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Abstract

The mechanics of biological tissues mainly proceeds from the cell cortex rheology. A
direct, explicit link between cortex rheology and tissue rheology remains lacking, yet
would be instrumental in understanding how modulations of cortical mechanics may
impact tissue mechanical behaviour. Using an ordered geometry built on 3D hexagonal,
incompressible cells, we build a mapping relating the cortical rheology to the monolayer
tissue rheology. Our approach shows that the tissue low frequency elastic modulus is
proportional to the rest tension of the cortex, as expected from the physics of liquid
foams as well as of tensegrity structures. A fractional visco-contractile cortex rheol-
ogy is predicted to yield a high-frequency fractional visco-elastic monolayer rheology,
where such a fractional behaviour has been recently observed experimentally at each
scale separately. In particular cases, the mapping may be inverted, allowing to derive
from a given tissue rheology the underlying cortex rheology. Interestingly, applying the
same approach to a 2D hexagonal tiling fails, which suggests that the 2D character
of planar cell cortex-based models may be unsuitable to account for realistic monolayer
rheologies. We provide quantitative predictions, amenable to experimental tests through
standard perturbation assays of cortex constituents, and hope to foster new, challenging
mechanical experiments on cell monolayers.

1. Introduction

The mechanical determinants of embryonic development have received considerable at-
tention in recent years [1, 2, 3], with an emphasis on ingredients such as surface tension,
fluid flows, active stresses or boundary conditions. Of note, the complex rheology of
tissues [4] harbours immediate consequences for morphogenetic processes [5], as the re-
sponse of cells to forces within the tissue depends on, e.g., whether the tissue rheology
is elastic rather than viscous on the relevant time scale.

1



Since in vivo measurements remain arduous, rheologists have naturally turned to in
vitro tissues such as epithelial cell aggregates and monolayers, for relative ease of use and
control. In the case of cellular aggregates, a variety of techniques has been brought to
bear, among which micropipette aspiration [6], parallel plate compression [7] or magnetic
rheometry [8], unraveling a complex rheological behaviour that can be viewed as com-
binations of elastic, viscous, plastic and fractional elements. Epithelial cell monolayers
cultured on a flat substrate have revealed an active [9, 10] and viscoelastic [11] rheology
on a time scale longer than one hour. In the absence of a substrate, suspended epithelial
monolayers held by adhesive micromanipulators [12, 13] have been characterized by a
composite fractional model [14] on a time scale shorter than a few minutes.

Tissues being assemblies of mechanically coupled cells, one generally expects tissue
rheology to depend on cell rheology [4]. In turn, cell rheology is highly dependent on cy-
toskeletal rheology [15], both known since early micro-rheological measurements [16, 17]
[18, 19] to display a power-law behaviour. The cell cortex, principally made of actin,
myosin, and their cross-linkers [20], is generally thought to behave as a viscoelastic ma-
terial, liquid at time scales large compared to the turnover times of its constituents [21].
Frequency-dependent measurements in single cells submitted to uniaxial compression
have confirmed that the cell cortex behaves as a viscoelastic liquid [22]. Similar exper-
iments have shown that the cell cortex Poisson ratio ranges typically from 0.2 to 0.6,
decreasing with frequency [23]. Within tissues, cellular cortices in contact form cell-
cell junctions. Using optical tweezers, the viscoelastic time of a cell junction has been
measured in the Drosophila melanogaster embryo, and is of the order of one minute
[24]. More recently, the out-of-plane rheology of the cell-cell junction in a cell doublet
has been studied experimentally thanks to the introduction of novel micromanipulation
techniques [25]. The mechanical response of apical cortices has been probed by atomic
force microscopy in epithelial cell monolayers [26], and by laser ablation in Caenorhab-
ditis elegans and zebrafish [27].

Because most perturbations of tissue mechanical behavior operate in practice at the
sub-cellular level, it is essential (and it remains a challenge) to relate the mechanical
properties and descriptions at the microscopic (cell) and macroscopic (tissue) levels.
The elastic properties of inert cellular materials can be computed as a function of cell
elasticity [28] in the case of solid walls or as a function of cell surface tensions in the
case of liquid foams [29, 30]. The study of living cellular materials remains less ad-
vanced, although, e.g., the mechanics of lungs has been investigated in the framework of
hexagonal networks of elastic springs [31, 32, 33]. A popular cell-based computational
model of a cell monolayer is the cell vertex model [34, 35]. This model is based on an
energy function, together with a viscous friction on the substrate, which eases compu-
tation. The latter is an external force. Hence, in this model the monolayer by itself is
conservative and the corresponding effective macroscopic rheology is purely elastic. The
corresponding elastic moduli are expected to scale like the rest tension of the cell cortex
divided by the cell size, by analogy with a classical result for liquid foams [36, 37]. The
tissue-scale elastic stress based on the 2D vertex model has been computed consider-
ing in-plane [38] and out-of-plane deformations [39]. To the best of our knowledge, the
case of the 3D vertex model [40] has not been addressed from this perspective. When
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topological transitions such as cell intercalations (also called cell rearrangements) are
allowed, the rheological behavior of a 2D vertex model becomes fluid [41], as anticipated
from a theoretical viewpoint [42] (see also [38, 43] for predictions of nonlinear rheological
behaviour when topological transitions are included). Tissue behaviours such as tissue
deformations and possibly cell intercalations [44] may then be reproduced using different
and/or slowly varying tensions among the various cell-cell junctions, thus possibly mim-
icking internal gene expression levels in cells. However, vertex models do not consider
non-trivial cortical rheologies such as observed in studies of single cells or single junc-
tions. As argued in [45], models of cell junction mechanics should now include dissipative
effects.

In the present work, we take into account the truly complex mechanical behaviour of
the cellular cortex and use it in a cell-based model to derive the corresponding rheological
behaviour at the scale of the tissue. Defining a regular cell network geometry allows to
derive this connection analytically, leading to general expressions mapping the cortex to
the tissue rheology. Existing results are discussed in view of these expressions. As we
address the in-plane rheology of the cell monolayer, viewed as a 2D material, our results
connect naturally to suspended monolayer experiments [12, 13].

As studies focusing on measurements of tissue or cell response to short time stimuli
remain infrequent [12, 13, 24, 46], we focus on timescales up to 10 minutes, well below
the viscoelastic time of about 1 hour, characteristic of epithelial cell monolayers [11].
Beyond that timescale, the tissue becomes fluid, as a result of such mechanisms as cell
rearrangement, cell division and apoptosis [47]. We expect [42] that this fluid response
expected at long time scales will combine in series with the solid viscoelastic behaviour
established in the present work.

The article is organized as follows. We first describe the (three-dimensional) geome-
try, the assumed cell properties and the calculation methodology (Section 2). We then
present the resulting monolayer viscoelastic properties and compare them with recent
measurements (Section 3). The inverse mapping from the monolayer properties to the
cell-scale properties is possible in various ways using some additional assumptions (Sec-
tion 4). We finally conclude and discuss our results (Section 5).

2. Model

Our simple approach relies on several ingredients, summarized on Fig. 1 and detailed in
Section 2.1. Notations are defined on Figs. 1-2 and in their captions. The method for
deriving the resulting monolayer moduli is then exposed in Section 2.2.

2.1. Ingredients

Geometry

The cell monolayer is assumed to be a regular arrangement of hexagonal cells with
constant height Z, see Fig. 1, with lateral facets a and b (often called cell-cell junctions),
and horizontal facets c (both basal and apical).
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a. b.

Figure 1: Model ingredients: a. Geometry: hexagonal cells tile the plane, with flat
facets a, b and c. A representative, rectangular region of the monolayer is
drawn in blue, with a volume V = XY Z. Relevant facets are labeled a, b
(lateral) and c (horizontal). Principal axes of the facets are drawn in red. b.
Rheological diagrams for the cortex corresponding to Eq. (5) and (6), with the
traceless and isotropic components of the stress. Here, as well as in Fig. 3, the
(complex) shear modulus g is represented by a parallelogram, the (complex)
compression modulus k by a circle, the rest tension σ0 by a filled disk.

Keeping in mind the boundary conditions imposed onto the suspended monolayer
studied in [12, 13, 14], we assume that the monolayer is being stretched or compressed
uniformly along the x-axis with no stress applied along the y-axis or along the vertical
direction, z. In this model, all cells therefore remain identical at all times. Possible
extensions of these boundary conditions are briefly discussed in Section 5.

Intra-cellular material

We consider the intra-cellular material to behave as an inviscid, incompressible fluid,
with pressure p3D and constant volume V , expressed in terms of the dimensions of the
representative region, depicted on Fig. 1a, as:

V = X Y Z . (1)

Although cell volume is known to fluctuate in MDCK monolayers over a timescale of
103 s [48, 49], this effect is neglected over the shorter time scales considered in this work.

Cortex tension

The cell cortex is known to spontaneously develop a tension, which typically stabilizes at
some value that depends on the amount of myosin and ATP present and on the network
architecture [20]. Based on this fact, we choose to include a fixed, 2D-isotropic tension,
denoted σ0, in the isotropic part, tr(σ), of the cortical stress (see Fig. 1b). A typical
value of cortex tension is σ0 = 0.3 mN m−1 [21].

Since this tension may differ between horizontal (σ0H) and lateral (σ0L) facets, we
introduce the notation

Ψ ≡ σ0H

σ0L
. (2)
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The tension aspect ratio Ψ is known to affect the tissue behaviour and may trigger
monolayer folding [50, 51].

Cortex rheology

In this work, we consider the cortex material to be 2D-isotropic. As a consequence, any
variation of the in-plane stress in the cortex, σ, around its rest value, σ0, in response to
an in-plane deformation, εfacet, can be modeled, to linear order, by a pair of (frequency
dependent) complex moduli [52, 53]. We choose the compression modulus, k [54], and
the shear modulus, g [55]. The variation of the in-plane stress tensor σ of the cortex
around its rest value is then classically [56, 53] expressed (here in 2D) as:

σ − σ0 I = 2g εfacet + (k − g) tr(εfacet) I , (3)

= 2g dev(εfacet) + k tr(εfacet) I , (4)

where I is the 2D identity tensor and where εfacet is decomposed into its isotropic part
1
2tr(εfacet) I and its traceless part dev(εfacet) ≡ εfacet− 1

2tr(εfacet) I. Similarly, the traceless
and isotropic parts of σ are given by:

dev(σ) = 2g dev(εfacet) , (5)

1

2
tr(σ) = σ0 + k tr(εfacet) , (6)

which is depicted schematically on Fig. 1b. Let us recall another classical pair of coef-
ficients, namely the Young modulus, e, and the Poisson ratio, νc. They are best suited
for a situation in which the cortex is being deformed in one of its in-plane directions,
while no force is exerted in the other in-plane direction. The Young modulus is then the
ratio of the stress to the deformation in the active direction, while the Poisson ratio is
the relative amount of induced deformation in the other direction. Note that for most
materials, the sign of the latter is the opposite of that of the former, and the Poisson
ratio is conventionally positive for a material with such a behaviour. More precisely, the
variation of the in-plane stress tensor σ of the cortex around its rest value is expressed
in terms of e and νc as:

σ − σ0 I =
e

1 + νc
εfacet +

e νc

1− ν2
c

tr(εfacet) I , (7)

=
e

1 + νc
dev(εfacet) +

e

2 (1− νc)
tr(εfacet) I . (8)

They are related to k and g through the following classical expressions, valid in two
dimensions [52, 53]:

1

e
=

1

4k
+

1

4g
, (9)

νc =
k − g
k + g

. (10)
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In the incompressible cortex limit (νc → 1), which is probably rather unrealistic
according to the work by Mokbel et al. [23], Eqs. (7-8) behave in the classical manner [53]:
the denominator in the last term diverges and is compensated by a vanishing isotropic
component of the deformation (trace), to accomodate any finite isotropic component of
the stress on the left-hand side.

Due to the inner dissipative components of the cortex, it is reasonable to expect that
the amplitudes of its moduli increase with frequency (see Appendix B for a discussion
of this point). In what follows, in order for the tension σ to remain equal to σ0 at rest
within the framework of Eqs. (5-6), we shall assume more precisely that the amplitudes
of cortex shear (g) and compression (k) moduli vanish in the low frequency limit ω → 0.

Rest state

As a consequence of the above assumptions, when the monolayer is left at rest, i.e.,
with no applied in-plane stress, hexagons are fully symmetric, and elementary force
balance considerations lead to the following relations between the cell pressure (p3D

0 ),
the dimensions of the representative volume (X0, Y0 and Z = Z0), the tension aspect
ratio Ψ, and the cell volume (V = V0) at rest:

X0 =
√

3 `0 , (11)

Y0 =
3

2
`0 , (12)

Z0

X0
= Ψ , (13)

V =
3
√

3

2
`20Z0 =

9 Ψ

2
`30 , (14)

p3D
0 =

4σ0L√
3 `0

=
4σ0H

3Z0
, (15)

where `0 is the rest value of both `a and `b (see Fig. 2).
Importantly, Eq. (13) shows that the rest tension ratio Ψ coincides with the cell aspect

ratio Z0/X0 at rest. Larger values of Ψ thus correspond to a columnar epithelium,
smaller values to a squamous epithelium, while the monolayer will be made of cuboidal
cells when Ψ ∼ 1.

2.2. Model resolution

The linear response is isotropic

In the present work, the monolayer is viewed as a two-dimensional object in the xy-plane,
with in-plane stress components integrated over its thickness Z. With the present choice
of cortex 2D isotropy and cytoplasm 2D (and even 3D) isotropy, the only possible source
of monolayer 2D anisotropy could lie in the spatial arrangement of cells: here, the reg-
ular honeycomb geometry warrants the 2D isotropy of the monolayer linear mechanical
response (see [57, 28, 58] for a derivation in the case of an elastic solid).
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a. b.

Figure 2: Views of the monolayer, force balance and macroscopic stress.
a. Top: top view. The facet lengths `a and `b and the orientation θ of b
facets, are shown. The repeating unit is shown as a dashed parallelogram. A
simpler representative rectangular region, of same surface area XY , is shown
in blue as in Fig. 1. Force balance between three neighbouring cells: at the
meeting point within the blue rectangle, all six cortex tensions add up vectori-
ally to zero, which yields Eq. (16) (notations σyya and σuub have been simplified
for clarity). Bottom: vertical cross-section along in the xz-plane. The force
balance in the vertical direction implies that the pressure p in the cytoplasm
integrated over the whole cell width X balances the tensions σzza on either side
of the cell, as expressed by Eq. (17).
b. Macroscopic stress. The yy component of the in-plane macroscopic stress,
Σyy, can be expressed by counting all forces that are exerted across a per-
pendicular plane Pyy, represented as a dashed horizontal line. Such forces are
readily enumerated from the monolayer cross-section in the xz plane shown be-
low the top view. They include the pressure p in the cell (integrated over the
monolayer thickness, Z), the tension σyyc of both horizontal layers, as well as
the tensions σyya of the relevant lateral facets, integrated over the facet height
Z. This provides the expression of Eq. (30). The expression of the xx com-
ponent Σxx, provided by Eq. (29), is obtained in a similar way (see monolayer
cross-section in the yz plane on the right-hand side), except that the lateral
facet tensions, σuub , must be projected onto the x axis (angle θ, see also Fig. 1).

Force balances

Velocities and accelerations in such monolayers are so small that inertial contributions
to force balances are negligible (a situation similar to low Reynolds number regimes
in fluids). As for in-plane forces, the balance between all six cortex tensions that are
exerted on a given vertical edge, such as the vertex at the center of the blue rectangle
in the top-view of Fig. 1a or 2a, can be expressed as:

2σyya sin(θa)− 4σuub sin(θb) = 0 , (16)
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where σyya and σuub are the horizontal components of the tensions in facets a and b, see
Fig. 2 for details.

In the present, simplified geometry, all cells play the same role and all adjacent cells
have equal pressures. Lateral cortices, being under tension, are correspondingly flat.
Because the monolayer is assumed to be subjected to zero external forces in the z-
direction, the force balance at mid-height implies that the pressure p3D in the cell is
compensated by the z-tension in the lateral facets at all times (in-plane surface area
XY , horizontal lengths `a and `b):

p3DXY = 2σzza `a + 4σzzb `b . (17)

In the context of the cross-section depicted in the bottom of Fig. 2a, this simply reads:
p3DX = 2σzza .

For the sake of simplicity, we here consider that horizontal (apical and basal) facets
remain flat despite the larger pressure in the cell as compared to the outside medium,
as if these facets were not flexible.

Deformation of the rectangular representative volume

As mentioned in Section 2.1, the monolayer is being stretched along the x-axis, with
no forces applied along the perpendicular directions. As a result, the distances X =
2 `b cos θ and Y = `a + `b sin θ depicted on Fig. 2a (with initial values X0 and Y0,
respectively) are related to the monolayer deformation components along the x- and
y-axes through:

εx =
X −X0

X0
, (18)

εy =
Y − Y0

Y0
. (19)

In our calculation, we assume that the horizontal facets (index c) deform homoge-
neously and affinely, that is, in the same proportions as the monolayer, although that
is not strictly true (see Appendix D for detail). As a result, the in-plane stress in the
horizontal facets can be expressed from Eqs. (5-6) and Eqs. (18-19) in terms of their
compression (kH) and shear (gH) moduli as:

σxxc = σ0H + kH (εx + εy) + gH (εx − εy) , (20)

σyyc = σ0H + kH (εx + εy) + gH (εy − εx) . (21)

For the lateral facets (indices a and b), we similarly define:

εa =
`a − `0
`0

, (22)

εb =
`b − `0
`0

, (23)

εz =
Z − Z0

Z0
. (24)
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Again, using Eqs. (5-6) and Eqs. (22,23,24), we express the in-plane stress components
of the lateral facets in terms of their compression (kL) and shear (gL) moduli as:

σyya = σ0L + kL (εa + εz) + gL (εa − εz) , (25)

σzza = σ0L + kL (εz + εa) + gL (εz − εa) , (26)

σuub = σ0L + kL (εb + εz) + gL (εb − εz) , (27)

σzzb = σ0L + kL (εz + εb) + gL (εz − εb) . (28)

Expression of monolayer in-plane stress

The hexagonal symmetry of the monolayer and our choice to exert forces along the x-axis
ensure that the macroscopic stress Σ has principal components along axes x and y. The
stress along the x-axis is readily expressed by considering all forces that cut a section
perpendicular to the x-axis, as illustrated on Fig. 2b:

Σxx = 2σxxc − p3D Z +
4`bZ

XY
σuub cos2 θ . (29)

Similarly for the stress along the y-axis:

Σyy = 2σyyc − p3D Z +
2`aZ

XY
σyya +

4`bZ

XY
σuub sin2 θ . (30)

Monolayer in-plane complex moduli

Combining Eqs. (1-28) and imposing that Σyy remains equal to zero when the monolayer
is deformed in the x-direction, we derive as a function of εx the expressions of the in-plane
stress Σxx in the x-direction and of the deformation εy in the y-direction. From these
two quantities Σxx and εy, we derive the complex Young modulus E and the complex
Poisson ratio N of the monolayer, viewed as a two-dimensional material:

E =
Σxx

εx
, (31)

N = − εy
εx
. (32)

By combining the Poisson ratio and the Young modulus, we may then derive any other
complex modulus, for instance the in-plane compression and shear moduli of the mono-
layer:

K =
E

2 (1−N)
, (33)

G =
E

2 (1 +N)
. (34)
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3. Mapping cortex (micro-)rheology to tissue (macro-)rheology

3.1. General result

In practice, the calculations outlined in Section 2.2 were performed with GNU-Maxima,
see Appendix A.

We now express the 2D tissue moduli as obtained following the path outlined above.
For the sake of clarity, we express E and N in terms of K and G which have simpler

expressions:

K = 3σ0H + 2kH + Ψ kL + 9Ψ gL , (35)

G = σ0H + 2gH +
1

1
2σ0H

+ 1
2Ψ kL+2Ψ gL

, (36)

1

E
=

1

4K
+

1

4G
, (37)

N =
K −G
K +G

. (38)

where indices H and L for rest tensions (σ0), compression (k) and shear (g) moduli
refer to horizontal and lateral facets, respectively, see Eqs. (2), (20, 21) and (25-28) for
reference. Expressions (35-37) can be represented conveniently as rheological diagrams,
see Fig. 3. They map cortex (micro-) rheology to tissue (macro-) rheology. In the
absence of tissue prestress as assumed for the rest state characterized by Eqs. (11-15),
the 3D moduli K, G and E may be obtained from the above 2D moduli by dividing by
the monolayer thickness.

The monolayer compression modulus K depends obviously on the compression mod-
ulus kH of the horizontal (in-plane) facets. Somewhat surprisingly, it also depends on
the shear modulus of lateral facets, gL. That reflects the fact that elongating the mono-
layer in an isotropic manner causes cells to flatten, hence lateral facets are elongated
horizontally and shrink vertically, see Fig. 6 in Appendix D. In fact, even the lateral
facet surface area is then required to change due to the constant volume assumption,
expressed by Eq. (14). That explains that the monolayer compression modulus K also
depends on the lateral facet compression modulus kL. As a result, in the limit of in-
compressible horizontal or lateral cortices (kH → ∞, kL → ∞, which is probably not
realistic [23]), the monolayer would become incompressible (K →∞, N → 1).

As stated above (see Eqs. (2,13)), the cell aspect ratio reflects the ratio Ψ of the
spontaneous tensions of horizontal and lateral facets. Remarkably, while K is dominated
by the moduli of lateral facets for large values of Ψ (columnar cells) and by the moduli
of horizontal facets for small values of Ψ (flat cells), by contrast G is dominated by the
moduli of horizontal facets for both monolayers made of very columnar and very flat
cells ; only for monolayers made of cuboidal cells does G depend substantially on the
moduli of lateral facets.
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a. b.

c.

Figure 3: Rheological diagrams for the monolayer. a. and b. The monolayer
compression modulus K and shear modulus G can be viewed as a mechanical
arrangement of cortex properties. The symbols are those of Fig. 1. Note that
cortical tensions σ0 in Fig. 1 become springs in the present figure (with identical
physical units). The coefficients are those of Eqs. (35) and (36), respectively.
Ψ is defined by Eq. (2). Indices H and L refer to horizontal vs. lateral facets.
c. The monolayer Young modulus E can be viewed as equivalent to 4 times
its compression modulus K in series with 4 times its shear modulus G.

3.2. Low frequency limit

In the low frequency limit, since gL, kL, gH and kH tend to zero, tissue moduli are
predicted to depend only on the tension of horizontal facets, σ0H, and to be real numbers:

K0 = 3σ0H , (39)

G0 = σ0H , (40)

E0 = 3σ0H , (41)

N0 = 1/2 , (42)

The monolayer behaves as a purely elastic material in this limit.

In addition, we find that the above in-plane, 2D moduli are proportional to the cortex
rest tension σ0H, as expected from the physics of liquid bubble monolayers at time
scales where bubbles and films are stable [29, 30]. This is of course expected from
dimensional arguments, as both the cortex and the monolayer are two-dimensional and
their moduli correspondingly have the same physical units (N/m). Remarkably, however,
tissue moduli do not even depend on the cell aspect ratio Ψ, in other words on the
horizontal to lateral facet tension ratio.

An additional interpretation of these results is that cell monolayers as well as liquid
foams are examples of tensegrity structures [59] which contain prestress, even at rest. In
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this context, in the case of elastic structures, it has been known for several decades that
the linear elastic moduli are proportional to the prestress [60]. In the context of liquid
foams or cell monolayers, some elements are under finite compression (bubble gas, cell
cytoplasm) while other elements are correspondingly under finite tension (soap films,
cell cortices). Note, however, that the origin of the prestress differs. In elastic tenseg-
rity structures, it results from the slight mismatch between each constitutive element
individual rest size and its rest size within the structure. In other words, it results from
some built-in geometrical frustration. In liquid foams and cell monolayers, by constrast,
the constitutive elements under tension (soap films, cell cortices) are fluid, i.e., have
no finite individual rest size. The prestress in the structure results from the contractile
nature of these particular fluids: surface tension for liquid films, and myosin activity for
cell cortices. In other words, liquid foams and cell monolayers are examples of what we
may call contractile fluid tensegrity structures.

Two aspects of the above prediction (39-42) are testable.
(i). If at least two deformation modes are accessible to assess the monolayer behaviour,
then the Poisson ratio can be derived, or equivalently the following ratios can be tested:

K0 = E0 = 3G0 . (43)

(ii). As blebbistatin (or other inhibitors of contractility) lower the rest tension of the
acto-myosin cortex [20], then the predicted proportionality of the monolayer elastic mod-
uli to the cell cortex rest tension can be tested by applying such drugs (see, e.g., [9], for
a study of the effect of contractility inhibition on epithelial cell monolayer tension).

In physiological conditions, on timescales beyond about 10 minutes, tissues are known
to display biological phenomena not considered in the present model, such as cell rear-
rangements, cell divisions and cell extrusions. Correspondingly, we shall choose 10−2 Hz
as the lower frequency bound in graphs.

3.3. High frequency limit

In the high frequency limit ω → ∞, if the cortex moduli gL, kL, gH and kH behave
elastically, then the monolayer moduli are provided by the full expressions of Eqs. (35-
38). However, if they are non-elastic in this limit, hence if their amplitudes go to
infinity, we obtain:

K∞ ∼ 2kH + Ψ (kL + 9gL) , (44)

G∞ ∼ 2gH , (45)

E∞ ∼ 4 (2gH) (2kH + Ψ (kL + 9gL))

2gH + 2kH + Ψ (kL + 9gL)
, (46)

N∞ ∼ 2kH + Ψ (kL + 9gL)− 2gH

2kH + Ψ (kL + 9gL) + 2gH
. (47)

As a consequence, the high frequency scaling behaviour of tissue moduli is identical to
that of cortex moduli: a viscous cortex will lead to a viscous tissue; a fractional cortex
rheology will lead to a fractional tissue rheology with the same exponent (see Fig. 4
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for an example). If the cell state is altered in such a way that the cortical fractional
exponent is changed, we predict that the same change will display at the tissue scale.

Whereas the low frequency limit of the Poisson ratio is N0 = 1/2, its high frequency
limit N∞ is expected from (47) to depend on specifics of the cortex moduli.

a. b.

Figure 4: Experimental data: cortex rheology. a. Experimental data points from
[22] (mN/m), represented by the red symbols and their error bars, are con-
sistent with Eq. (49) (contractile visco-fractional cortex rheology), with the
parameter values: ĉ = 60 mN · sB/m, η̂ = 250 mN · s/m, β̂ = 0.19 (black lines).
We observe a low-frequency viscous limit, and a high frequency fractional
limit, with exponent B, dominated by the conservation modulus. b. Red
symbols and their error bars are obtained from data plotted in panel a us-
ing the mapping (35-38) with Ψ = 1, σ0H = σ0L = 0.3 mN m−1, νc = 0.41 and
g = (1−νc) k/(1+νc) (blue lines). They are consistent with Eq. (48) (tissue vis-
coelastic fractional rheology), with the parameter values: cβ = 500 mN · sB/m,
η = 170 mN · s/m, β = 0.19, K0 = 21 mN/m. We observe a low-frequency elas-
tic limit, and a high frequency fractional limit, with exponent β, dominated
by the conservation modulus. Dashed line: conservation modulus; dotted line:
loss modulus.

3.4. Experimental data

Cortex viscoelastic properties have been measured recently as a function of frequency [22,
23] in HeLa cells squeezed between two parallel plates. The more recent work [23] takes
precisely into account the spatial variations of the cortex deformation modes during cell
compression, with some regions stretched isotropically and other regions subjected to
some degree of shear deformation. Assuming that the rheological properties are uniform
in the entire cell, it then yields values of the cortex Poisson ratio, found to decrease from
0.66 to 0.17 as frequency increases from 0.1 to 10 Hz, with a mean value νc ≈ 0.41. This
corresponds to the compression modulus, k, being 1.5 to 4 times larger than the shear
modulus, g. This work [23], however, does not provide the values and variations of any
modulus (shear, compression, etc) separately. In order to map cortex to tissue rheology,
we therefore use the cortex complex modulus data points from the older work in the same
team [22] (see Fig 4a), although the values thus obtained are a mixture of shear and
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compression moduli. More precisely, the compression force is interpreted as if the tension
were isotropic and uniform throughout the cortex during compression. As a consequence,
the resulting value for the modulus would exactly match the compression modulus in
the case of a vanishing shear modulus. For simplicity, we assume it represents the
compression modulus when comparing with our results in Section 3.1. We have checked
that, by contrast, if it is assumed it represents the shear modulus, our results presented
below are unchanged qualitatively, although fitted parameter values are altered.

In Fig 4, we choose a frequency-independent cortex Poisson ratio equal to the average
value measured by [23], νc = 0.41. We also assume that the cells are cuboidal, Ψ = 1.
Using a value of all cortex tensions σ0H = σ0L = σ0 = 0.3 mN m−1 [21], and assuming
that the moduli of lateral and horizontal facets are identical (kH = kL = k and gH = gL =
g), the mapping (35-38) yields values of the tissue Young modulus plotted in Fig 4b. As
advocated by Bonfanti et al. [14], we fitted this data by the following form of the tissue
Young’s modulus:

ETVEF(ω) = K0 +
1

1
iωη + 1

cβ(iω)β

, (48)

obtaining the parameter values η = (5 ± 3) 102 mN s m−1, cβ = (1.7 ± 0.7) 102 mN m−1,
β = 0.185±0.010, K0 = (2.1±0.8) 101 mN/m. Since HeLa cells are softer and more fluid
than MDCK cells, the values of η, cβ and K0 are at least one order of magnitude lower
than obtained for an MDCK monolayer in [14]. Interestingly, the tissue Poisson ratio
resulting from our mapping is approximately frequency independent, N = 0.77± 0.01.

We next fitted the cortex rheological data plotted in Fig 4a with a model where a
dashpot (viscosity η̂) is combined in series with a fractional element (parameters ĉ, β̂):

kcortex(ω) =
1

1
iωη̂ + 1

ĉ(iω)β̂

, (49)

obtaining the parameter value estimates η̂ = (2.5 ± 1.6) 102 mN s m−1, ĉ = (6.0 ±
2.5) 101 mN m−1, β̂ = 0.19 ± 0.01. Note that Bonfanti et al. [14] performed fits of
the same data assuming that this rheological diagram was in addition in parallel with
a spring of stiffness k̂, at variance with the fluid behaviour expected at long times for
the cell cortex. Interestingly, our results allow to map a cortex rheology consistent with
Eq. (49) into a tissue rheology consistent with Eq. (48), and to explain the change of
magnitude of the corresponding parameter values, with a tissue both stiffer (cβ ' 3 ĉ),
and more viscous (η ' 2 η̂), than the cell cortex.

3.5. Examples

3.5.1. Fractional cortex rheology

The monolayer moduli shown in Fig 4b, are mapped (through Eqs. 35-38) from a cortex
described by Eq. (49) combined with a rest tension σ0. They appear to display an
intermediate frequency regime. As in the tissue-scale expression (48) by Bonfanti et
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al. [14], this regime reflects the viscosity component in the cortex rheology. It can be
shown that it is no more discernable whenever the viscosity is high enough, namely:

η̂ � ĉ1/β̂ σ
1−1/β̂
0 . (50)

In the limit of Eq. (50), the cortex model of Eq. (49) can be simplified into a simple
fractional rheology, which we now explore.

Let all facet moduli (kH, kL, gH, gL) have the same dependence on frequency, for
instance fractional elements with exponent β:

kH(ω) = kHβ (i ω)β , (51)

kL(ω) = kLβ (i ω)β , (52)

gH(ω) = gHβ (i ω)β , (53)

gL(ω) = gLβ (i ω)β , (54)

where the prefactors kHβ, etc, are real numbers. These expressions imply that the
cortex Poisson ratios for horizontal and lateral facets, given by Eq. (10), are frequency-
independent.

The monolayer moduli K and G, given by Eqs. (35,36), can then be approximated at
both low and high frequencies by the respective sums of their asymptotic expressions in
both limits:

K ' 3σ0H +Kβ (i ω)β , (55)

G ' σ0H + 2gHβ (i ω)β , (56)

where Kβ = 2kHβ + Ψ (kLβ + 9gLβ).
If all cortex moduli are fractional, K and G both evolve from elastic at low frequencies

(depending only on the cortex tension at rest, σ0H) to fractional at large frequencies.
The crossovers at intermediate frequencies depend on the details of the parameter values.
This will in particular be the case for a purely viscous cortex (β = 1).

3.5.2. Maxwell cortex rheology

Another (this time, elastic) limit of the model (49), with β → 0, leads to a Maxwell
model for the cortex, with a viscous/elastic behaviour respectively in the low/high fre-
quency limit. Such a model has been proposed for the cell cortex rheology in [61], and
reads

eMaxwell =
1

1
iωη + 1

g

, (57)

(see Fig. 5a). In this case, the high-frequency tissue rheological behaviour is elastic (see
Fig. 5b), at variance with the power-law behaviour observed experimentally in this limit
[14]. This model, introduced by [61], constitutes an interesting heuristic proposal for
the cortex mechanics, which incorporates in the most simple manner the ingredients of
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a. b.

Figure 5: Tissue moduli based on a Maxwell cortex rheology. Dashed lines:
conservation moduli; dotted lines: loss moduli (mN/m). a. Cortex rheology,
Eq. (57), with parameters η = 30 mN · s/m and g = 30 mN/m. b. Tissue
rheology, obtained using Eqs. (35,36) with parameters ν = 0.4, Ψ = 1 and
σ0 = 0.3 mN/m. We obtain a low-frequency (not shown) and a high-frequency
elastic limit, with an intermediate dissipative regime.

cortex active tension (σ0), elasticity (g) due to the actin fiber network, and relaxation
(here with a unique timescale η/g) due to monomer and crosslinker stochastic renewal.
It has been applied successfully to the microplate single cell experiment [18, 19]. A
similar model has been used to account for experimental observations of the effects of
single cortex manipulations [62].

4. Inverse mapping of tissue (macro-)rheology to cortex
(micro-)rheology

4.1. Low frequency inversion

The low frequency moduli of the monolayer are real numbers according to expres-
sions (39-41). In other words, the monolayer is purely elastic in this limit, with a
stiffness proportional to the rest tension of the horizontal cortices, σ0H. This feature
allows for a direct access to this cell-scale quantity through macroscopic measurements.
The rest tension of the lateral facets, σ0L, is then derived from the cell aspect ratio, Ψ,
as a result of Eq. (2):

σ0H = G0 =
K0

3
=
E0

3
, (58)

σ0L =
σ0H

Ψ
. (59)

However, the cortical tension of lateral sides σ0L, being absent from both the low and
high frequency limits cannot be deduced from such measurements.

In practice, tissues flow over timescales large compared to the typical rearrangemen-
t/cell division/cell extrusion times. In [11], the viscoelastic time of a MDCK monolayer
on a flat substrate was measured to be of the order of 1 hour. The measurement of the

16



”low frequency” moduli G0, K0 and E0 would need to be performed over time scales
shorter than this viscoelastic time.

4.2. No general inversion

The most general goal, when attempting to inverse the mapping obtained in Section 3.1,
would be the following. Let us assume that sophisticated mechanical measurements
provide two independent complex moduli as a function of the angular frequency, for
instance: K(ω) and G(ω), from which we subtract the low frequency limits:

∆K(ω) = K(ω)−K0 , (60)

∆G(ω) = G(ω)−G0 . (61)

Once the rest tensions are known from the low frequency analysis, see Eqs. (58,59), the
goal is to obtain two independent complex moduli of both the horizontal and the lateral
facets: kH(ω), gH(ω), kL(ω) and gL(ω).

It is clearly not possible, with no additional assumption, to uniquely determine four
such quantities from only both monolayer scale quantities ∆K(ω) and ∆G(ω). Below,
we review some assumption examples and the corresponding expressions of the cortex
scale quantities.

4.3. Inversion under tension scaling assumption

In order to go beyond this impossibility, let us now assume that the phenomenon that
causes the tension of the horizontal and lateral facets to differ equally applies to the
complex moduli. In other words, let us assume that the tension ratio, Ψ, also applies to
the moduli, at all frequencies:

σ0H

σ0L
= Ψ =

kH(ω)

kL(ω)
=
gH(ω)

gL(ω)
. (62)

If Ψ = 1 in addition to this scaling assumption, the rheological properties of all facets
would become identical.

With assumption (62), the expressions of K and G, given by Eqs. (35,36) can be
rewritten in terms of ∆K and ∆G, see Eqs. (60,61). Using the assumption expressed
above as Eq. (62), they can be rewritten in terms of only σ0H, kH and gH, with no
influence of Ψ:

∆K = 3kH + 9gH , (63)

∆G = 2gH +
1

1
2σ0H

+ 1
2kH+2gH

. (64)

Assuming that not only σ0H, but also ∆K and ∆G are positive real numbers, one
can invert these equations and obtain the values of the cortex moduli of the horizontal
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facets:

kH =
1

4

(
3σ0H −

√
D + ∆K − 3∆G

)
, (65)

gH =
1

12

(√
D − 3σ0H + ∆K + 3∆G

)
, (66)

D = 9σ2
0H + 18σ0H (∆K − 3∆G) + (∆K − 3∆G)2 . (67)

The moduli of the lateral facets are then immediately obtained using the cell aspect
ratio:

kL = kH/Ψ , (68)

gL = gH/Ψ . (69)

In Eqs. (65,66), the sign in front of
√
D was chosen so as to satisfy the low frequency

limit. The quantities ∆K(ω) and ∆G(ω) are in fact complex numbers, and one may
assume that, as combinations of springs (β = 0), dashpots (β = 1) and fractional
elements (0 < β < 1), their real and imaginary parts are both positive. We shall adopt
a definition of

√
D that remains continuous in all accessible regions around the low

frequency (real) value
√
D = 3σ0H.

Let us consider a first particular situation where the monolayer Poisson ratio N is
equal to 1/2 not only in the low frequency limit but also at all frequencies. Eq. (38)
then implies that K(ω) = 3G(ω). Hence, we have ∆K(ω) = 3∆G(ω). As a consequence,√
D = 3σ0H is constant. The above results then suggest that, ignoring the influence of

their rest tension σ0H, the cortices’ bulk moduli vanish, while their shear moduli are
directly related to the monolayer shear modulus:

ΨkL = kH = 0 , (70)

ΨgL = gH =
1

2
∆G =

1

2
(G−G0) . (71)

In a second particular situation, we assume not only that horizontal and lateral facet
moduli are in the same ratio as the rest tension, see Eq. (62), which implies that all
facets have identical Poisson’s ratio νc(ω), but we also assume that this value is constant:
νc(ω) = const. It is then more convenient to express the cortex compression and shear
moduli, k and g, in terms of the cortex Young modulus e and Poisson ratio νc:

kH =
eH

2 (1− νc)
, (72)

gH =
eH

2 (1 + νc)
. (73)

Eqs. (35,36) then become:

K = 3σ0H +
6− 3νc

1− ν2
c

eH , (74)

G = σ0H +
1

1 + νc
eH +

1
1

2σ0H
+ 1−ν2c

2 eH

, (75)
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while the monolayer Young modulus E and Poisson ratio N are then obtained from
Eqs. (37, 38). That implies that the cortex moduli can be immediately expressed from
the monolayer bulk modulus K:

eH =
1− ν2

c

6− 3νc
∆K , (76)

kH =
1 + νc

12− 6νc
∆K , (77)

gH =
1− νc

12− 6νc
∆K . (78)

This particular case illustrates how, when νc(ω) = const, cortex and tissue rheology may
be identical, as suggested both by [14] and Fig. 4.

An expression for the monolayer shear modulus G can also be obtained, for instance
for the cortex shear modulus gH:

4gH = ∆G− (3− νc)σ0H +
√

(∆G− (3− νc)σ0H)2 + (1− νc)σ0H∆G . (79)

Eqs. (72-73) then readily yield expressions for the Young modulus eH and compression
modulus kH. Eq. (79) shows that a strong similarity is expected between the frequency
dependencies of the (micro-scale) cortex moduli and the (macro-scale) monolayer shear
modulus. If in addition, νc = 1 (in other words, a possibly unrealistic assumption of a
2d-incompressible cortex), then the tissue becomes incompressible (K → ∞), Eq. (79)
becomes

2gH = ∆G− 2σ0H . (80)

If we rather assume νc = 0 as in [61], Eqs. (76-78) become eH = 2gH = 2kH = ∆K/6.

5. Discussion and perspectives

To summarize, we characterize in this work the mechanical behaviour of an epithelial
tissue by establishing the link between the mechanics at the cytoskeletal scale and the
mechanics at the epithelial scale. We describe theoretically the linear rheology of an
ordered assembly of hexagonal cells, as a function of those of the cell cortices. We
also discuss, in particular cases, the inverse problem that starts from the epithelial
rheology and deduces the cortical rheology. In the low-frequency limit, we obtain that
the monolayer is elastic, with moduli proportional to the cortex rest tensions, as expected
of tensegrity structures. In other frequency ranges, the monolayer rheology reflects the
main features of the cortex rheologies.

We hope that this work will be conducive to a better understanding of the contribution
of cellular constituents in the epithelial mechanical behaviour. It suggests that the rich
rheological behaviour of cell cortices should be taken into account when formulating
(disordered) vertex models, beyond the current, standard definition of an energy function
based on constant cortex (cell-cell junction) tensions.
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In order to test whether the full 3D geometry depicted on Fig. 1a is required to pre-
dict the monolayer rheology, we attempted to reduce the dimensionality and considered
a regular tiling by planar hexagonal cells. As shown in Appendix C, this geometry leads
to an elastic high-frequency rheology, at variance with experimental observations. The
results of these calculations suggest that, at least for ordered tilings, the rheological be-
haviour of lateral cell cortices and their mechanical coupling with horizontal cell cortices
cannot be ignored when determining the tissue rheology.

Our results are based on several simplifying assumptions that may be relaxed in the
future, for instance considering the effect of disorder (whose impact may be assessed
by numerical simulations) [63]; an asymmetry in apico-basal tension or moduli [51, 64];
a realistic bulk cell rheologyl [4] or different boundary conditions [12]. In the experi-
ments [65] a finite initial tension of the monolayer is observed in the x-direction. More-
over, an actin cable is present along each free, lateral edge of the suspended monolayer.
These edges being slightly curved, they probably exert some tension on the monolayer
in the y-direction. The initial monolayer tension seems isotropic in the xy-plane (see
Fig. 2a in [65]). We have here neglected any such initial monolayer tension. While we
focused on the planar geometry characteristic of cell monolayers, a natural extension
would be to represent a 3D tissue (for instance a cellular spheroid) by a tiling composed
of Kelvin cells, for which the low frequency, elastic limit has been established in the field
of liquid foams [37].

In this work, the fact that horizontal facets are assumed flat is by itself a simplification.
Indeed, force balance implies that a right angle at the edge between lateral and horizontal
facets would correspond to horizontal tension values much larger than lateral tension
values. A more realistic geometry, with curved apical and basal facets, is left for future
studies.

Perhaps more importantly, the cells have more than two in-plane degrees of freedom
and they need to obey force balance on vertical edges, see Eq. (16). Hence, even though
the rectangular representative volume has to deform exactly in the same proportions as
the monolayer, the cells in general do not deform homogeneously, instead they contain
some elements that move in a non-affine manner (see Appendix D). Here, however,
in order to simplify the description, we calculate the stress in the horizontal facets as
if their deformation were homogeneous (and thus identical to the monolayer in-plane
deformation).

Implementing and validating the inverse mapping from monolayer to cell cortex rheol-
ogy, depends practically on the availability of the corresponding experimental measure-
ments. A first valuable contribution would be to test the monolayer in such a way as
to measure two independent macroscopic moduli. A second milestone would be to have
access to measurements of the cortex rheology of cells within a monolayer rather than
of isolated single cells, as pioneered by [24, 25, 26]. That may then help assessing the
scaling assumption Eq. (62) put forward in Section 4.3.

We hope that this work will foster more experimental work, measuring both cortex
and tissue rheology, in view of the direct and inverse mappings that link them.
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Jülicher, and Stephan W. Grill. Determining physical properties of the cell cortex.
Biophysical Journal, 110:1421–1429, 2016.

[28] Lorna J. Gibson and Michael F. Ashby. Cellular Solids. Cambridge University
Press, 2014.

[29] D. Weaire and S. Hutzler. The Physics of Foams. Oxford University Press, 2001.

[30] I. Cantat, S. Cohen-Addad, F. Elias, F. Graner, R. Höhler, O. Pitois, F. Rouyer,
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Appendix

A. Calculations with GNU-Maxima :

Analytical calculations were performed in the following order with GNU-Maxima :

1. Definition of the variables : geometry and forces

2. Rheological equations

3. Force balance equations

4. Geometry-related equations

5. Calculation of the rest state

6. First-order expansion about the rest state

7. Resolution of the resulting system of equations

8. Monolayer Young modulus

9. Strain along the perpendicular direction and Poisson ratio

10. Expression of other moduli

We include the script used to obtain Eqs. (35-38).

kill ( all ) $

/* Definition of variables */

/* geometrical variables about rest state */

assume ( a0 >0);

a : a0 + da$

b : b0 + db$

z : z0 + dz$

p : p0 + dp$

thb : thb0 + dthb$

tha : tha0$

tha0 : %pi /2 $

V : V0 + dV ;

X : 2* b * cos ( thb ) $

X0 : subst ([ db =0 , dthb =0] , X );

Y : a - b * sin ( thb ) $

Y0 : subst ([ da =0 , db =0 , dthb =0] , Y );

eqV : V = X * Y * z$

/* macroscopic deformation variables */

eqEX : EX = (X - X0 )/ X0$

EY : (Y - Y0 )/ Y0$

/* macroscopic stress variables */

Sxx : 1/( X * Y )*(2* suu_a * a * z * cos(tha )^2

+2*2* suu_b * b * z * cos(thb)^2 +2* suu_c * X * Y ) - p * z$

Syy : 1/( X * Y )*(2* suu_a * a * z * sin(tha )^2

+2*2* suu_b * b * z * sin(thb)^2 +2* svv_c * X * Y ) - p * z$
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Szz : 1/ V *(2* svv_a * a * z +2*2* svv_b * b * z ) - p$

/* microscopic deformation variables */

ea : da / a0$

eb : db / b0$

ez : dz / z0$

/* lists of variables for Taylor expansions */

dvec0 : [ da=0, db=0, dz=0 , dV=0 , dp=0, dtha=0, dthb=0, EX=0];

dvec : [ da , db , dz, dV, dp, dthb , EX ];

start : [0, 0, 0, 0, 0, 0, 0];

order : [1, 1, 1, 1, 1, 1, 1];

/* */

/* Rheological equations */

/* microscopic rheological variables */

suu_a : s0l + 2 * gstarl * ea + (kstarl - gstarl) * (ea + ez)$

suu_b : s0l + 2 * gstarl * eb + (kstarl - gstarl) * (eb + ez)$

suu_c : s0h + 2 * gstarh * EX + (kstarh - gstarh) * (EX + EY)$

svv_a : s0l + 2 * gstarl * ez + (kstarl - gstarl) * (ea + ez)$

svv_b : s0l + 2 * gstarl * ez + (kstarl - gstarl) * (eb + ez)$

svv_c : s0h + 2 * gstarh * EY + (kstarh - gstarh) * (EX + EY)$

/* incompressibility */

eqBulk : dV = 0 $

/* */

/* Force balance equations */

/* vertex balance */

eqForces : 2* suu_b * sin ( thb )+ suu_a * sin ( tha )=0 $

/* boundary conditions */

eqSyy : Syy = 0 $

eqSzz : Szz = 0 $

/* */

/* Calculation of the rest state */

eqSyy0 : Syy0 = 0$

eqSzz0 : Szz0 = 0$

eqSxx0 : Sxx0 = 0$

Sxx0 : subst ( dvec0 , ev ( Sxx , eval ));

Syy0 : subst ( dvec0 , ev ( Syy , eval ));

Szz0 : subst ( dvec0 , ev ( Szz , eval ));

eqV0 : subst ( dvec0 , ev ( eqV ));

eqForces0 : subst ( dvec0 , ev ( eqForces ));

thb0 : rhs ( solve ( eqForces0 , thb0 )[1]);

V0 : rhs ( solve ( ev( eqV0 ), V0 )[1]);

p0 : rhs ( factor ( solve ( ev ( eqSzz0 , eval ), p0 ))[1]);

z0 : rhs ( solve ( factor ( ev ( eqSxx0 , eval )), z0 )[1]);

b0 : rhs ( solve ( factor ( ev ( eqSyy0 , eval , eval )), b0 )[1]);

z0 : ev ( z0 );

V0 : ev ( V0, eval );

p0 : ev ( p0 );

/* */

/* First -order expansion about the rest state */

eqForces : factor ( taylor ( ev ( eqForces ), dvec , start , order ));

eqSyy : ev ( eqSyy , eval , eval ) ;

eqSyy : factor ( taylor ( eqSyy , dvec , start , order ));

eqSzz : ev ( eqSzz , eval , eval ) ;

eqSzz : factor ( taylor ( eqSzz , dvec , start , order ));

eqV : factor ( taylor ( ev ( eqV , eval , eval ), dvec , start , order ));
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eqBulk : ev ( eqBulk , eval , eval ) ;

eqBulk : factor ( taylor ( eqBulk , dvec , start , order ));

eqEX : factor ( taylor ( ev ( eqEX , eval , eval ), dvec , start , order ));

Syst : [ eqForces , eqSyy , eqSzz , eqV , eqBulk , eqEX ] $

/* */

/* Resolution of the resulting system of equations */

[ eqda , eqdb , eqdz , eqdthb , eqdp , eqdV ]:

solve ( Syst , [ da, db , dz , dthb , dp , dV ])[1] $

da : factor ( rhs ( eqda ));

db : factor ( rhs ( eqdb ));

dz : factor ( rhs ( eqdz ));

dthb : factor ( rhs ( eqdthb ));

dp : factor ( rhs ( eqdp ));

dV : factor ( rhs ( eqdV ));

/* */

/* Monolayer Young modulus */

Sxx : ev ( Sxx , eval ) ;

EstarH3 : factor ( taylor ( Sxx , dvec , start , order ))/ EX ;

/* */

/* Strain along perpendicular direction and Poisson ratio */

Ey : ( factor ( taylor ( EY, dvec , start , order ))) $

Ey : factor ( ev ( Ey )) $

nustarH3 : factor ( - Ey / EX );

/* */

/* Expression of other moduli */

KstarH3 : factor ( EstarH3 /2/(1 - nustarH3 ));

GstarH3 : factor ( EstarH3 /2/(1+ nustarH3 ));

MstarH3 : factor ( EstarH3 /(1+ nustarH3 )/(1 - nustarH3 ));

lambdastarH3 : factor ( MstarH3 * nustarH3 );

/* Non -afinity */

naff: factor ((ev(ea)-Ey)/EX);

naff: factor(subst(s0h=Psi*s0l ,naff ));

B. The amplitudes of complex moduli does not decrease with
frequency

Let us consider a system made of a number of rheological elements arranged in parallel
or in series, assuming that each element is either a spring or a dashpot or a fractional
element. Fractional elements have moduli of the form m(ω) = cβ (iω)β, with real pref-
actors cβ and exponents β between 0 (spring limit) and 1 (dashpot limit). Here, m can
be any kind of modulus: shear, compression, etc.

The complex modulus m(ω) of each element thus has the two following properties: (i),
both the real part and the imaginary part of m(ω) are non-negative, and (ii), the same
is true of its derivative dm/dω with respect to angular frequency. For a combination
in parallel of such elements, moduli add up and so do their derivatives, thus properties
(i) and (ii) are conserved. As a consequence, they also have the property that (iii),
the magnitude |m(ω)| does not decrease with frequency (it is constant in the case of
springs).
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Combinations in series involve adding up compliances 1/m(ω). These display similar
properties, this time with non-negative real parts and non-positive imaginary parts,
and vice-versa for derivatives. These properties are also conserved under summation.
They revert to the initial properties upon inversion and also imply property (iii).

Thus, multiple combinations, in parallel and in series, of elements whose moduli dis-
play properties (i) and (ii), such as springs, dashpots and fractional elements, also
display these properties.

From the above considerations, we find that the magnitude |m(ω)| of the complex
modulus m(ω) of the system does not decrease with frequency.

C. 2D hexagonal geometry

In this case, the geometry remains as before, but with Z = 0. For clarity, we keep the
former 2D notations for cortical tension σ0, and where necessary, we use the typical cell
height, which we note h0 and assume constant and equal to 10µm.

As in Fig. 2, cell cortices are indexed by a or b depending on their orientations. Cortices
along axis y, labeled a, are characterized by a length `a = `0 + δ`a, a 1D tension h0 σa,
equivalent to a 2D stress σa and a rheology σa = σ0 + µ δ`a`0 with generalized modulus µ.

Similarly, b cortices are characterized by `b = `0+δ`b, and σb = σ0+µ δ`b`0 , as well by their
orientation θ = π

6 + δθ. Force balance at a vertex now reads 2σa− 4σb sin(θ) = 0 where,
by symmetry, cortices a remain along direction y upon tissue traction along the x-axis,
(see Eq. (16) for comparison). The macroscopic (2D) stress components are expressed
as a function of microscopic parameters as:

Σxx =
h0

S
4`bσb cos2 θ − p2D , (81)

Σyy =
h0

S

(
2`a σa + 4`b σb sin2 θ

)
− p2D , (82)

(see Eqs. (29-30) for comparison).

C.1. Incompressible case

We first consider the intra-cellular material to behave as an inviscid, incompressible fluid,
with pressure p2D and constant area S = XY = S0.

Our calculation is performed along the same lines as in the 3D case. We find a diverging
tissue in-plane bulk modulus K2D (which reflects the assumed incompressibility of each
cell within the tissue, S = S0) while the shear modulus reads:

G2D(ω) =
σ0√

3

σ0 + 3µ(ω)

σ0 + µ(ω)
. (83)

The Young and Poisson moduli are obtained according to Eqs. (37-38): since K2D =∞,
E2D = 4G2D and N2D = 1. In the high-frequency limit ω → ∞, where |µ(ω)| becomes
much larger than σ0, expression (83) is bounded and yields E2D(∞) = 4

√
3σ0, which is
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independent of frequency and real, i.e., it corresponds to an elastic rheology, at variance
with the power-law behaviour observed experimentally in this limit [14]. In addition, for
a realistic value of the cortical tension σ0 = 0.3 mN/m [21], we obtain the high frequency
limit E2D(∞) = 2.1 mN/m, short of the order of magnitude observed experimentally in
suspended monolayers (E2D ∼ 200 mN/m, corresponding to E3D = 20±2 kPa measured
in [12] for h0 = 10µm).

C.2. Compressible case

In an attempt to circumvent this unsuitable elastic behaviour of our 2D model in the
high frequency limit, we questioned the cell incompressibility assumption in the 2D
calculation. Indeed, the 3D cell volume conservation expected on the time scales relevant
to this study is compatible with in-plane variations of the apical cell surface, as the cell
height varies correspondingly so as to conserve cell volume. We tested this hypothesis
by replacing the incompressibility condition S = S0 by a condition on apical surface
variations dS/S0 = −dp2D/kc involving the cell pressure p2D and a 2D cell compression
modulus kc. In this case, we find the following expressions of macroscopic moduli which
generalize the previous results to finite values of the cell compression modulus kc:

K2Dc =

(
kc −

σ0√
3

)
+

µ√
3
, (84)

G2Dc =
σ0√

3

σ0 + 3µ

σ0 + µ
, (85)

1

E2Dc
=

1

4K2Dc
+

1

4G2Dc
, (86)

N2Dc = 1− 2σ0 (σ0 + 3µ)√
3 kc(σ0 + µ) + µ(3σ0 + µ)

. (87)

According to Eq. (86), the high-frequency ω → ∞ behaviour of the macroscopic
Young’s modulus is however unchanged, with an elastic limit E2Dc(ω) → 4

√
3σ0, and

remains incompatible with the power-law behaviour observed in this limit. It is easy
to show that the complex values of K2Dc and G2Dc belong to the same quadrant of
the complex plane. As a consequence, the modulus of 1

E2Dc
is always larger than the

modulus of 1
4G2Dc

. This implies that the modulus of E2Dc is always smaller than its

high-frequency limit E2Dc(∞) = 4
√

3σ0. As was already the case for an incompressible
2D tissue, the order of magnitude of the Young’s modulus obtained in the compressible
case is incompatible with the experimentally measured value.

C.3. Disordered 2D monolayer

Simulations will be needed to obtain the corresponding results for disordered 2D mono-
layers, with cells differing for instance in surface area, edge length [63], number of first
neighbours or cortex tensions or moduli. Any kind of disorder will in general lead to
unequal cell pressures and, correspondingly, to edge curvatures. However, two limiting
behaviours can be anticipated.
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(i) At low frequencies, since the cortex modulus is negligible as compared to the
rest tension σ0, the disordered monolayer will behave elastically at small deformations.
Its moduli will be proportional to σ0 (just like in the ordered case) as results from
dimensional analysis, a fact that is well known in the liquid foam community [29, 30].

(ii) By contrast, in the large frequency limit, unless the cortex rheology is purely elastic
in that limit, the cortex modulus will dominate over the rest tension (|µ|/σ0 → ∞).
Thus, unless all cortices remain undeformed at first order, the corresponding forces
proportional to µ will become dominant within the macroscopic stress. Now, as for
cortex deformation, it is to be expected that, for general disordered networks as opposed
to the ordered, honeycomb structure, there will exist no deformation mode that will
conserve both each cell cytoplasm surface area and each edge length, at first order.
As a result, any macroscopic deformation will result in at least some cell-cell junctions
changing their lengths. The corresponding tensions, and hence the macroscopic stress,
will therefore be sensitive to the cell cortex rheological modulus, µ.

D. Affine behaviour

As mentioned in Section 2.2, some elements in the cell deform in a non-affine manner,
that is, not in the same proportions as the monolayer.

In order to demonstrate that, let us consider how two quantities are affected by the
applied deformation εx, namely: (i) the deformation εa = `a/`0 of the a facets, defined
by Eq. (22), and (ii) the transverse deformation εy of the representative volume, defined
by Eq. (19). Of course, because we are considering linear response, they are both pro-
portional to the applied deformation εx. For the sake of clarity, let us assume that the
monolayer is being stretched in the x-direction (εx > 0). As a result, it shrinks in the
y-direction (εy < 0). As for the a facets, three options are possible, as shown on Fig. 6.
The a facets can shrink exactly like the sample (affine deformation εa = εy < 0, Fig. 6b).
They can shrink more than the sample (εa < εy < 0, Fig. 6c). They can shrink less
(εy < εa ≤ 0, Fig. 6d).

Hence, it appears reasonable to evaluate the difference between εa and εy, divided by
the applied deformation, and choose it as an indicator of non-affinity for the monolayer
subjected to the present deformation, which we name N :

N ≡ εa − εy
εx

(88)

=
(kL + gL − σ0L)(2kH + Ψ(3σ0L + kL + 9gL))

D
, (89)

D = 4Ψσ2
0L + 2(kH + gH)σ0L + (7kL + 15gL)Ψσ0L ,

+2(kH + gH)(kL + gL) + Ψ(kL
2 + 10gLkL + 9gL

2) . (90)

The non-affinity indicator N turns out to be nonzero unless a very specific condition is
met:

kL + gL = σ0L . (91)
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Figure 6: Deformation modes. (a-d): the monolayer is stretched in the x-direction.
(e-g): the monolayer is stretched isotropically in the x-y plane. (a, e): the blue
dashed rectangle with intermediate lines is a guide for the eye that matches the
undeformed (dashed) hexagon. The corresponding rectangle after deformation
is drawn with a blue, solid line. (b, f): the deformation is affine (hexagon
deformation matches overall deformation, see intermediate blue lines, which
implies εa = εy), when (b) N = 0 or when (f) the deformation is isotropic.
(c): a facets shrink more (εa < εy < 0, N < 0) than the overall sample
(compare deformed hexagon and intermediate blue lines). (d): a facets shrink
less (εy < εa ≤ 0, N > 0) than the overall sample (compare deformed hexagon
and intermediate blue lines). (g): under isotropic in-plane stretching, while
horizontal facets are stretched isotropically, lateral facets are elongated along
their respective horizontal directions in the x-y plane and shrink along direction
z.

This expression can be partly understood qualitatively. In the limit where the facet
moduli kL and gL are much smaller than the rest tension σ0L (this corresponds to the
low frequency limit), the tensions will remain unchanged by the deformation, and it is
expected that the angles between lateral facets, which result from the force balance,
remain equal to their initial value, 2π/3 (see Fig. 6c). It is obvious that the a facets then
shrink more than the overall sample (see blue lines for comparison). And indeed, N is
then negative, consistently with the fact that kL, gL � σ0L. By contrast, when kL and
gL are much larger than σ0L (this corresponds to the high frequency limit), the facets
are purely elastic and their dimensions tend to keep constant dimensions (see Fig. 6d).
It is obvious that the a facets then shrink less than the overall sample, and indeed, N
is positive in this limit.

Let us recall that the calculation in the present work was carried out using the
simplifying assumption, stated in Section 2.2, that basal and apical facets deform affinely,
i.e., according to the overall deformation, measured by εx and εy. That assumption is
expressed through Eq. (20) for the stress in those facets (assumed uniform), as well as
through Eq. (16) which states that the vertical edge where lateral facets meet receives
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no forces from the horizontal facets.
Whenever εa and εy differ according to the present calculation, the edges where lateral

facets meet (hexagon corners) and the initially corresponding points of the horizontal
facets do not coincide after the overall deformation has been applied (see mismatch
between the hexagon corners and the intersections of blue lines in Figs. 6c-d). Yet such
a point is in reality the corner of three neighbouring cells, and obviously the horizontal
facets should remain attached to the lateral facets! Thus, in reality these corresponding
points are maintained attached to each other (through a tensile force) and the real
deformation of facets a adopts some intermediate value between εy and the value of εa
calculated here. In other words, the sign of N is correct, but its magnitude is somewhat
overestimated in the framework of the present assumption.

Note that unless the cortex rheology is purely elastic in some frequency range (i.e.,
with real moduli), there is no frequency where condition (91) can be satisfied, hence the
deformation is always somewhat non-affine.

For the sake of completeness, let us mention that we have also explored several refined
geometrical descriptions of the horizontal facet kinematics. Although they did fix the
mismatch between lateral facet vertical edges and horizontal facets, none of them was
both reasonably simple and six-fold symmetric. Hence, we resolved to keep the present
version, albeit somewhat unconsistent as detailed in the present Appendix. Only with
a highly refined mesh both in the horizontal and the lateral facets can one hope to fully
deal with this issue and calculate the exact amplitude of the non-affine deformations in
the monolayer. That is beyond the scope of the present work.
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