption about these variations. The main idea of the proposed approach is thus to combine
dictionary learning with LASSO [42] in a simple but appropriate way for NonNegative Online
CPD. The factors of the two fixed modes are selected within two dictionaries. Both dictionaries
are learned and updated throughout the online process. The appropriate number of selected vec-
tors in the dictionaries (i.e. the CPD rank) is deduced from a sparsity constraint on two atoms
matrices. A second idea is then to exploit the recursive relationship between the gradients of the
cost-function throughout the online process, as proposed in [44] in an other context, in order to
speed up the optimization process since we are looking for a fast algorithm. We have derived
from these two ideas three different algorithms. These mainly differ in the way the dictionaries
are updated from one sub-tensor to another. We then propose a laboratory experiment in order to
obtain real online fluorescence data with rank variations in a semi-controlled environment. This
experiment allowed us to evaluate our approach and provide comparison results with state of the
art techniques.

The paper is organized as follow. In section 2, the notations are introduced, some basic def-
initions are recalled and the problem of online CPD in the particular context of fluorescence
spectroscopy and environmental sciences is formally described. In section 3, the new proposed
approach is depicted in the form of three algorithms to compute the nonnegative online CPD of
a third order tensor. Two of these algorithms were briefly introduced in a previous conference
paper [40]. In section 4, an experimental design is proposed to evaluate the approaches. Results
and comparisons with reference approaches are provided and discussed in section 5. Section 6

concludes.

2. Problem Formulation
2.1. Fluorescence tensors

The main notations used in this paper are presented in Table 1.

In all the following, fluorescence tensors and sub-tensors are thus denoted with letter 7~ and are
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Figure 1: Example of the rank 4 CPD of the fluorescence tensor.
Symbols Definition
T,Tn Tensor, Sub-tensor at time ¢,,
A, AT, a,a | Matrix, Transposed matrix, Column vector, Scalar
1r A matrix (R, R) of 1
R Set of Real Numbers
[l.llF, ||-|l1,1 | Frobenius norm, L; ; norm
A>0 Means that all the elements of matrix A are nonnegative
R,.R, Physical rank of the sub-tensor 7 ,,, CPD rank of the sub-tensor
©) Khatri-Rao product

Table 1: Main notations used in the paper.




of size (I x J x K') meaning that 7~ gather K EEM of size (I x J) on its last mode. All non-linear
effects such as diffusion scatters or inner filter effects are supposed to have been corrected so that

considered the fluorescence tensors can be well modeled by a low rank (nonnegative) CPD.

2.1.1. Offline Canonical Polyadic Decomposition of a fluorescence tensor
The nonnegative CPD model of a noisy fluorescence tensor 7 is given by:
R

Vi, gk, Tijn=~TijxAB,C)= ZAirBjerr )

r=1
Where matrices A € ]RerR, Bc RiXR, Cce ]Rf *R are the so-called factor or loading matrices.
In the considered application, these matrices are usually full column rank so that the Kruskal
condition [20] is fulfilled and guarantees that the decomposition is unique up to trivial scaling
and permutation indeterminacy. Columns of A, B and C define the CPD factors and R is the CPD
rank. When the CPD factors have a physical interpretation as it is the case here, it is important

to distinguish between two particular values of R:

* The maximal value of R for which all the factors have a physical interpretation. We call
this value the physical rank R of T In other words, R corresponds to the the number of
fluorophores that contribute to the fluorescence signal in at least one EEM of 7. In most
real world application, this value is unknown and this is the case here. If we choose the
correct value of R (thatis R = fi) then the column of A, B and C can be interpreted as:

the excitation, emission and the contributions matrices respectively.

* The minimal value of R for which the Eq. (1) is exact. This value defines the tensor rank.

Due to the noise, it is usually much greater than R and it is useless here.

In order to compute the factor matrices of 7 for a given R, most algorithms aim to minimizing

the squared Fuclidian distance E of the reconstruction error. If the nonnegative constraint is

taking into consideration, the offline CPD problem is thus given by:
min { E(A, B,C) = |T - T(ABC) |} }

)
st.A>0,B>0,C>0



2.1.2. Online Canonical Polyadic Decomposition of real-time fluorescence measurements

In the online case, tensor 7~ can be seen as a collection of sub-tensors 7T, of size (I, J, K,,),
recorded at various consecutive time intervals. In the simplest case (no overlapping), 7, gathers
on its last mode the EEMs measured between time intervals ,, and ¢, 1.

However, one may want to build sub-tensors with an overlapping and in this case 7, also con-
tains the last n EEMs of T,,_; as explained on Figure 2. Sub-tensor overlapping should help the
factor estimations but then the online decomposition becomes slower because we find ourselves
with a larger number of sub-tensors.

As explained in the introduction, some fluorophores can appear and/or disappear between two
consecutive time intervals. For instance, when monitoring chemical components in a natural
marine environment, fluorophore appearance and disappearance can be explained by sea currents
or pollution events, natural degradation...Therefore, the physical rank of the sub-tensors can vary
with time as illustrated on Figure 3. In the following, the physical rank sub-tensor 7, will be
denoted ]?in The online CPD problem with rank variation has been clearly described in [33].
It thus consists in solving Eq. (2) for each sub-tensor T-,,. However, here, we consider that ﬁn
is unknown and has not been estimated previously and the factor matrices are nonnegative. We
speak of: NonNegative Online Canonical Polyadic Decomposition (NN-Online CPD). In order
to reduce the computational costs and improve the estimation of the factors one can take benefit
of the redundant information in consecutive sub-tensors. As a consequence, the computation of

the factor matrices of sub-tensor 7, will consist in updating the factor matrices of sub-tensor

Tn-1.

3. Three algorithms for computing the Nonnegative Online Canonical Polyadic Decompo-
sition

We propose here 3 algorithms to solve the NN-Online CPD problem introduced in the previous

section. These algorithms share the same approach in order to deal with the unknown rank

variations. This approach mainly consists in looking for the two factor matrices, corresponding

to the modes which do not increase over time, as a product of a dictionary matrix and a sparse
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Figure 2: Example of splitting a set of observations into sub-tensors 7T ,,. a- Case with data overlapping. b- Case with
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Figure 3: Example of online fluorescence data with rank variation. Plotted lines in the bottom subfigure correspond
to the evolution of the contribution (arbitrary units) of the CPD factors.



atom matrix. The atom matrix allows to select the appropriate factors in the dictionary matrix
while canceling the others.

Furthermore, we distinguish between an offline and an online step. The offline step can be seen
as an initialization step performed at time g, that is, after the first acquisition. This step is

common to all the three proposed algorithms and it is described in the next subsection.

3.1. Offline step: NN-CPD of T g

In this step we aim at computing the NN-CPD of the first sub-tensor, acquired before time ¢y and
thus denoted 7 o. The value of ﬁo is unknown but we suppose that we know a value R so that

n, én << R. We then want to compute the CPD of T but we look for matrices A and B as

the product of sparse dictionaries D# and D? by atoms V4 and VZ respectively:

A =D*V4and B =D?V?Z, 3)

where D4 and D? are of size (I x R) and (.J x R) respectively and V4 and V? are (R x R).
We expect that D4 and D® contain R true factors among their columns along with R — R factors
without physical meaning. We thus expect that VA and V' have R — R null columns and that
the others columns form generalized permutation matrix. For instance, for R = 4 and Ry =2

we could have ideally:

2 9 1 11 18 0 22 0
5 7 4 13 09 0 0 0 45 0 26 0
o 10 21 3 4 0 000 9 0 8 0

A =D4VA = _
2 1 6 3 0 00 0 18 0 6 0
4 0 2 5 0 020 36 0 10 0
2 7 5 9 18 0 18 0

Thereby the number of non-null columns of A or B gives a posteriori estimation of EE). A similar
problem has been studied in depth by Cohen and Gillis in [6] for the case in which the dictionary
is known and the atom is a selection matrix. We thus want to promote the sparsity of matrices

VA4 and V5. In this purpose, we will aim at minimizing their Ly norm. L1 norm is classically

10



used to promote the sparsity [22] since it is more tractable than the L o norm. It has been used
in similar contexts in [51, 37, 48, 6]. It should be noted that contrary to most CPD algorithms
with sparsity constraint, we do not apply the constraint directly on the factor matrix but on the
atom. This is why we are not trying to minimize the column rank but to promote the appearance
of zeros in the whole matrix. We therefore favor here the L1 ; norm instead of the mixed norms
such as in [13].

In other words, we aim to solve the following problem for 7~ = T :

min { £1(D4, V4, D? VP C)} st. DA, VA DS VE C >0

where By = [T = T(DVADPVE, O} + al V11 + [ V7 ¥
with o > 0 a penalty term.
We call this approach Sparse NonNegative CPD (SNNCPD).
In order to solve Eq. (4) we propose here to resort to a Stochastic Gradient Descent (SGD)
algorithm called Nadam [7]. Nadam is a variant of Adam that has been shown to be less sensitive
to the choice of the step size at each iteration. The main idea of Nadam optimizer is to rewrite the
update of the matrix to be minimized in a conjugate gradient way with momentum incorporation.
The goal is to avoid getting stuck in a local minimum during the optimization process. Details
of the Nadam algorithm are given in supplementary information O (SI 0).
Here we rely on an adaptive step size described in [26]. Note that SGD algorithms had already
been used to compute the CPD in [47, 10, 18], including the CPD of fluorescence tensors [38]. In
order to ensure the nonnegativity of matrix entries, all the element of matrices D4, D5, C, V4

and VB are projected on R at each iteration [52]. We can thus differentiate the L1 ; norm and
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the gradients with respect to the different variables are given by:

ggz = (DT = DAVALA) LA + ol g

S~ (") (X” ~ DPVELA) (L) + alnn

8852 = (T - DAVALYH HLAVYT (5)
S~ (TP - DPVELE) P (V)T

2o - (¢ - o))

Matrices T4, T5, T are obtained by unfolding the tensor ‘7~ with respect to the first, second
and third modes respectively. With L4 = C © (DPV?), L = C ® (DAV4) and L¢ =
(DBVE)® (DAVA4). At the beginning of the minimization process, V4 and V& are initialized
as the identity matrix while D“ and D® and C are initialized with nonnegative random values. It
should be noted that it is possible to use more sophisticated approaches to solve our constrained
optimization such as ADMM [25] used for online matrix factorization or APG [51].

The different steps of SNNCPD are summarized in Algorithm O.

Algorithm 0 Sparse NonNegative Canonical Polyadic Decomposition (SNNCPD). Offline step
(initialization)
e Input: 7, R overestimated
while a convergence criterion is not reached do
Update the dictionaries D and D using Nadam optimizer
Update the atoms VA and VB using Nadam optimizer
Update the mode C using Nadam optimizer
end while
* Output: D,,D;,,C,V,, V,

3.2. Online step, algorithm 1

The online step consists in computing the factors of the CPD of 7T, from those of T ,_1. For
this first algorithm, we consider that the factors of 7,1 were correctly estimated and we only
take care of eventual factors appearances and disappearances. As a consequence, we first set
Dﬁ = A,_1and Df = B,,_1 as initialization before the optimization process. Then, Eq. (4)

is solved for 7~ = T, in the same way than in the offline step. However, instead of updating

12



the entire matrices, we now keep the non-null columns of D4 and D? unchanged throughout
the optimization process. We have thus R — R,, null columns to optimize. For instance, if

En_l = 3 we have:

R
fixed entries optimized entries
—
A11 A12 A13 o7
A21 A22 A23 7.7
DA=A, | =
App A A 70007

Indeed, the fixed columns correspond to the factors previously estimated. If one of these fac-
tors has disappeared at time ¢,, we should then obtain a zero in V4 and VZ. Combined with
SNNCPD for the offline step, we call this first algorithm Online Sparse NonNegative CPD 1
(OSNNCPD 1). The different steps are summarized in Algorithm 1. In order to into account
the permutation indeterminacy, after each sub-tensor decomposition, the columns of matrix B
(associated with the emission spectra) are permuted so that the positions of the maxima of each

column are sorted in ascending order. This permutation is then applied to modes A and C.

Algorithm 1 Online Sparse and NonNegative CPD 1
* STEP 1: Initialization phase
Input : T, R overestimated
Solve Eq. (4) with T~ = T using Algorithm 0 (SNNCPD)
Compute matrices Ay and By using Eq. (3)
Output : Ag and By and Cy
* STEP 2: Online phase
Input : T, and A,,_1,B,_1
Initialize DA = A,,_;, D2 =B,,_;
Fill the null columns of D? and DB by random numbers, exclude the others columns
from the optimization problem Eq. (4) and solve it for T = T,
Update current factor majm‘ces :A,, = D4AV4 and B,, = DBVFH
Output : A,,,B,,C, and R,
* STEP 3: Return to Step 2 with n=n+1

13



3.3. Online step, algorithm 2

For this second algorithm we consider that the factor estimated at time ¢,, (from 7 ,,_1) can be
improved and we thus choose to update the whole matrices A and B. We first replace the null
columns of A, _; and B,,_; by columns of random numbers. Then, we compute A, and B,

thanks to linear combination of the entries of A,,_; and B,,_; and we select the updated factors

A, =U}A, ;V2ad B, = USB, VP (©6)

U# and UZ are two square matrices of sizes I and .J respectively. With respect to the previous
algorithm, UﬁAn_l and the UPB,,_; play the role of the updated dictionaries. While Vfl‘ and
V5 matrices are still sparse atoms. Therefore the optimization problem becomes:

min { B>,(UZ, VL UE VB C)} st UL, UE C,VE VE >0
7)
1 ~ (

where By = _[|T — T(Up A1V UPB, VP O)|F +al Vil + o[V i
It is solved in the same way than the offline minimization problem using the Nadam algorithm.
This second algorithm, called Online Sparse and NonNegative CPD 2 (OSNNCPD 2) is more
flexible but has a higher numerical complexity, since we have more parameters to optimize. The
different steps are summarized in Algorithm 2. The permutation indeterminacy between the sub-
tensor is solved in the same in OSNNCPDI1. The expression of the gradients with respect to the
different variables can be easily deduced from the expressions obtained in the offline step and

are given in Algorithm 2.

3.4. Online step, algorithm 3

This third algorithm is inspired by the approaches proposed in [27, 44, 55] for accelerating
various online decomposition. In [27], authors deal with online matrices decomposition. In [55]
it has been extended to online tensor CPD but it does not take into account the rank variation
issue. While, in [44], authors focus on the Tucker decomposition. As in [44], we now want that
the factor that we are looking for, at time ¢, 1, describe correctly all the sub-tensors measured

previously and not only 7,,. We thus have to modify our cost function and we now consider the

14



Algorithm 2 Online Sparse and Nonnegative CPD 2
* STEP 1: Initialization phase
Identical to the initialization of the Algorithm 1 (SNNCPD)
* STEP 2: Online phase
Input : T, and A,,_1,B,_1
Fill null columns of A,_1,Bn_1 by random numbers and Solve Eq. (7) for T =T,

with :

Sk = —(UAA,) (T} = UAA, 1 VAZ ) Z) + alrr

5 = —(UPB, ) (T, —U”B,_ 1VBZ(TQ))Z +alpp

Sox = ~(T() — UM A VPZ)Z0) (V)T (A1)

50F = (T‘]KI—UBBn 1VPZ5)Z)(VE) (By1) '

%Ec2 - —(Tf{)ﬂ CZ( ))Z(3)

Where :

Za) = Co (UPB,_1V5); Zs) = Co (UAA,_1VA) and Zz) = (UPB,_1 V) @

(UAA,_ VY

Update current factors matrices : Ay, and By, using Eq. (6)
Output : A,,,B,,C, and R,

* STEP 3: Return to Step 2 with n=n+1

following minimization problem:

min { E3(D4, V4, D? VP C)} st. DA, VA DE VE C>0
1 1 - ®)
where By = - —— 2 S| Ti = TiDAVADEVE, C)|[ + ol VA1 + ol V11
Note that at time £y (n = 0), the problem is equivalent to the SNNCPD problem of equation (4).
One may argue that this contradictory with our objective of updating the factors without con-
sidering the whole data set. Actually, this new cost function will allow us to derive updating
formulas for the gradient expressions of the dictionaries between two consecutive time intervals.
This is traduced by a recursive calculation of these gradients throughout the online step that dra-

matically speeds up the optimization process. Furthermore, we will see that these formulas only

imply the current sub-tensor 7.
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For the online step, let us define:

Pl = ZT;“L;“(VZA)T and Q2 = ZV;A(LZ‘A)T(L?)(VZA)T,

1=0 i=0
n n ©
PP =3 "TPLE(VE)Tand QF =Y VELP)(WE)(VE)T.
i=0 i=0
We can then easily show that (SI1)Vn > 0:
E P4  DAQA E PE  DBQB
0 3 _ n + Qn anda 3 _ n Qn (10)
oD4 n+1 n+1 oDB n+1 n+1

The crucial point here is that we can now use matrices P2 | and Q2 | (respectively PZ | and
QP ) to compute P/ and Q/} (respectively PZ and QP):
PI=PL TV @l = Qb e viarah v
P =P, + T/LI (V)T Q7 = Q7+ V/(L])TL)(Vy))T
During the online process, matrices P2 and Q! are computed recursively. At iteration k of the
optimization process, P;?_l and Q{;‘_l are updated by the matrices obtained at the iteration £ — 1.
Then, the gradients with respect to D* and D? are computed thanks to the unfolding matrices
of sub-tensor 7, (T2 and TZ) and the matrices P2 and Q?! obtained at iteration k — 1 using the
Eq. (11) while the gradients with respect to VA, VB and C are computed in a traditional way.
Regarding matrix C, no hypothesis on a possible link between C,,_; and C,, is done. We call
this algorithm Recursive Online Sparse NonNegative CPD (ROSNNCPD). The different steps
are summarized in Algorithm 3. Again, the permutation indeterminacy is solved in the same

way as in OSNNCPD1.

4. Experiment

It is quite difficult to simulate realistic noisy fluorescence data and several CPD algorithms that
works well on noisy simulated data fails in real or semi-real conditions [2, 40]. We call semi-real
conditions when the data tensors are built from real fluorescence measurement obtained from
known laboratory mixtures. This is the case of the experimental set-up that we describe in this

section and that allowed us to validate the proposed approach and compare the algorithms.
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Algorithm 3 Recursive Online Sparse NonNegative CPD

* STEP 1: Initialization phase

Identical to initialization of the Algorithm 1 (SNNCPD)
Compute P{', QS‘, P52, QOB using Eq. (9)

* STEP 2: Online phase
Input : n, T, A,_1,B,_1, Pﬁ,l, QA

n—1

Initialize DA = A,,_;,D? =B,,_1,

B B
Pn717 anl

while iter < iterMax or any other stopping criterion do

Compute I;g, Q,‘;‘, P2 QP using Eq
Compute s5% and 55%
Update the dictionaries DA and DP

.(11)
OBy e fine in Eq. (10)

with 2E3 and 2L using projected Nadam optimizer

oDA4 oDB

Update the atoms VA and VB using projected Nadam optimizer
Update the mode C using projected Nadam optimizer

end while

Update current factors matrices : A, = DAV4 and B, = DBV?E

Output : A,,,B,,C,,, Pﬁ, Qf,Pf, Q2B and R,

* STEP 3: Return to Step 2 with n=n+1

Pump
114 mL/min flow

Water

in

Raspberry

Reservoir

Mixer

- Pump
1 mL/min flow

Spectrofluorimeter

out

Outflow

Figure 4: Experimental device for online fluorescence data acquisition.
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4.1. Experimental setup

We made in laboratory series of injections of 4 well-known diluted fluorophores (Fluorescein
(F), Tryptophan (TRP), 5-sulfonic-8-hydroxyquinolein (5S8HQ) and Rhodamine (RHO)) at 1
g.L~! for each at regular and controlled time intervals in order to simulate the appearance and
disappearance of some fluorophores through the time. These fluorophores were chosen because
of their peak overlap characteristics and their good fluorescing ability. Fluorophores are injected
in a reservoir of water (V=26,8 L) with outflow controlled and with constant water renewal
(D=114 mL.min~'). Four pumps corresponding to the 4 fluorophores allowed to control the
injections. Pumps injections (volume and time delay) were controlled by a Raspberry Pi model
4 as it is shown in Figure 4. On top of the reservoir a mixer was used to stir all the volume.
Then the mixture was conveyed at 1 mL.min~" to the spectrofluorimeter for EEMs acquisition
at regular time intervals.

The EEMs were recorded with a spectrofluorimeter Hitachi F7000 with a quartz flow-cell with
1 cm of optical path using a pump (1 mL.min~"' flow). The PM voltage was 700 V' and the
scan speed was 30000 nm.min~!. EEMs were measured in the excitation wavelength range of
220 nm-650 nm (slit 10 nm) and in the emission wavelength range of 220 nm-700 nm (slit 10

nm). A 10 nm step size was used both in excitation and emission. Thus, EEMs size is (49, 44).

4.2. Calibration

The calibration step consists in computing the CPD of tensors containing several EEMs of an
unique fluorophore at different concentrations. The objectives are threefold: i. obtain reference
excitation and emission spectra of each fluorophore; ii. confirm the linear relationship between
the actual concentrations and the estimated profiles; iii. detect possible impurities and inner-
filter effects. A small volume v; of the fluorophore is injected in the water, the whole is mixed
and conveyed to the spectrofluorimeter for acquisition. The process is repeated to obtain the
known concentration range of each component. We should then obtain a tensor of rank R=1
corresponding to the injected fluorophore. The same protocol is repeated for each fluorophore.

Note that after each tensor acquisition, the system is totally cleaned in order to avoid fluorophore
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mixture. Furthermore, we ensure that the pH of the water does not vary during the acquisition
(pH = 6). We finally obtain 4 tensors of “pure” fluorophores.

Data processing is done under the progMEEF environment in Matlab !. Raman and Rayleigh
scattering are removed from each EEM numerically, according to the method proposed in [53]
combined with a non-linear 2D-filter.

A CPD of each calibration tensor is first computed using the nonnegative ALS algorithm [4] for
different rank values from 1 to 5 and we compute the CORe CONsistency DIAgnostic [4] for
each rank value. Then the CPD is computed with our SNNCPD algorithm with R = 5.

4.2.1. Background noise

A (nm)

Figure 5: Fluorescent background noise after isolated from the injected components.

For each of the 4 tensors both the CORCONDIA and SNNCPD indicate a physical rank of
R = 2 instead of the expected R = 1. Excitation and emission spectra of the extra-component
do not vary from one calibration tensor to another. In addition, its contribution is quite high
and constant. Moreover, excitation spectra, emission spectra and concentration profile of each
fluorophore were correctly estimated by the CPD, no inner-filter effects were observed. As a
consequence, the extra-component will be considered as a fifth fluorophore present in all the
measured EEMs. It will be referred as to the background noise. Its EEM spectrum is plotted in

Figure 5.

"http://woms18.univ-tin.fr/progmeef/
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4.3. Online fluorescence tensor acquisition

After the calibration step, 1000 EEMs were recorded online in order to evaluate the proposed
online CPD algorithms. Data acquisition parameters are the same as for the calibration step
and diffusion scattering are corrected in the same way. We then obtain a data tensor T~ of size
(49,44,1000). T is then split into 10 sub-tensors of size (49, 44,100) without overlapping

between the sub-tensors.

Sub-tensor 7, To | T1| T2 | T3 |Ta|Ts5|Te|T7|Ts| To
R, 3 4 5 3 5 4 5 4 5 5
RHO v |v |v |V |v |V |V |V |V |V
5S8HQ v (v |v |V |V |V |V |V |V |V
TRP X |V |V | X |V |V |V |V |V |V
F X X |v | X |V | X |V | X |V |V
Backgroundnoise |v |V |V |V |V |V |V |V |V |V

Table 2: The different sub-tensors 7~,, with the true rank.

Table 2 indicates the fluorophores present in each sub-tensor 7, along with the physical ranks
and the corresponding fluorophore. Recall that the background noise is not removed and it is

considered as an extra-fluorophore present in all the EEMs.

4.4. Estimation of the theoretical concentrations

Let us denote V the volume of the reservoir and C' the fluorophore concentration. The number
of moles N present in the constant volume Vj of the reservoir is thus equal to N = C'V{. During
an elementary time interval dt, an elementary volume dV of water and fluorophores have been
replaced by the same volume dV" of water. The corresponding variation of the number of moles
present in the new mixture is therefore given by dN = —CdV. The volume V{ remaining

constant we also have dN = V{dC. By combining the two previous relations, we obtain:

1
— ——CaV. 12
dc VOCdV (12)

The constant flow Dy of the water discharged into the reservoir is defined by:
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av

Dy = 2.
07t

13)

This yield to:
dC = —apCldt, (14)
where ag = %. Now let us denote CY, the fluorophore concentration at the injection. We can

thus express the variation of the concentration with time:

C(t) = CoH (t)el~20!) (15)

where H (t) is the Heaviside step function. We have then to take into account that EEM acquisi-
tion is not instantaneous. Let us denote At the acquisition time and ¢, the beginning time of the
acquisition of EEM k. We thus finally estimate the corresponding concentration C, by averaging

the variation in concentration from ¢, to ¢ + At:

tr+At
Cr = 1/ Coel~@0dt = o (1 — elmo0AD)e(=aotn)) (16)

4.5. Online CPD of the data tensor T

The proposed algorithms are compared with state of the art, namely SeekAndDestroy [33],
Block-Coordinate Variable Metric Forward-Backward (BCVMFB) proposed in [48], Nonlinear
Least Squares updating of the canonical polyadic decomposition (NLS) [45] and Robust Canon-
ical Polyadic Decomposition (R-CPD) proposed in [13]. BCVMFB and R-CPD are based on the
overestimation of the rank using the L; ; norm and mixed norm respectively. These algorithms
can be used in an online way by overestimating the rank at start and computing the CPD for
each new sub-tensor. NLS was chosen here because in [45], it showed better performances than
SDT and RLST. For the same reason [33], we used SeekAndDestroy rather than OnlineCP and
SamBaTen.

Then, three cases of data arrangement are considered: i. without data overlapping between two
consecutive sub-tensors, ii. 50% overlapping (due to the lake of space, this case is presented in
SI 2), iii. 90% overlapping. Three performance criteria are used for the evaluation. The first
criterion is the estimated values of the physical ranks. SeekAndDestroy, NLS, R-CPD include

their own rank estimation procedure (a priori for SeekAndDestroy and NLS and a posteriori for
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R-CPD). Regarding the others algorithms, the rank is estimated a posteriori by individuating the
non-null columns in the factor matrices. We consider that a column is null if its L ; norm is
lower than a threshold value. Here this value is set to 107°.

Secondly, after removing null columns of A, B and the corresponding columns of (A}, the esti-
mated factor matrices are compared with the true factors thanks to normalized root mean squared

errors defined as:

IA — Allr |B-Blr IC~Clr
Ep="——" FEp=-————and Ec = "———— (17)
IA]F 1Bl ICllF

Here, A, B, C are the estimated matrices. The matrices A, B were obtained from the calibration

step and matrix C from the Eq. (16). Our second criterion is the thus the mean error:

En = (Ea+ Ep + Ec)/3 (18)

It is supposed that the column is close to zero, if the sum of the elements of the column is zero
otherwise, the extra factors estimated are considered duplicate components. Among the dupli-
cated components, the components which have a strong correlation with the real components and
with a higher concentration are retained to compute the error. Thirdly, the relative reconstruction

quality of the whole tensor defined as:

Er (%) = 100(1 — w) (19)
lieaiba

In addition, we give in SI 2, the mean running times of each proposed. Algorithms are compared
for various overestimated rank: 7, 10 and 20. These values are used as an upper bound by all

algorithms.

5. Results and discussions

5.1. No overlapping case

5.1.1. Rank estimation
The case without overlapping is difficult to treat because the true rank can vary from one sub-
tensor to another. Table 3 shows the estimated rank for each sub-tensor by each algorithm in

comparison with the true rank R. Algorithms SeekAndDestroy and NLS allow to determine the
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3

3

3

3

Sub-tensor T,
True rank R

R=7

R=10| 3

SeekAndDestroy

R=20| 3

R=7

R=10| 3

NLS

R=20| 3

R=7

R=10| 3

R-CPD

R=20| 3

=7
R=10| 3

BCVMFB

R=20| 3

=7
R=10| 3

OSNNCPD1

R=20| 3

=7

R=10| 3
R=20| 3

OSNNCPD2

7

R
R

=10| 3
R=20| 3

ROSNNCPD

Table 3: Rank estimations in the no overlapping case.
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correct rank R for some sub-tensors but tend to underestimated the rank value for most sub-
tensors. Conversely, R-CPD and BCVMFB overestimate the rank for most sub-tensors. On
the other hand OSNNCPD1, OSNNCPD2 and ROSNNCPD find the correct rank for most sub-
tensors, especially OSNNCPD?2 finds the correct rank R for every sub-tensor and whatever the
CPD rank used. Using CPD rank R = 10, OSNNCPD1, OSNNCPD2 and ROSNNCPD give
the exact rank R for every sub-tensors. The rank overestimation observed with R-CPD and
BCVMEB can be particularly explained by the small threshold value that we used here to define
the null column in the estimated factor matrices. However, this also indicate that our algorithms
are less sensible to this value and that the factors with the smallest contribution can be clearly

identified as extra factors.

5.1.2. Mean error on factors

MSE: rank=7 MSE: rank=10

Sub-tensor index Sub-tensor index

MSE: rank=20

R-CPD

--~-BCVMBF
—OSNNCPD1
OSNNCPD2

Mean error

Sub-tensor index

Figure 6: Mean error on the factor matrices in no overlapping case.

Figure 6 shows the evaluation of square error (Eq. (17)) on the factor matrices for the 3 different
values of R. For the 3 chosen CPD ranks and for most sub-tensors, algorithms OSNNCPD1,
OSNNCPD2 and ROSNNCPD allow to obtain lower mean errors than the other algorithms.

This is a direct consequence of the underestimation or overestimation of the rank obtained by
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these algorithms.

5.1.3. The relative reconstruction quality

Figure 7 shows the relative reconstruction quality (Eq. (19)) for the 3 different values of R. All
the tested algorithms have a high relative reconstruction quality, which implies that all these
algorithms have correctly converged. Concerning SeekAndDestroy, NLS and BCVMBE, the
relative reconstruction quality is stable versus the rank R. This quality ratio increases with the
value of R for the algorithms R-CPD, OSNNCPD1 and OSNNCPD?2 while the ratio decreases
in the case of ROSNNCPD. We can notice the algorithms OSNNCPD1 and OSNNCPD?2 obtain
the highest relative reconstruction quality whatever the CPD rank R. OSNNCPD?2 gives the best

results it is more time consuming (see SI 2 for time comparison).

[ OSNNCPD2
I ROSNNCPD

Quality (%)

Rank=7 Rank=10 Rank=20

Figure 7: The relative reconstruction quality for no overlapping case.

5.2. 90% overlapping case
5.2.1. Rank estimation

In this case, we have 91 sub-tensors but due to the lake of space, we kept 10 main sub-tensors for

rank estimation. These 10 main sub-tensors (7o, 711, T 21> T 31> T 41> T51> Te1> T 71> T 815

25



—
ﬁ oo oo oo
nin = Qn = Al =& 1 1nnwn~inunun
%
W ool oo =)
nin = Q= Qe =Qn w1 wnwnnnnn
=
- ool oo oo
4|+t = Q= Qn |~ = Qs | |t
—
© oo
Nl mjmonmlmonons=Z&nwnnn<|nnn
b
Tr oo
St nnn o= Q| T
—
N oo
Nuwwwbwwwn|looonl~Z2&nwn)nnn)nnn
—
o oo
Neolsrsls s slrs s m=2Rleame|temenlnenen
—
o oo
Mult« s vl s v+ =2wwnwn|+nwnnnn
—
- oo
NelssrrsrsrlrsrsrsnSSerar|lsra|rse
° oo
Nlenlnemmfmmeonjmeon e S Qlenenmfenemenmln o en
co| co| co|l oco| ool co|l oo
Sowa o aw wSw waSw aw w awT
[ A A [ A A AR [ 7R 7R 7R [ A A Al [ 7 a7 /N [ 7R 7R a7 [ A A 7
>
2 )
TR Z I a
p—
& L @) ) 9
2
2IE 8 o & & O
ma = a Q Q Z.
SlEl < 2 = Z Z Z
L2 4 ©n > Z Z 1%}
=2 = [9) Q
U“ ) — 1 O n n O
7 %) Z a2 M o @) ~

Table 4: Rank estimation in the 90% overlapping case.

26



T 91) are chosen in function of the rank variation in the case of no overlapping. Results of the
different algorithms are quite similar from the previous case as shown the Table 4. State of art
(SeekAndDestroy, NLS, R-CPD and BCVMBF) tend to overestimate the rank in each sub-tensor
by favoring the apparition of duplicated components. Conversely ROSNNCPD and OSNNCPD1
find the correct rank for sub-tensors. This is also the case of OSNNCPD?2 for R = 10, but some

errors are observed for R = 7 and R = 20.

5.2.2. Mean error on factors

MSE: rank=7 MSE: rank=10

0.6

0.4

Mean error
Mean error

0.2

0 20 40 60 80 100 0 20 40 60 80 100
Sub-tensor index Sub-tensor index

MSE: rank=20

R-CPD
---BCVMBF
—OSNNCPD1
OSNNCPD2
--------- ROSNNCPD

Mean error

0 20 40 60 80 100
Sub-tensor index

Figure 8: Mean error for the 90% overlapping case

Figure 8 shows the evolution of the mean error on the factor matrices for the three different values
of R. With the R = 7 or R = 10, ROSNNCPD and OSNNCPDI1 provide the lowest errors for
the most sub-tensors. OSNNCPD?2 is less efficient and stable but it still provides better results

than state of art algorithms. With R = 20, ROSNNCPD clearly provides the best results.

5.2.3. The relative reconstruction quality
Results are plotted on Figure 9. We observe a slight improvement in the relative reconstruction
quality with respect to no overlapping case except for R-CPD. The three proposed algorithms

allow to reconstruct correctly the data especially for R = 20. However, there is no clear cor-
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Quality (%)

Rank=7 Rank=10 Rank=20

Figure 9: The relative reconstruction quality for 90% of overlapping case.

relation between the relative reconstruction quality and the mean error on the estimated factor
matrices.

In order to give physical meaning to these error terms, an example of the normalized factors
obtained from the initialization phase are plotted on the Figure 10 (sub-tensor 7p). This figure

corresponds to Fpy = 0.18.

6. Conclusion

In this article, we have proposed an original approach for computing the nonnegative online
canonical polyadic decomposition of sub-tensors flow that take into account possible unknown
rank variations. Indeed, this approach, based on sparse dictionary learning allows to overestimate
the appropriate rank of the CPD by favoring extra-factors with null contribution. We have then
derived three distinct NN-Online CPD algorithms. The first algorithm (OSNNCPD1) supposes
that the factors estimated from the CPD of the first sub-tensor are correct (offline step) and

seeks for new factors during the analysis of the upcoming sub-tensors (online step). Of course,
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1-Emission 2-Emission 3-Emission

5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

1-Excitation 2-Excitati

10 15 20 25 30 35 40 5 10 15 2 25 30 35 40 5 10 15 20 25 3 35 40

True contributions Estimated contributions

Figure 10: Emission and excitation spectra of the fluorophores in the initialization phase (7). Top: Emission spectra,
middle: Excitation spectra. Red lines: estimated spectra, black lines: true spectra. All spectra are normalized.
Bottom: Fluorophore concentration in the initialization phase (7o). Full line: “true” contributions (the contribution
of the background noise is unknown), dotted line: the estimated contributions. All concentration are normalized.

it also allows to cancel the factors that would become useless throughout the online step. The
second algorithm (OSNNCPD?2) allows to update the factors estimated previously by using linear
combinations of large dictionaries. This algorithm offers more flexibility but the computationnal
cost increases. The last algorithm (ROSNNCPD) rewrites the problem of Algorithm 1 in a
recursive way in order to speed up the possessing time. In addition, it takes into account all
the past sub-tensors in its optimization cost function.

These algorithms are presented in the particular case of the NN-Online CPD of third order fluo-
rescence tensors but they are not limited to this application field and they can be easily extended
to higher order tensors. Other constraints such as orthogonal factors could be implemented. A
real online fluorescence spectroscopy experiment was conducted in laboratory in order to vali-
date our approach and compare the three algorithms with state of the art approaches. The three
proposed algorithms allow to correctly follow the rank variations in most of the considered situ-
ations contrary to reference approaches. In fluorescence spectroscopy, the mean error on the es-

timated factors allows to enhance the identification of the fluorophores. Regarding this criterion
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too, our approach usually provide better results that the other online strategies. More precisely,
when an overlapping between consecutive sub-tensors is allowed OSNNCPD1 and ROSNNCPD
provide clearly the best results. In this case, the factors are also estimated with more accuracy
and the algorithms are stabler. Conversely, in the no overlapping case, OSNNCPD2 appears as
the best option (but it is more sensible to rank overestimation). Eventually, in most situations,
ROSNNCPD provides slightly better results than OSNNCPDI1. It is also the fastest algorithm.
We thus recommend to combine sub-tensor overlapping and ROSNNCPD.

However, further investigations are planned to test other controlled mixtures and other overlap-
ping rates and strategies. Since the term of the penalty coefficient plays a main role in the rank
estimation, we consider to add in the future work the L-curve method to choose it automati-
cally. An extension of the recursive approach used in ROSNNCPD to OSNNCPD?2 is also to
be considered. Eventually, these encouraging results allows to plan a monitoring in the natural

environment in future work.
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