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Abstract—This paper investigates a multi-criteria decision
making method in an uncertain environment, where the un-
certainty is represented using the belief function framework.
In this context, we suggest a novel methodology that tackles the
challenge of introducing uncertainty in the expert evaluations.
Therefore, the Analytic Hierarchy Process with qualitative
belief function framework is adopted to get numeric repre-
sentation of qualitative assessment.

In this work, we will also focus on two AHP extensions
under qualitative AHP. Besides, we intend to describe some
comparisons on the standard AHP and the presented models
to judge their accuracy. We use also a simulation approach to
compare the results of the different models based on different
matrices dimensions.
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I. INTRODUCTION

Uncertainty is a source of complexity in decision making.
There are various forms that may arise in multi-criteria
decision making (MCDM) [1], in particular the Analytic
Hierarchy Process (AHP) [2] [3], from impression to lack of
knowledge or ignorance. At one level, there is an uncertainty
about alternatives that appear in the identification of the can-
didate ones. At another level, there is an uncertainty about
the ability of the selected criteria to adequately represent
the objective that the decision maker tries to achieve. In
addition, imperfection may also be in the evaluation process.
So, variability in all these factors has the potential to affect
the ranking of alternatives of a MCDM problem.

Therefore, our objective, through this research, is to
handle uncertainty while expressing the decision maker
judgments and not forcing the expert to give deterministic
answers. Moreover, it is also recognized that human assess-
ment on qualitative criteria is always subjective and thus
imprecise. Also, as shown in [4] and [5], the AHP scale was
criticized since the user cannot be consistent. Sometimes, the
decision maker may say that A is twice as important as B, A
is 3 times as important as C' and B is 1.5 times as important
as C, yet he is constrained to make the last judgment 1
or 2. In addition, the decision maker might find difficulty
to distinguish among them and tell for example whether
one alternative is 6 or 7 times more important than another.
Furthermore, the AHP method cannot cope with the fact that
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alternative A is 25 times more important than alternative C.
Expert would not be able to efficiently express any kind
of preference degree between the available alternatives and
criteria. As a result, the scale is further incomplete and
unnecessarily restricting because of the arbitrary cut-off at
9 for the maximum allowable ratio of weights.

All these criticisms have been discussed in the literature
and some solutions for them have been developed. To take
judgmental uncertainty into account, alternative methods
such as applications of the fuzzy theory are developed for
AHP [6] [7]. Different scaling methods have also been
provided [8] [9].

Consequently, our problem through this work is how to
quantify the linguistic choices selected by the decision maker
during the evaluation of the pair-wise comparisons under
the belief function framework? Besides, is it necessary to
decompose even more the different levels of the Saaty scale?

To solve the problems presented above, and to facilitate
the pair-wise comparison process, a new MCDM method
under uncertainty that eliminates some of the drawbacks of
the existing prioritization methods, is proposed. A natural
way to cope with uncertain judgments is to express the
comparison ratios as a belief function, which incorporates
the imperfection of the human thinking. Indeed, preferential
assessments are used in order to express the decision maker’s
subjective assessments instead of using numerical values.
Within our method, the expert does not require to complete
all the comparison matrices; he can then find priorities from
incomplete set of judgments. Therefore, a new procedure
is employed to derive crisp priorities from qualitative judg-
ments corresponding to each level.

In what follows, we first present some definitions needed
for belief function context. Next, we describe the qualitative
AHP methods in section 3. Then, section 4 details the
evaluation algorithm. Finally, section 5 concludes the paper.

II. BELIEF FUNCTION THEORY

A. Basic Concepts

The Transferable Belief Model (TBM) is a model to
represent quantified belief functions [10]. Let © be the
frame of discernment representing a finite set of elementary



hypotheses related to a problem domain. We denote by 2©
the set of all the subsets of © [11].

The impact of a piece of evidence on the different subsets
of the frame of discernment © is represented by the so-called
basic belief assignment (bba), denoted by m [11] such that:

> m(A) =1 (1)

ACO
The value m(A), named a basic belief mass (bbm), repre-
sents the portion of belief committed exactly to the event A.
The events having positive bbm’s are called focal elements.
Let F(m) C 2° be the set of focal elements of the bba m.
Associated with m is the belief function is defined for

ACOand A # D as:
bel(A) = Z m(B) and bel(0) =0 2)

0#£BCA
The degree of belief bel(A) given to a subset A of
the frame © is defined as the sum of all the basic belief
masses given to subsets that support A without supporting
its negation.

B. Uncertainty Measures

In the case of the belief function framework, the bba is
defined on an extension of the powerset: 2© and not only on
©. In the powerset, each element is not equivalent in terms
of precision. Indeed, §; C © (i € {1,2}) is more precise
than 6; U 8y C O.

In order to try to quantify this imprecision, different
uncertainty measures have been defined, such as [12]:

Al
> m(4) loga (a7 3)

A€F(m)

H(m) =

C. Discounting

The technique of discounting allows us to take in consid-
eration the reliability of the information source that generates
the bba m. Let 5 = 1 — « be the degree of reliability
(o € [0,1]) assigned to a particular belief function. If
the source is not fully reliable, the bba it generates is
“discounted” into a new less informative bba denoted “m
[13]:

*m(A) =(1—-a)m(A),YAC O 4)

“m(O) =a+ (1 —-a)m(O) )
D. Decision Making

The TBM considers that holding beliefs and making de-
cision are distinct processes. Hence, it proposes a two level
model [14]: The credal level where beliefs are entertained
and represented by belief functions, and the pignistic level
where beliefs are used to make decisions and represented
by probability functions called the pignistic probabilities,
denoted BetP [14]:

BetP(A) = Y 14
BCO

m(B)

N Bl
VAcO (6
B T—m@) €% ©

III. AHP METHOD UNDER THE QUALITATIVE BELIEF
FUNCTION FRAMEWORK

This section is dedicated to the presentation of our new
AHP under uncertainty. Indeed, we introduce the basic
stages needed to ensure the ranking of alternatives in an
uncertain environment based on the belief function frame-
work. Our model has the same features as standard AHP
such as hierarchical levels and pair-wise comparisons. At
first, we will briefly describe Saaty’s approach. Then, we
will present the computational steps of our proposed model.

A. AHP Method

The Analytic Hierarchy Process (AHP) is a multi-criteria
decision-making approach and was introduced by Saaty [2]
[3]. AHP organizes the basic rationality by breaking down a
problem into its smaller constituent parts. By decomposing
the problem, the decision-maker can focus on a limited
number of items at the same time. The AHP is carried out in
two phases: the design of the hierarchy and the evaluation of
the components in the hierarchy [3]. It involves building a
hierarchy of decision elements and then making comparisons
between each possible pair (as a matrix).

In a pair-wise comparison, the decision maker examines
two alternatives by considering one criterion and indicates a
preference. These comparisons are made using a preference
scale, which assigns numerical values to different levels of
preference. The standard preference scale used for AHP
is 1 — 9 scale which lies between “equal importance” to
“extreme importance” where sometimes different evaluation
scales can be used such as 1 to 5. In the pair-wise compari-
son matrix, the value 9 indicates that one factor is extremely
more important than the other, and the value 1/9 indicates
that one factor is extremely less important than the other,
and the value 1 indicates equal importance. Therefore, if
the importance of one factor with respect to a second is
given, then the importance of the second factor with respect
to the first is the reciprocal. Ratio scale and the use of verbal
comparisons are used for weighting of quantifiable and non-
quantifiable elements.

B. Qualitative AHP Method

In this work, we propose a revised version of the AHP
model. We demonstrate that standard AHP is thought to be
a robust way to solve determined decision making problem
[15]. However, it neglects the uncertainty caused by subjec-
tive preference of decision maker in criteria and alternative
scoring. Its pair-wise comparison value seems not strong
enough to cover most decision makers’ options. Accordingly,
in the proposed methodology, the expert is allowed to use
preference relations only. Thus, to express his assessments,
the decision maker has to express his opinions qualitatively,
based on knowledge and experience that he provides in
response to a given question rather than direct quantitative
information. He only selects the related linguistic variable



using preference modeling. The preference relations may
be: a preference relation (>), an indifference relation (~), a
weak preference relation (), or an unknown relation (—).
Our main aim is then to combine the existing elicitatation
technique [15] [16] with the AHP method to propose the
qualitative AHP.

To present the qualitative AHP method, we introduce its
different construction steps, described as follows:

1) Model the problem as a hierarchy containing the deci-
sion goal, the sets of alternatives © = {a, ..., a,, } for
reaching it, and the sets of criteria Q = {c1,...,¢n}
for evaluating the sets of alternatives.

2) Establish priorities among the elements of the hi-
erarchy by making a series of judgments based on
pair-wise comparisons of the elements using only
preference relations.

3) For each pair-wise comparison matrix, transform pref-
erence relations into numerical values using the belief
function theory. Therefore, Ennaceur et al. model [16]
is applied to convert these preferences into constraints
of an optimization problem whose resolution, accord-
ing to some uncertainty measures (UM). This model
allows the generation of the least informative or the
most uncertain belief functions. It can then be deter-
mined by the resolution of an optimization problem.
For instance, if we use the preference relations matrix
relative to the criterion level we get:

MazH(m) = m({c1}) * loga(|e1|/m({c1}))+
m({ca})loga(|ca|/m({c2})) + ...+
m({cn}) xloga(|cn|/m({cn}))+
m(Q) xloga2(|Q2]/m(Q));

s.t.

bel({c;}) —bel({c;}) >~ V(i cj), ¢ > ¢j
bel({ci}) —bel({c;}) <v V(e cj), ci = ¢
bel({c;}) —bel({c;}) > e V(e cj), ¢ = ¢
bel({c;}) —bel({c;}) > —e V(ci,cj), ¢ ~c¢j

bel({c;}) —bel({c;}) < e V(i cj), ¢i ~¢
S omle) = 1,m(A.)“2 0,VA C Q;m(0) = 0.
c;, €F(m)

Where H is the uncertainty measure since it has a
unique maximum. Besides, it takes into account the
non-specificity and quantifies the conflict presented in
the body of evidence (measure of total uncertainty).
Besides, the preference relations are transformed into
constraints as follows: the first constraint of the model
is derived from the preference relation. The second and
third constraints model the weak preference relation.
The fourth and fifth constraints correspond to the
indifference relation. Each preference relation must be
translated into one of the presented constraint.

€ and -y are a constant specified by the expert before

beginning the optimization process.

4) Assume that the priorities of criteria and alternatives
are described by a basic belief assignment defined
on the possible responses. Thus, the criterion bba is
denoted by m** and the alternative bba, regarding ., ,
by m?k_.

5) At the criterion level, the obtained bba is transformed
into measure of reliability. If we have ¢; as a criterion,
then we get f3; its corresponding measure of reliability:

m?({ci})

maxpme({ck})

Bi = (M

6) Synthesize the overall judgment, that is updating the
sets of alternatives priorities with the importance of
their corresponding criteria. The obtained bbas are
discounted such as:

*m® (a;) = Br-m& (a;), Ya; C © (8)

m (©) = (1 — Bi) + Br.mS (O) )

Ck

where mg_’ the relative bba for the subset a; (obtained
in the previous step), S its corresponding measure of
reliability, and we denote ay = 1 — Sk.

7) Combine the overall bba’s to get a single representa-
tion by using the conjunctive rule ( m® = @O‘m?k ).

8) Come to a final decision based on the the pignis-
tic transformation to find the best alternatives. We
compute the pignistic probabilities to choose the best

alternatives (Equation 6).

C. Introducing Dependency under Qualitative AHP Method

One of basic assumptions of AHP technique is that all
the elements in the same hierarchy are totally independent.
However, this assumption is hard to be satisfied due to
ambiguousness and complexity of questions. In addition
to this problem, the evaluating elements include dependent
properties.

Under the AHP approach, criteria are assumed indepen-
dent of the alternatives. However, paired comparisons imply
dependence of a different kind. In fact, the importance
assigned to an alternative depends on the evaluated criterion.
This dependency is not according to structure, because
we usually try to respect AHP axioms, but according to
function. Thus, in this Section, our main objective is to
handle dependency between the alternative and criterion
levels under the qualitative AHP methodology. Besides, we
propose the latter by using preference relation in order to
translate the expert’s assessments.

The developed method has the same steps as qualitative
AHP. Nevertheless, we suggest a new aggregation procedure
[17]:

1) Select and define the evaluative criteria and the alter-

natives.



2)

3)

4)

5)

6)

Calculate the weights of the criteria and the score
of alternatives. After the construction of the hierar-
chy, the different priority weights of each criterion
and alternative must be calculated. First, the expert
compared the criteria with respect to the main goal;
then, the expert compared the alternatives with respect
to each criterion. Instead of applying Saaty’s scale,
the decision maker uses the preference relations to
evaluate the elements of the hierarchy as described
in the previous subsection.

After computing the priorities vectors, we obtain m*?,
which means that we know the belief about c; in the
frame () (where c; is a criterion). The same process is
repeated at the alternative level, we get a conditional
bba m®|c;](Ay), which represents the belief about Ay,
regarding c;.

Calculate the evaluation result and synthesize the
solution by aggregating all the obtained bba. At this
step, the priority weights of each main criteria and
alternative must be combined. However, the priority
concerning criteria is defined on the frame of discern-
ment (2, whereas the sets of alternatives are defined
on another frame ©. In order to solve this problem,
we propose to standardize our frame of discernment.
First, at the alternative level, the idea was to use the
deconditionalization process in order to transform the
conditional belief into a new belief function. In this
case, the ballooning extension concept is applied [18]:

me[Cj]ﬂeXQ(AiXCjU@XC}) = m@[cj](Ai),VAi Cc 6.

(10)
At this stage, our objective is then to redefine the bba
that represents criteria weights obtained at the criterion

level (Step 2). Indeed, we propose to extend this bba
from  to © x Q:

mIO*YB) =m(¢;) B=0Oxci,¢; CQ (11)

We now combine m|c;]®TO*? and mS1O*? all the
obtained bba to measure their contribution. That is, we
will apply the conjunctive rule of combination:

Ox0Q

m —m QrexQ

[Cj}e)ﬂ@xﬂ@m (12)
To this end and after getting the joint bba, a decision
under uncertainty must be defined. In the sequel, the
pignistic probabilities are used. However, our obtained
beliefs are defined on the product space © x Q.
To solve this problem, we propose to marginalize
this bba on © (frame of alternatives) by transferring
each mass m®* to its projection on ©. Then, the
pignistic probabilities is computed to choose the best

alternatives:

BetP(a;) = Z

A;CO

la; N Ay
| Al

m@in@(Ai)
(1 — m®xUS(())

13)

IV. SIMULATION ALGORITHM

The main objective of this research is to study the
performance of the proposed approaches using random data.
To generate reliable data for a numerical analysis in AHP,
simulation has been extensively used in prior research [19]
[20]. The experiment is based on the following steps:

1) We generate a random matrix for the decision per-
formance and another one to represent the weight of
each decision criteria. Based on these two matrices, the
overall scores and ranks of the decision alternatives are
calculated. These steps are usual steps in the Weighted
Sum Model (WSM) method. A method is accurate in
MCDM problems should also be accurate in single
dimensional problems. Therefore, we use the WSM
method, since in single-dimensional environment, it
yields the most reasonable results. Hence, Triantaphyl-
lou et al. [19] [20] compare the obtained results using
WSM by those obtained by other MCDM methods.
Besides, WSM is the simplest and still the widest
used MCDM method. In this method, each criterion
is given a weight and the sum of all weights must be
1. Each alternative is assessed with regard to every
criterion. The overall or composite performance score
of an alternative is given by the equation:

Pi: E Uij*w]‘
J

where P; is the priority of each alternative, w; is the
weight of each criterion and v;; is the score of each
alternative regarding each criterion.

2) From the performance matrix, we generated pair-wise
comparison matrices of different alternatives that are
compared to each criterion.

3) We apply the suggested method to compute the overall
priorities and to rank alternatives.

4) We compare the obtained result with the ranking of
the WSM method.

1) Example: Let’s demonstrate the evaluation procedure
using the same example used in [20]. We consider 3 al-
ternatives ai, as and a3 and three criteria c1, ¢ and cs.
The decision making problem is described using the matrix
presented in Table L.

This example has been solved using the WSM and AHP
in [20]. Applying the WSM, it can be shown that the
alternative a; is the best one. However, AHP turns out that
the alternative as is the best one. Obviously, this contradicts
with the conclusion derived using the WSM.

(14)

,Vaj € 0.



Table I
DECISION MATRIX

Criteria
c1 c2 c3
g 7 3
Al 3% 3 13
ay 1 9 9
a2 5 2 2
as 1 5 9
Table II

THE PREFERENCE RELATIONS MATRICES

Cc1 C2
al az as ai a2 as
al - < ~ al - b ~
az - - - a2 - - ~
as - - - as - - -
3

al az as

al - >~ ~

a2 - - ~

as - - -

Now, let us model this example using qualitative AHP.
If the decision maker knew the actual data shown in the
original crisp decision matrix, then the qualitative matrix
of the actual pair-wise comparisons would be obtained as
follows:

o “Equal importance” is equivalent to indifference rela-
tion.

o “Somewhat more important” and “Much more impor-
tant” are equivalent to weak preference relation.

e “Very much more important” and “Absolutely more
important” are equivalent to strong preference relation.

As a result, the pair-wise comparison matrix of the three
alternatives in terms of each criterion are illustrated in Table
II.

Next, an optimization model is used to transform pref-
erence relation into constraints and to generate quantitative
information from these qualitative assessments. Finally, we
obtain the following order: a; > as > as. Obviously, this
is in contradiction with the results derived when the AHP
method was applied at the beginning of this illustrative
example. However, we have obtained encouraging results
since it can be observed that the ranking order of the
alternatives as derived by the WSM and the uncertain AHP
is the same.

In order to gain a deeper understanding, a computational
study was undertaken. The data were random numbers from
the interval [1,9] (in order to be compatible with the nu-
merical properties of the Saaty scale). In these test problems,
the number of alternatives was equal to the following values:
3,4,5,6,7,8,9, and 10. Similarly, the number of criteria was
equal to 3,4,5,6,7,8,9, and 10. Psychological experiments
have shown that individuals cannot simultaneously compare
more than seven objects (plus or minus two) [21]. Therefore,
we choose that the number of criteria and alternatives in

the analysis should not exceed 10. Thus, a total of (8 x 8)
different cases were examined with 100 replications (in order
to derive statistically significant results) per each case. Each
random problem was solved using the original, the qualita-
tive and conditional AHP methods. The test problems were
treated as the previous illustrative example. Any ranking
irregularity was recorded.

Let us reiterate the immediate goal of this Section: We
wish to check the accuracy of our proposed models by
comparing them to WSM method.
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From Figures 1 and 2, our qualitative AHP achieves a
satisfactory percentage of contradiction when it is compared
regarding a few number of alternatives and criteria. Indeed,
we have to point out that our two methods, qualitative AHP
and conditional qualitative AHP, give the lowest percentage
of contradiction in almost the cases. This can be explained
by the appropriate use of the preference relations to model
expert assessments.

The qualitative AHP methods perform much better than
standard AHP on the whole. For instance, applying qualita-
tive AHP, conditional qualitative AHP and standard AHP to
3 alternatives and 4 criteria the percentage of contradiction
is set 5%, 5%, and 7%, respectively.



5]

=
=)

-
o

=
I3

-
=1

AHP

B Qualitative AHP
Conditional qualitative AHP

percentage ofcontradiction
=
5]

a M B oo »

3 4 5 ] 7 8 9 10
number of alternatives

Figure 3. Percentage of contradiction (%) based on 10 criteria

From the experimental results in Figure 3, we obtain
a similar observations as before. This experiment further
validates the satisfactory results obtained by our method
in most cases in terms of percentage of contradiction. Al-
though, the number of alternatives and/or criteria increases,
the qualitative AHP methods give the best results.

In summary, these results show that qualitative AHP
methods display good performance. This is explained by
the fact that our models use a more convenient elicitation
technique to model the preference assessments.

V. CONCLUSION

In this paper, we have formulated qualitative AHP meth-
ods in an environment characterized by imperfection. Our
approaches deal with qualitative reasoning to model the
uncertainty related to expert’s assessment. The advantage
of these newly proposed models is their ability to represent
the decision maker’s preferences without using numerical
values. The expert is then allowed to freely express his
judgments using belief preferences relations.

Some interesting future works have to be mentioned.
Namely, in some situations, the decision maker may be a
group or an organization. Therefore, an application of the
proposed method to the group decision making situations
can then be done.
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