LSTM Path-Maker : une stratégie à base de réseau de neurones LSTM pour la patrouille multiagent
Résumé
Depuis plus d’une décennie, la tâche de la patrouille multiagent a attiré l’attention de la communauté multiagent de manière croissante, notamment en raison de son grand nombre d’applications potentielles. Cependant, les algorithmes à base de méthodes d’apprentissage profond pour traiter cette tâche ont jusqu’à présent peu été développés. Dans cet article nous proposons d’intégrer un réseau de neurones récurrent (RNN) à une stratégie de patrouille multiagent en introduisant un modèle formel de stratégie multiagent basée sur l’architecture de RNN LSTM que nous avons nommé LSTM-Path-Maker. Le réseau LSTM est entraîné sur des traces de simulation d’une stratégie coordonnée et centralisée, puis embarqué dans chaque agent en vue de patrouiller une zone le plus efficacement possible sans communication. Enfin, cette nouvelle stratégie basée sur l’architecture LSTM est évaluée en simulation et comparée à deux stratégies représentatives de référence: d’une part une stratégie coordonnée et d’autre part une stratégie réactive. Les résultats indiquent que la stratégie proposée, comparable à une stratégie réactive car non coordonnée, est meilleure que la stratégie réactive.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|