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Abstract. Link prediction has become a common way to infer new associations
among actors in social networks. Most existing methods focus on the local and
global information neglecting the implication of the actors in social groups. Fur-
ther, the prediction process is characterized by a high complexity and uncertainty.
In order to address these problems, we firstly introduce a new evidential weighted
version of the social networks graph-based model that encapsulates the uncer-
tainty at the edges level using the belief function framework. Secondly, we use
this graph-based model to provide a novel approach for link prediction that takes
into consideration both groups information and uncertainty in social networks.
The performance of the method is experimented on a real world social network
with group information and shows interesting results.

Keywords: social network analysis, link prediction, uncertain social network,
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1 Introduction

Social networks are usually conceptualized as a graph representation that provides a
mapping of the ties relating the social structures. They are very dynamic and alter
quickly over specific time intervals. New connections are established continuously be-
tween the network nodes. One of the most popular researches in social network analysis
that studies social networks evolving is link prediction. It addresses the problem of pre-
dicting the existence of new or missing connections in social networks.

Yet, existing methods for link prediction are devoted to social networks under a cer-
tain framework. In fact, most methods assume the links to have binary values, either
1 (exist) or 0 (¬ exist). Still, the structure of social network critically depends on the
accurate structure of the data. That is, sparse distortions affect considerably the analysis
results. As pointed out in [2, 7], social networks data are frequently noisy and missing,
they are also prone to errors of observation (e.g., missing information about the nodes
and/or edges from the data). Hence, one would have to deal with two possible prob-
lems: take all the nodes and edges into account risking the possibility of considering
erroneously false ones into the network or remove all the uncertain nodes and/or edges
risking the issue of missing nodes and edges [7]. Furthermore, the unreliability of the
tools used for the construction of the social network can lead to distortions [6]. On that
point, we propose to incorporate uncertainty into the graph structure of social networks.



Generally, most existing studies consider weighted networks with integer values.
Yet, one way for representing an uncertain network is to weight the edges with values
in [0, 1] to depict the degrees of uncertainty regarding the links’ existence [6]. In fact,
several real world social networks are characterized by shifting degrees of uncertainty,
more particularly the large scale ones [2]. For this reason, we embrace the theory of
belief functions [4, 11] as a general framework for reasoning under uncertainty. We use
its assets for the handling of imprecision in data and the modeling of partial and total
ignorance to quantify the degrees of uncertainty into the edges of the social network.

Furthermore, we develop a new approach for inferring new links in a social network
characterized by uncertain edges based on group information and structural neighbor-
hood measures of nodes. In fact, most of the existing methods are based on the local
node neighborhood and global paths measures. Yet, these latter do not take into account
a very important aspect in social networks which is its community structure. The par-
ticipation of actors in social groups can bring important information concerning their
characteristics and thus, may enhance the prediction task. To this end, we propose a
method that performs exclusively with the belief function tools. The degrees of un-
certainty of the similar nodes from the common shared groups are considered. They
are revised, transferred and combined as independent sources of information and are
afterward employed to get an outlook on the existence of a new link.

The rest of the paper is organized as follows: Section 2 gives a brief survey of the
link prediction problem and the existing approaches. Section 3 provides some basic
knowledge of the belief function theory notations and definitions. In Section 4, we
present our evidential link-based graph model for a social network under an uncertain
framework. Section 5 reveals the proposed approach for link prediction under the belief
function framework. Section 6 illustrates the proposed method and Section 7 gives the
experimental results. Finally, Section 8 concludes the paper.

2 LINK PREDICTION

Due to its great applicability, link prediction constitutes a rich research area and has
attracted many researchers from various fields. Namely, in social networks, link pre-
diction is a basic task in social relationships formation. It can be applied to infer the
new relations to be formed in the future, expose links which already exist but are not
apparent, or even assist users to make new connections.

In most common formulation, the link prediction problem can be defined as follows
[8]: given a current state of the social network graph in time t, the aim is to accurately
infer the potential edges to be added to the unlinked pairs of nodes given a snapshot
of the social network during the time interval [t, t′]. It may also be considered as the
problem of deriving the missing links of the network. In fact, one may construct a so-
cial network from a given observable data and try to derive the invisible links that are
likely to exist. Most of the state-of-the-art link prediction methods have focused on two
groups of network information that can be categorized into local (node neighborhood)
and global (path) information. Local information-based approaches use the local sim-
ilarities of the nodes characteristics in the network. These latter may be the essential
attributes, i.e., gender, age, interests, or structural indices which are based solely on the



network structure, i.e., common neighbors that two nodes share. Yet, nodes’ attributes
are generally not available or hidden, thus the majority of local approaches use met-
rics based on the structural similarities. The global approaches use the proximity of the
nodes in the network, they employ metrics based on the ensemble of paths to determine
the closest nodes in the network. The intuition is that the more close two nodes are in
the network, the more they tend to be linked or to influence each other in the future.

The main advantage of these measures is that they are generic, they can be applied
to networks from several fields. While the global methods perform better than the local
ones, some path based metrics are time consuming as they inquire for the topological
information of the whole network which is in many cases not available. Besides, a rel-
evant aspect characterizing social networks is not considered which is the participation
of the actors in social groups (clusters, communities). In fact, in several social networks,
users are involved in many social groups at the same time. Thus, hybrid methods that
use local and cluster information have been proposed [16, 18, 19]. That is, our proposed
method is based on local and group similarity measures. Thus, we recall in this section
some state-of-the-art structural measures based on local and group information.

2.1 Local information based measures

Some of the base measures from the literature are “Common Neighbors”[10], “Jac-
card’s Coefficient”[5] and “Adamic/Adar”[1]. Let τ(vi) denote the set of neighbors
of the node vi in the social network. The common neighbors measure denoted by
CN(vi, vj) characterizes the number of common neighbors between two nodes vi and
vj . It is defined as:

CN(vi, vj) = |τ(vi) ∩ τ(vj)| (1)

On the other hand, the Jaccard’s Coefficient considers all the the neighbors of the pair
(vi, vj). It is defined as follows:

JC(vi, vj) =
|τ(vi) ∩ τ(vj)|
|τ(vi) ∪ τ(vj)|

(2)

The Adamic/Adar measure denoted by AA(vi, vj) weights the contribution of each
common neighbor vk by the inverse of the logarithm of its degree, it is defined as:

AA(vi, vj) =
∑

vk∈(τ(vi)∩τ(vj))

1

log|τ(vk)|
(3)

2.2 Group information based measures

Structural similarity measures based on group information use both local structure
of the nodes and group information, they include the Common Neighbors of Groups
(CNG) and Common Neighbors Within and Outside of Common Groups (WOCG)
[18, 19]. Let ΛGvivj denote the set of common neighbors of the pair (vi, vj) belonging
to the group G. The CNG depicts the size of the set of common neighbors of (vi, vj)
that belong to at least one group G to which vi or vj is part of. It is defined as:

SCNGvivj = |ΛGvivj | (4)



Let Λvivj = ΛWCG
vivj ∩ ΛOCGvivj be the set of common neighbors of (vi, vj) such that

ΛWCG
vivj is the set of common neighbors within common groups (WCG) and ΛOCGvivj is

the set of common neighbors outside the common groups (OCG). The WOCG measure
is defined as:

sWOCG
vivj =

|ΛWCG
vivj |
|ΛOCGvivj |

(5)

3 BELIEF FUNCTION FRAMEWORK

The belief function theory [4, 11] is a general framework for the representation and
management of uncertain evidence. Let Θ be the frame of discernment, an exhaustive
and finite set of mutually exclusive events associated to a given problem. 2Θ is the
power set of Θ, it includes all the possible subsets and formed unions of events, and the
empty set which matches the conflict. A basic belief assignment (bba), denoted by m,
is the mass assigned to an event given a piece of evidence. It is defined as:

m : 2Θ → [0, 1]∑
A⊆Θ

m(A) = 1 (6)

A bba with at most one focal element A different from Θ is called a simple support
function (ssf ). It is defined as [13]:{

m(A) = 1− ω,∀A ⊂ Θ
m(Θ) = ω, ω ∈ [0, 1]

(7)

Beliefs can be fused using combination rules. In particular, the conjunctive rule of com-
bination permits to combine evidence given by two reliable and distinct sources of in-
formation characterised by two bba’s m1 and m2. It is denoted by ∩© and is defined by
[14]:

m1 ∩©m2(A) =
∑

B,C⊆Θ:B∩C=A

m1(B) ·m2(C) (8)

While combining evidence onΘ, it is important to take into consideration the reliability
of the evidence. For that, a so-called discounting mechanism can be performed [11]:

αm(A) = (1− α) ·m(A), for A ⊂ Θ
αm(Θ) = α+ (1− α) ·m(Θ) (9)

Where α ∈ [0, 1] represents the discount rate (coefficient).
LetΘ andΩ be two disjoint frames of discernment. In order to establish the relation

between them, one may use a multi-valued mapping [4]. In fact, a multi-valued mapping
function denoted by τ , permits to bring together to different frames of discernment the
subsets B ⊆ Ω that can possibly match under τ to a subset A ⊆ Θ:

mτ (A) =
∑

τ(B)=A

m(B) (10)



The Transferable Belief Model (TBM), proposed by Smets [15], is one of the well-
known interpretations of the belief function theory. In the TBM, decision making is
performed at the pignistic level where beliefs are transformed into probabilities using
pignistic measures denoted by BetP [12]:

BetP (A) =
∑
B⊆Θ

|A ∩B|
|B|

m(B)

(1−m(∅))
, for all A ∈ Θ (11)

4 EVIDENTIAL LINK-BASED SOCIAL NETWORK

Most social networks graphs include nodes and edges that are assumed to be certain
1 (exist) 0 (¬ exist). The authors in [6] highlighted the importance of incorporating
uncertainty when dealing with social networks and proposed to weight the strengths of
the links by probabilities. In [3], the authors proposed a belief social network where the
nodes, edges and messages are weighted by bba’s. The aim is to detect the nature of
a message that flows through the network. Yet, the purpose of this work is to treat the
uncertainty upon the links. Thus, we introduce our evidential link-based social network
graph model where uncertainty is encrypted using the belief function theory. Each edge
vivj has assigned a bba defined on Θvivj = {Evivj ,¬Evivj} denoted by mvivj , i.e.,
Evivj means that vivj exists and ¬Evivj means it is absent. That is, an evidential link-
based social network graph is defined as G(V,E) where: V = {v1, . . . , v|V |} is the set
of nodes, and E is the set of edges: An edge vivj ∈ E has assigned a bba mvivj that
depicts the degree of uncertainty regarding its existence.
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Fig. 1: A social network graph with bba’s weighted edges and group belonging nodes

Fig. 1 illustrates an example of such a bba’s edge weighted graph structure. In fact,
instead of weighting the links by either 1 or 0 to demonstrate whether or not a link
is existent, we ascribe a bba with values in [0, 1] to quantify the degree of uncertainty
about the link existence. Note that a link vivj is represented if the pignistic probability
BetP vivj (Evivj ) > 0.5 which means that its likelihood to exist is greater than 50%.



5 EVIDENTIAL LINK PREDICTION BASED ON GROUP
INFORMATION

Our proposed method for link prediction uses node neighborhood and group informa-
tion given a snapshot of a graph. In fact, an earlier phase for the partitioning of the
network into groups needs to be applied, most works apply algorithms for communities
detection with low computational cost. Yet, this makes the prediction quality dependent
to the community detection algorithm performance. The authors in [18, 19] proposed
to eliminate this dependency by using the natural information of groups, i.e., the infor-
mation from groups of interests to which users participate to. Thus, each edge vivj has
assigned a feature vector that corresponds to the structural similarity measures based
on local and group information as explained in Section 2. CN (Equation 1), JC (Equa-
tion 2), AA (Equation 3), CNG (Equation 4) and WOCG (Equation 5) are employed
as similarity measures since they are simple and have proved their efficiency in sev-
eral social networks domains [10, 18, 19]. The feature vector is used to compute the
similarity between the link to be predicted and its neighbors belonging to the shared
groups. The intuition is that in many real world social networks, users with similar ex-
periences or interests are more likely to share a relationship than those that do not share
common characteristics. The most similar link is subsequently considered as a source
of information. Our formulation of the link prediction problem is as follows:

Given a current state of the graphG(V,E) at time t, predict the existence of an edge
vivj between two the unlinked nodes (vi, vj) at t + 1 by considering the relationships
shared in their common groups. To this end, we propose a method for the prediction of
the existence of a link between (vi, vj) based on the steps outlined below.

5.1 Distance computation

At a first place, the Euclidean distance D(vivj , vkvl) between the link vivj and each
link vkvl included in the common shared clusters is computed. Structural similarity
measures based on local and group information are used as features. That is,D(vivj , vkvl)
is used to evaluate the similarity between vivj and the neighboring links. The most sim-
ilar link to vivj with the smallest distance is considered in the prediction task. Note that
the distance metric is divided by its maximum value in order to get values in [0, 1]. It is
computed as follows:

D(vivj , vkvl) =

√∑n
s=1(x

s
vivj − ysvkvl)2

Dmax
(12)

Where s is the index of a structural similarity metric, xvivj and yvkvl are respectively
its values for vivj and vkvl and Dmax is the maximum value of the Euclidean distance.

5.2 Reliability computation

In order to quantify the degree of reliability of the most similar link, a discounting
operation (Equation 9) is applied using the value given by the distance measure as a



discount coefficient denoted by α = D(vivj , vkvl). In fact, the more similar the two
links are, the more reliable the similar link is, i.e., if the two links are totally similar
D(vivj , vkvl) = 0 then vkvl is considered as a totally reliable source of evidence i.e.,
α = 0. Thus, mvkvl is discounted as follows:

αmvkvl({Evkvl}) = (1− α) ·mvkvl({Evkvl})
αmvkvl({¬Evkvl}) = (1− α) ·mvkvl({¬Evkvl})
αmvkvl(Θvkvl) = α+ (1− α) ·mvkvl(Θvkvl)

(13)

Note that when there is more than one most similar link, i.e., two links with smallest
equal distances, the link with the highest mass on the event “exist” is chosen since the
degree of certainty of its existence would be higher.

5.3 Information transfer and fusion

To transfer the discounted bba of the most similar link vkvl to the frame Θvivj , a multi-
valued operation denoted by τ : Θvkvl → 2Θ

vivj is applied to bring together the ele-
ments as follows:

• The discounted mass αmvkvl({Evkvl}) is transferred to mvivj
vkvl({Evivj});

• The discounted mass αmvkvl({¬Evkvl}) is transferred to mvivj
vkvl({¬Evivj});

• The discounted mass αmΘvkvl (Θvkvl) is transferred to mvivj
vkvl(Θ

vivj ).

Where α = D(vivj , vkvl) and mvivj
vkvl denotes the bba of vivj on Θvivj given the most

similar link, here vkvl.
Upon transferring αmvkvl to 2Θ

vivj , the bba of vivj is updated given the new evi-
dence obtained from the most similar link. To accomplish this, the initial bba mvivj and
m
vivj
vkvl are combined using the conjunctive rule of combination (Equation 8). This step

is essential, as it permits to fuse the information provided by the most similar link and
treat it as an independent source of evidence.

5.4 Decision making

At last, the pignistic probability BetP vivj (Evivj ) is computed (Equation 11) to make
a decision about the existence of the link vivj on the graph. As a matter of fact, when
BetP vivj (Evivj ) > 0.5 it means that the likelihood that a link exist between vi and vj
at t+ 1 has probability > 50%, it would be absent otherwise.

6 ILLUSTRATION

To illustrate our link prediction approach, we try to predict the existence of a new link
between the pair of nodes (a, b) presented in Fig. 1. To do so, the edge ab is assumed to
be present in the graph in order to be able to compare its structural attributes and those
of the other links belonging to the shared groups G2 and G3. Thus, the neighboring
links in the common shared groups are: ai, ac, ae, bg, bh, hg, be, bc, ce, gi. We apply
the steps presented in Section 5.



Step 1: At first, we compute the Euclidean distance between ab and each neighboring
link included in the common groups G1 and G2 shared between a and b using Equa-
tion 12. The results are reported in Table 1.

Table 1: Distance between ab and the links in the common shared groups of Fig. 1

Distance ac ae bc be bg bh ce hg ai gi
ab 0.282 0.282 0.283 0.283 0.551 0.599 0.357 0.638 1 1

Hence, the most similar links to ab are ac and ae. That is, we have to use one of them
to update mab. Suppose we have bba’s allocated as follows:
mab({Eab}) = 0.35

mab({¬Eab}) = 0.42

mab(Θab) = 0.23

,


mac({Eac}) = 0.65

mac({¬Eac}) = 0.2

mac(Θac) = 0.15

and


mae({Eae}) = 0.55

mae({¬Eae}) = 0.25

mae(Θae) = 0.2

Thus, ac is chosen as a source of information since mac({Eac}) > mae({Eae}).

Step 2: The next step is to discount the bba mac using D(ab, ac) to quantify its degree
of reliability. We denote α = D(ab, ac) the discount rate. Thus, αmac after the dis-
counting operation is: αmac({Eac}) = (1−0.282) ·0.65 = 0.4667, αmac({¬Eac}) =
(1− 0.282) · 0.2 = 0.1436 and αmac(Θac) = 0.282 + (1− 0.282) · 0.15 = 0.3897.

Step 3: When the discounted mass of the most similar link is transferred using the τ
function (Equation 10), the mass of ab given ac is:mab

ac({Eab}) = 0.4667,mab
ac({¬Eab}) =

0.1436 and mab
ac(Θ

ab) = 0.3897. To update the bba of the link ab, mab and mab
ac are

fused by applying the conjunctive rule of combination (Equation 8). Thus, we get:
mab ∩©mab

ac({Eab}) = 0.407, mab ∩©mab
ac({¬Eab}) = 0.257, mab ∩©mab

ac(Θ
ab) = 0.09

and mab ∩©mab
ac(∅) = 0.246.

Step 4: Finally, the pignistic probability BetP ab (Equation 11) is computed to make a
decision on the link existence between the nodes a and b. Thus, BetP (Eab) = 0.575
and BetP (¬Eab) = 0.425. Hence, there is 57% chance that a link may exist between
a and b. That is, a link would be schematized in the graph representation.

7 EXPERIMENTS

In order to test our approach for link prediction, it is necessary to consider an uncertain
social network. Yet, uncertain social network data are not available. Thus, we prepro-
cessed a real world social network of 4K nodes and 88K edges of Facebook friendships
obtained from [9] in order to transform it into an uncertain social network.

7.1 Network pre-processing
To transform the social network into a belief-link based social network, we follow two
major steps: (1) we generate three snapshots of the network from the data (2) then we
simulate mass functions on the basis of the three first graphs to get a belief link-based
version of the social network.



Graphs generation At first, we create three graphs from the data by removing ran-
domly a portion of the edges. That is, we get three graphs that we callG(t−2),G(t−1)
and G(t). Indeed, this technique is widely used in the link prediction literature. In sev-
eral works, a number of edges is pruned from the graph so that they will be considered
in the prediction process [17, 20].

Mass functions simulation In order to generate the belief link-based version of the
social network, we weight each link vivj by a simulated bba regarding its links existence
on the basis of G(t− 2), G(t− 1) and G(t) as follows:

– If vivj exists in the three graphs G(t− 2), G(t− 1) and G(t) then a ssf mvivj is
assigned such that mvivj ({Evivj}) ∈ [2/3, 1];

– If vivj exists in G(t − 2) and G(t) or G(t − 1) and G(t) then a mass mvivj is
generated such that mvivj ({Evivj}) ∈ [1/3, 2/3[, mvivj ({¬Evivj}) ∈ ]0, 1/3];

– If vivj exists only in G(t) then a mass function mvivj is assigned such that
mvivj ({Evivj}) ∈ ]0, 1/3], mvivj ({¬Evivj}) ∈ [1/3, 2/3];

– If vivj does not exist in G(t) and exists in G(t− 2) and G(t− 1) then a ssf mvivj

is assigned such that mvivj ({¬Evivj}) ∈ ]1/3, 2/3];
– If vivj exists only in G(t−2) or in G(t−1) then a ssf mvivj is assigned such that
mvivj ({¬Evivj}) ∈ ]0, 1/3].

7.2 Results

To test our proposed link prediction method, we produce three different belief link-
based versions of the social network that we call G1,G2 and G3. We evaluate the ac-
curacy of our link prediction algorithm using the precision measure. It expresses the
number of correctly predicted existent links nc with respect to the set of analyzed links
n. It is defined as follows:

precision =
nc
n

(14)

Table 2: The prediction results measured by the precision
G1 G2 G3

Precision 0.54 0.56 0.57

Table 2 gives the obtained precision values for the three experiments. As illustrated,
the prediction quality measured by the precision gives values higher than 50% reaching
a maximum performance of 57% for G3. Hence, validity and performance of the new
approach is empirically confirmed.

8 CONCLUSION

In this paper, we have provided an uncertain graph-based model for social networks
whose edges are valued with mass functions given by the belief function theory. Fur-
thermore, we have proposed a novel link prediction approach that takes into considera-
tion both uncertainties in data and group information in social networks. Our method is



exclusively based on the belief function framework tools, evidence from the neighbors
of the common groups is revised, transferred and combined to successfully predict new
connections. As part of future work, extension to the case of both uncertain nodes and
edges would be considered. Also, comparison with existing methods is left open for
future work.
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Jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)
[6] Johansson, F., Svenson, P.: Constructing and analyzing uncertain social networks from un-

structured textual data. In: Mining Social Networks and Security Informatics. pp. 41–61.
Lecture Notes in Social Networks, Springer (2014)

[7] Kossinets, G.: Effects of missing data in social networks. Social Networks 28, 247–268
(2003)

[8] Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am.
Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)

[9] McAuley, J.J., Leskovec, J.: Learning to discover social circles in ego networks. In: NIPS.
pp. 548–556 (2012)

[10] Newman, M.E.J.: Clustering and preferential attachment in growing networks. Phys. Rev.
E (2001)

[11] Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)
[12] Smets, P.: The transferable belief model for quantified belief representation. In: Handbook

of Defeasible Reasoning and Uncertainty Management Systems. vol. 1, pp. 267–301 (1988)
[13] Smets, P.: The canonical decomposition of a weighted belief. In: Proceedings of the Four-

teenth International Joint Conference on Artificial Intelligence, IJCAI 95. vol. 14, pp.
1896–1901 (1995)

[14] Smets, P.: Application of the transferable belief model to diagnostic problems. International
Journal of Intelligent Systems 13(2-3), 127–157 (1998)

[15] Smets, P., Kennes, R.: The transferable belief model. Artif. Intell. 66(2), 191–234 (1994)
[16] Soundarajan, S., Hopcroft, J.: Using community information to improve the precision of

link prediction methods. In: Proceedings of the 21st International Conference Companion
on World Wide Web. pp. 607–608. ACM (2012)

[17] Valverde-Rebaza, J., de Andrade Lopes, A.: Exploiting behaviors of communities of twitter
users for link prediction. Social Network Analysis and Mining 3(4), 1063–1074 (2013)

[18] Valverde-Rebaza, J.C., Lopes, A.A.: Link prediction in complex networks based on cluster
information. In: SBIA 2012 - 21th Brazilian Symposium on Artificial Intelligence. vol.
7589, pp. 92–101. Springer (2012)

[19] Valverde-Rebaza, J.C., Lopes, A.A.: Link prediction in online social networks using group
information. In: ICCSA 2014. vol. 8584, pp. 31–45. Springer (2014)
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