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Abstract. The fusion of imperfect data within the framework of be-
lief functions has been studied by many researchers over the past few
years. Up to now, there are some proposed combination rules dealing
with dependent information sources. Moreover, the choice of one rule
among several alternatives is crucial but the criteria to be based on are
still non clear. Thus, in this paper, we evaluate and compare some de-
pendent combination rules for selecting the most efficient one under the
framework of classifier fusion.
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1 Introduction

Pattern recognition has been extensively explored in last decades almost always
using ensemble classifiers. Thus, several combination approaches have been pro-
posed to combine multiple classifiers such as plurality, Bayesian theory, belief
function theory, etc [6]. This latter has many interpretations such as the Trans-
ferable Belief Model (TBM) [6] which offers numerous combination rules. Some
of these rules assume the independence of information sources [5], [8] while others
deal only with dependent information sources [1, 2]. The choice of the convenient
rule is a crucial task but it has not been yet deeply explored. In this paper, we
are interested in the combination of multiple classifiers within the framework
of belief functions to evaluate and compare some dependent combination rules
in order to pick out the most efficient one among them. Basically, we compare
the most known dependent combination rules: the cautious conjunctive rule [2],
the normalized cautious rule [2] and the cautious Combination With Adapted
Conflict rule [1]. The remaining of this paper is organized as follows: we provide
in Section 2 a brief overview of the fundamental concepts of the belief function
theory. We present three combination rules dealing with dependent sources of
information in Section 3. Section 4 is devoted to describing our comparative
approach. Experiments and results are outlined in Section 5. Section 6 draws
conclusion.



2 Fundamental concepts of belief function theory

Let Θ be a finite non-empty set of N elementary events related to a given
problem, called the frame of discernment. The beliefs held by an agent on the
different subsets of the frame of discernment Θ are represented by the so-called
basic belief assignment (bba). The bba is defined as follows:

m : 2Θ → [0, 1]∑
A⊆Θ

m(A) = 1 (1)

The quantity m(A) states the degree of belief committed exactly to the event
A. From the basic belief assignment, we can compute the commonality function
(q). It is defined as follows: q(A) =

∑
B⊇A m(B).

Decision making aims to select the most reasonable hypothesis for a given
problem. In fact, it consists of transforming beliefs into probability measure
called the pignistic probability denoted by BetP and defined as follows [10]:

BetP (A) =
∑
B⊆Θ

|A ∩B|
|B|

m(B)

1−m(∅)
∀ A ∈ Θ (2)

The dissimilarity between two bbas can be computed. One of the well-known
measures is the one proposed by Jousselme [4]:

d(m1,m2) =

√
1

2
(m1 −m2)TD(m1 −m2) (3)

where D is the Jaccard similarity measure defined by:

D(A,B) =


1 if A=B= ∅
|A ∩B|
|A ∪B|

∀ A,B ∈ 2Θ
(4)

3 Combination of pieces of evidence

The TBM framework offers several tools to aggregate a set of bbas induced form
dependent information sources:

1. The cautious conjunctive rule, denoted ∧⃝, has been proposed by [2] in order
to aggregate pieces of evidence induced from reliable dependent information
sources using the conjunctive canonical decomposition proposed by Smets
[9]. Let m1 and m2 be two non-dogmatic bbas (m(Θ) > 0) and let m1 ∧⃝m2

be the result of their combination. We get:

m1 ∧⃝m2(A) = ∩⃝A⊂ΘA
w1(A)∧w2(A) (5)

where w1(A) ∧ w2(A) represents the weight function of a bba m1 ∧⃝m2 and
∧ denotes the minimum operator. The weights w(A) for every A ⊂ Θ can be

obtained from the commonalities as follows: w(A) =
∏

B⊇A q(B)(−1)|B|−|A|−1

.



2. The normalized version of the cautious conjunctive rule, denoted ∧⃝∗, is
obtained by replacing the conjunctive operator ∩⃝ by the Dempster operator
⊕ [1] in order to overcome the effect of the value of the conflict generated
by the unnormalized version. It is defined by the following equation:

m1 ∧⃝∗m2(A) = ⊕
∅≠A⊂Θ

Aw1(A)∧w2(A) (6)

3. The cautious CWAC rule, based on the cautious rule and inspired from the
behavior of the CWAC rule, is defined by an adaptive weighting between the
unormalized cautious and the normalized ones [1]. The cautious CWAC rule
is then defined as follows ∀ A ⊆ Θ and m∧⃝(∅) ̸= 1:

m ·⃝(A) = Dm∧⃝(A) + (1−D)m∧⃝∗(A) (7)

with D=max
i,j

[d(mi,mj)] is the the maximum Jousselme distance between

mi and mj .

4 Comparative study

In our investigation, ensemble classifiers, based on the combination of the outputs
of individual classifiers, have been proposed as tools for evaluating and comparing
dependent combination rules. Let us consider a pattern recognition issue where
B = {x1, ..., xn} be a data set with n examples, C = {C1, . . . ,CM} be a set of M
classifiers and Θ = {w1, . . . ,wN} be a set of N class labels. B will be partitioned
into train and test sets. The classifiers must be built from the training set and
then we apply them to predict the label class wj ∈ Θ of any pattern test x. The
outputs from M classifiers should be converted into bbas by taking into account
the reliability rate r of each classifier. In fact, for each pattern test we have M
bbas obtained as follows:

mi({wj}) = 1 and mi(A) = 0 ∀ A ⊆ Θ and A ̸= {wj} (8)

with ri =
Number of well classified instances

Total number of classified instances
.

Note that mi({wj}) denotes the part of belief given exactly to the predicted
class wj by the classifier Ci.

Once the outputs of all classifiers are transformed into bbas, we move to the
combination of classifier through dependent fusion rules. The combination results
will allow us to evaluate and compare these rules in the purpose of selecting the
most appropriate one based on two popular evaluation criteria: the distance and
the Percent of Correct Classification (PCC). This is justified by the fact that
the cautious conjunctive rule does not keep the initial alarm role of the conflict
due to its absorbing effect of the conflictual mass, the normalized cautious rule
ignores the value of the conflict obtained by combining pieces of evidence whereas
the cautious CWAC rule gives the conflict its initial role as an alarm signal.



– The PCC criterion, representing the percent of the correctly classified in-
stances, was employed to compare the cautious CWAC rule of combination
with the normalized cautious rule. Such case requires the use of three vari-
ables n1, n2 and n3 which respectively represent the number of well classi-
fied, misclassified and rejected instances. Hence, for each combination rule,
we propose the following steps:
1. We define a tolerance thresholds S = {0.1, 0.2, . . . , 1}. For each threshold

s ∈ S, we check the mass of the empty set m(∅) induced by any test
instance. Ifm(∅) is greater than s, our classifier chooses to reject instance
instead of misclassifying it. Consequently, we increment n3. Inversely, we
compute the BetP in order to make a decision about the chosen class.
Accordingly, we increment n1 if the current class is similar to the real
one else we increment n2.

2. Once we have calculated our well classified, misclassified and rejected
instances, we compute then the PCC for each threshold s ∈ S as follows:

PCC =
n1

n1 + n2
∗ 100 (9)

The best rule is the one that has the highest values of PCC ∀ s ∈ S.
– The distance criterion, corresponding to the Jousselme distance between
two mass functions [4], was used to compare the cautious CWAC rule of
combination with the cautious conjunctive rule. Thus, for each combination
rule we proceed as follows:
1. The real class wj of each pattern test should be converted into a mass

function: mr({wj}) = 1.
2. Then, we calculate for the instance x the Jousselme distance between the

mass function corresponding to its real class (mr) and the mass function
produced by combining bbas coming from M classifiers.

3. Finally, we aggregate the Jousselme distances obtained by all test pat-
terns in order to obtain the total distance.

The most appropriate rule is the one that has the minimum total distance.

5 Empirical evaluation

5.1 Experimental settings

In order to evaluate our combination rules, we have performed a set of ex-
periments on several real world databases with different number of instances,
different number of attributes and different number of classes obtained from the
U.C.I repository [7]. We have conducted experiments with four machine learning
algorithms implemented in Weka [3]. These learning algorithms including Naive
Bayes, k-Nearest Neighbors, Decision tree and Neural Network were run based
on a validation approach named leave one out cross validation. This method
divides a data set with N instances into N -1 parts for training and the remain-
ing instance for testing. This process should be repeated N times where each
instance is used once as a test set. Thus, from each classifier we get N test
patterns with their predicted class labels.



5.2 Experimental results

Let’s lead off by comparing the cautious CWAC rule of combination with the
normalized cautious one according to the PCC criterion. Figure 1 presents the
PCCs for both the normalized cautious and the cautious CWAC rules relative to
all the mentioned databases. From Figure 1, we can deduce that for the different

Fig. 1. PCCs for all databases

values of s, the PCC values of the cautious CWAC rule are greater or equal to
those relative to the normalized cautious one for all the mentioned databases.
So, we can conclude that the cautious CWAC rule is more efficient than the
normalized cautious one in term of PCC criterion.

As shown in Table 1, the cautious CWAC rule achieves best results compared
with the cautious conjunctive one. In fact, the distance relative to the cautious
CWAC rule is lower than that relative to the cautious conjunctive one. Accord-
ingly, we can conclude that the cautious CWAC rule is more efficient than the
cautious conjunctive one in term of distance criterion.



Table 1. Distance results of the cautious conjunctive and cautious CWAC rules.

Datasets Cautious conjunctive Cautious CWAC

Pima Indians Diabetes 334.87 312.45

Fertility 28.06 26.81

Statlog (Heart) 104.60 96.79

Hepatitis 54.90 51.56

Iris 15.09 14.78

Parkinsons 60.92 50.31

6 Conclusion

In this paper, we have studied some fusion rules when dealing with dependent
information sources. Then, we have conducted experimental tests based on multi-
ple classifier systems to judge the efficiency of the cautious CWAC rule compared
with the cautious conjunctive and the normalized cautious ones.
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