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Link prediction is an important problem that permits to analyze networks' evolution. The task is to estimate the likelihood of the existence of future links. Yet, social networks relate individuals via several types of relationships. Thus, it is more interesting to predict the existence and the type of a future link. We focus in this paper on predicting links in multiplex social networks since these latter allow simultaneous relationships with several types. Furthermore, we take into account the uncertainty characterizing the prediction process and social networks noisy and missing data. To this end, we firstly propose an uncertain graph-based model for multiplex social networks that encodes the uncertainty degrees at the edges level using the belief function framework. Furthermore, a novel link prediction approach is subsequently introduced to estimate both the existence and the type of a new link while taking uncertainty into account. Empirical evaluation on two preprocessed real world social networks that support our proposals is provided.

INTRODUCTION

During the last years, the World Wide Web has linked tens of thousands to millions of individuals through the Social Web. A great deal of information has become accessible, social network analysis has arisen as a tool to extract and study the patterning of such data. Social networks became the main focus of researchers and analysts from various domains. They are generally conceptualized as graphs where the nodes represent the actors linked by social relationships. One of the major problems handled in network mining and social network analysis is the study of social networks evolving including the prediction of future or hidden links, which is known as the link prediction problem. The task is to evaluate the likelihood of the establishment of a new link between two nodes according to an observed snapshot of the network.

The structure of social networks depends on the quality of the entities and the ties under consideration. They can be homogenous/heterogeneous, uniplex/ multiplex, weighted/unweighted, directed/undirected, etc. For instance, if there is only one type of a relationship between two actors i.e., two friends, two co-workers or two collaborated authors then the tie is called uniplex. On the other hand, if several relationships are shared then it is called multiplex (multirelational, multi-layered, multi-dimensional) i.e., if two people are friends, coworkers and live in the same building, their association is a multiplex tie (a three-way one). The link prediction has to take into account the topological structure of the social network, especially the characteristics of the links. Most of the traditional methods ignore the relationships labels between the entities, they only treat the existence of the links. However, the likelihood and the type of a connection are frequently interrelated [START_REF] Battiston | Metrics for the analysis of multiplex networks[END_REF][START_REF] Davis | Multi-relational link prediction in heterogeneous information networks[END_REF].

Yet, most of the state of the art link prediction methods consider links with binary values i.e., 1 (exists) or 0 (¬ exists). Conversely, social networks structure highly rely on the precise nature of the data. Sparse bias alter considerably the analysis results. In contrast, as discussed in [START_REF] Adar | Managing uncertainty in social networks[END_REF][START_REF] Kossinets | Effects of missing data in social networks[END_REF], social networks data are often exposed to observation errors and are frequently noisy. Uncertainty can be cast from lack of information for determining the correctness of a statement then quantified on a numerical scale. For example, we can quantify imprecision about the responses that we get when constructing networks from surveys and encapsulate these uncertainties in the structure processing to get an uncertain network. According to [START_REF] Sharma | Missing data in multiplex networks: A preliminary study[END_REF], errors about the components of multiplex social networks are expected to be larger as a result of inaccurate experimental settings or technical issues. In particular, the complexity of multiplex network may affect their properties more adversely. For instance, the extra links can possibly be just duplicates that were generated erroneously by the tools used for the construction of the social network. Besides, real world collections are often missing or have a number of incorrect labels and links. Consequently, one has either to remove a probable valuable information or to take into account all the uncertain information from the data [START_REF] Kossinets | Effects of missing data in social networks[END_REF]. This imprecision impacts directly the network structure and therefore the outcomes of the analysis. Indeed, we show in previous works [START_REF] Mallek | Evidential link prediction based on group information[END_REF][START_REF] Mallek | The link prediction problem under a belief function framework[END_REF] the relevance of handling uncertainty whether within the structure or throughout the link prediction process. However, we treated uniplex social networks where there are only uni-relational links between the actors. Accordingly, we embrace the belief function theory [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF][START_REF] Shafer | A Mathematical Theory of Evidence[END_REF] to deal with imperfect data and manage uncertain knowledge as it is a general framework for reasoning under uncertainty. We first introduce a new graph model for multiplex social network graph that encodes uncertainty at the edges level. Subsequently, a novel approach for the prediction of new links along with their types in multiplex social networks is proposed. It is inspired from node neighborhood methods and uses exclusively the belief function tools. The common neighbors are considered as independent sources of evidence, information is transferred and combined and is revised afterwords to get a closer picture about the existence of a future link. This paper is organized as follows. Section 2 presents briefly some related works on link prediction. In section 3, essential belief function notations and concepts are re-called. Section 4 and 5 detail our proposals where a new model for uncer-tain multiplex social network is presented along with a method for the prediction of new connections and their type. Section 6 reports the experimental results. Section 7 concludes the paper.

RELATED WORK ON LINK PREDICTION

Link prediction has a great applicability in a wide variety of domains as it plays a key role in network analysis. Namely, it is applied to recommend new friends or items in social networks, detect criminals in dark networks, explore missing links in biological networks, etc. The objective is to evaluate the likelihood of a new association between two unlinked nodes given a snapshot of the network.

Most traditional methods consider simple networks allowing only one type of relations. However, a relevant aspect is not treated which is the types of the links. Actually, prediction of link existence and link type are often considered as two independent problems. In the first case, one predicts the future linkage between two nodes, conversely, in the second case, one assumes that the link exists and tries to predict its type. Yet, these two problems are interrelated [START_REF] Battiston | Metrics for the analysis of multiplex networks[END_REF][START_REF] Davis | Multi-relational link prediction in heterogeneous information networks[END_REF].

As a matter of fact, multiplex social networks highlight the diversity of the links' types and allow simultaneous relationships as it is an aspect of real social life. Besides, multiplex information is sometimes more useful which is why many works join networks from several platforms to get a more informative multirelational network [START_REF] Hristova | A multilayer approach to multiplexity and link prediction in online geo-social networks[END_REF][START_REF] Zhang | Meta-path based multi-network collective link prediction[END_REF]. Formally, a multiplex social network can be defined as a graph G(V, E 1 , . . . , E n ) where V is the set of entities and E 1 , . . . , E n are the sets of edges each belonging to specific relationship (layer, dimension). In the following, we present traditional methods for link prediction for both uniplex and multiplex structures and we introduce the intuition of our proposed approach.

Link prediction in uniplex networks

There are two groups of link prediction methods depending on the considered information of the network. The first group of methods uses the local structural properties of the nodes i.e., common neighbors, common circles, or the nodes' attributes i.e., age, interests, gender. Yet, the nodes' attributes are usually not available or hidden due to privacy anonymization constraints. Thus, most of the local information based methods use structural similarities metrics. Namely, the most popular ones are "Common Neighbors", "Jaccard's Coefficient" and "Adamic/Adar". For instance, the common neighbors measure, denoted by CN , counts the jointly connected neighbors of a pair of nodes (u, v). It can be defined as CN uv = |τ (u)∩τ (v)| where τ (u) and τ (v) are respectively the set of neighbors of u and v. The common neighbors metric predicts links to nodes with many common neighbors. It is based on the intuition that the more two persons share mutual friends, the likely to become friends which has been demonstrated by Kossinets' and Watts analysis [START_REF] Kossinets | Empirical analysis of an evolving social network[END_REF] made on a large scale social network of student friendships. Furthermore, it is fast and yields to very well results in practice. The second group of methods uses global information based on global topological properties of the network. Popular approaches include Hitting time, SimRank or the shortest path to reach a node. However, these latter suffer from high complexity since they inquire for global topological properties. Besides, global information is not always available. Also, the additional complexity does not always pay off since local methods can give great performance as well [START_REF] Liben-Nowell | The link-prediction problem for social networks[END_REF].

Link prediction in multiplex networks

Correspondingly, when dealing with multiplex social networks, two options are available. Treat each layer independently using uniplex graph measures or handle directly the network using multiplex measures [START_REF] Battiston | Metrics for the analysis of multiplex networks[END_REF]. For instance, the neighborhood of a node may be considered in different ways in a multiplex i.e., the union of all the neighbors in all the dimensions or more restrictively, the intersection of the neighbors set across all the layers [START_REF] Kanawati | Multiplex Network Mining: A Brief Survey[END_REF]. Few attempts have been made to address link prediction in multiplex social networks due to manipulation difficulties and the lack of available data of such networks. Some methods tackled it via supervised and unsupervised learning [START_REF] Pujari1 | Link prediction in multiplex bibliographical networks[END_REF]. There is another category of methods that treated link prediction in multiplex networks as a matrix factorization problem [START_REF] Cao | Transfer learning for collective link prediction in multiple heterogenous domains[END_REF][START_REF] Jenatton | A latent factor model for highly multi-relational data[END_REF]. For instance, the authors in [START_REF] Jenatton | A latent factor model for highly multi-relational data[END_REF] proposed a latent factor model to predict multiple links using tensor factorization. However, this category of methods suffer from high complexity issues especially when the number of links' types increases. Other methods applied measures based on local or global information. For instance, the authors in [START_REF] Davis | Multi-relational link prediction in heterogeneous information networks[END_REF] proposed a probabilistic weighted version of the common neighbors method and computed prediction scores for each link type. They subsequently tested the new score under unsupervised and supervised learning. Actually, structural similarity measures are frequently used as features for classification or as similarity scores for unsupervised learning.

In this paper, the intuition of the structural local measures is adopted. More precisely, we draw on the method of the common neighbors as it is simple and shows great results in many previous works [START_REF] Kossinets | Empirical analysis of an evolving social network[END_REF][START_REF] Newman | Clustering and preferential attachment in growing networks[END_REF]. Yet, we take both information across local layers and the overall information about the global network into consideration in the prediction task. We adopt the belief function theory to handle uncertainty as it permits to represent and manage imperfect knowledge.

BASICS OF BELIEF FUNCTION THEORY

Mathematical notations and definitions of the belief function theory [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF][START_REF] Shafer | A Mathematical Theory of Evidence[END_REF] essential for the understanding of our proposals are given in this section.

Let Θ be the frame of discernment. It is a finite set including exhaustive and mutually exclusive events associated to the problem. Let 2 Θ be the power set of Θ. A basic belief assignment (bba), denoted by m, is the mass attached to an event given a piece of evidence. It is defined as:

m : 2 Θ → [0, 1] A⊆Θ m(A) = 1.
(1)

When an element A ⊆ Θ of a mass function m such that m(A) > 0, it is called a focal element.

The fusion of two masses m 1 and m 2 derived from two reliable and distinct sources of evidence is ensured using the conjunctive rule of combination [START_REF] Smets | Application of the transferable belief model to diagnostic problems[END_REF] denoted by ∩ . It is defined by:

m 1 ∩ m 2 (A) = B,C⊆Θ:B∩C=A m 1 (B) • m 2 (C).
(

) 2 
On the other hand, when at least one of the sources is reliable but we do not know which one it is, the disjunctive rule of combination denoted by ∪ is used [START_REF] Smets | Application of the transferable belief model to diagnostic problems[END_REF]. It is defined by:

m 1 ∪ m 2 (A) = B,C⊆Θ:B∪C=A m 1 (B) • m 2 (C). ( 3 
)
The reliability of the source can be evaluated by a coefficient α ∈ [0, 1]. A discounting mechanism [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF] could therefore be performed on m. The discounted mass function is denoted by α m and we have:

α m(A) = (1 -α) • m(A), ∀A ⊂ Θ α m(Θ) = α + (1 -α) • m(Θ). ( 4 
)
where α is called the discounting rate. m(Θ) symbolizes the state of ignorance, it is equal to 1 when α = 1. It corresponds to a vacuous mass function. In other terms, the source is fully unreliable. On the other hand, when α = 0, the source is considered to be fully reliable.

In some cases, one may want to revise a mass function m by reinforcing an element A of the frame. This can be done using the reinforcement correction mechanism [START_REF] Mercier | Belief function correction mechanisms[END_REF], which is similar to the discounting operation but unlike the later the masses of the focal elements are recovered and redistributed to the element A instead of Θ. Let β ∈ [0, 1] be the reinforcement rate, the reinforcement towards the element A is defined by:

β m(A) = (1 -β)m(A) + β β m(B) = (1 -β)m(B), ∀B ⊆ Θ and B = A. (5) 
To set up the relation between two disjoint frames Θ and Ω, we can use a multi-valued mapping operation [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF]. Actually, a multi-valued mapping function denoted by τ allows to assign the subsets B ⊆ Ω that can possibly accord a subset A ⊆ Θ:

m τ (A) = τ (B)=A m(B). (6) 
One of the solutions for decision making in the belief function framework is the transformation of the mass functions into pignistic probabilities denoted by BetP . It is defined by [START_REF] Smets | Application of the transferable belief model to diagnostic problems[END_REF] :

BetP (A) = B⊆Θ |A ∩ B| |B| m(B) (1 -m(∅)) , ∀A ∈ Θ. (7) 
In previous works [START_REF] Mallek | Evidential link prediction based on group information[END_REF][START_REF] Mallek | The link prediction problem under a belief function framework[END_REF], we developed an evidential graph-based versions of social networks that handle uncertainty at the edges level. However, the latter model only supports uni-relational homogenous connections between the nodes. Consequently, this paper extends it the multi-relational case. The proposed evidential multiplex social network graph is defined as G(V, E 1 , . . . , E n ) where V = {v 1 , . . . , v |V | } is the set of nodes, and E 1 , . . . , E n are the sets of edges with n being the number of types. Each edge uv ∈ E i has assigned a bba defined on the frame of discernment

Θ uv i = {E uv , ¬E uv } denoted by m uv i .
The event E uv means that uv exists and ¬E uv means that it is absent. The bba m uv i quantifies the degree of uncertainty regarding the existence of a link of type i between (u, v). Fig. 1 gives an illustration of such a graph structure. The links are weighted with bba's rather than binary values (either 1 or 0) to quantify the uncertainty regarding their existence. The nodes may share three different types of relationships namely m 1 , m 2 and m 3 . These latter are schematized differently where each type represents a specific association. Hence, there are three layers with the same number of nodes. For the sake of lucidity, a link uv of type i is schematized if its pignistic probability BetP uv i (E uv ) > 0.5. In other words, its likelihood to exist is greater than 50%.

Gil

LINK PREDICTION IN EVIDENTIAL MULTIPLEX SOCIAL NETWORKS (LPEM)

Our proposed approach is based on the intuition of the common neighbors technique. This latter has proved its effectiveness in various real networks and usually got the best performances with respect to other local measures [START_REF] Kossinets | Empirical analysis of an evolving social network[END_REF][START_REF] Newman | Clustering and preferential attachment in growing networks[END_REF]. We have proposed, in previous works [START_REF] Mallek | Evidential link prediction based on group information[END_REF][START_REF] Mallek | The link prediction problem under a belief function framework[END_REF], methods for future links' existence in uncertain social networks. However, we worked on uniplex social network graphs where only a single type of a relationship is allowed. Application of these methods to the multiplex case is possible by carrying out the same process for each layer separately. However, information regarding the whole structure of the multiplex is not treated. In this work, we take into account the multiplicity of the relations between the nodes. Information about the links' types is treated in order to predict the likelihood of the existence of a link in a specific layer. We draw on the methods based on local structural properties by considering the common neighbors present throughout the global graph. At first, evidence from the neighboring nodes is gathered from all the layers of the network where each one is considered as an independent source of evidence. Then, the evidence collected from each layer is evaluated according to its reliability. Subsequently, the resulting beliefs are revised according to the distribution of simultaneous links of specific types in the multiplex. Indeed, global information is mandatory for a successful overall link prediction. From this point of view, the steps for the prediction of a future link uv in an evidential multiplex social network G(V, E 1 , . . . , E n ), where n is the number of possible types, are as outlined below. Each step is illustrated according to the network presented in Figure 1 where the aim is to predict the potential existence of one or multiple relations between Ava and Con.

Information gathering and fusion

Firstly, we extract the subgraph G C (V C , E C ) containing the common neighbors of u and v. Since these latter may share various types of relationships with their common neighbors, we decompose G C into n graphs where each graph G i (V i , E i ) includes the links belonging to the type of associations i ∈ {1, . . . , n} such that

V C = V i and E C = n i=1 E i .
Then, for each graph G i , the masses of each neighboring link xy are transferred to the frame of uv i using a multivalued mapping operation (Equation 6 ). Thereafter, we combine the masses that we get from the neighboring links according to the presence of the common neighbors in G i to get the overall mass of uv i denoted m uv i . For instance, if all the common neighbors of the pair (u, v) are in G i , the masses are fused using the conjunctive rule (Equation 2). That is, all the common neighbors are considered as reliable sources. In contrast, if there are common and uncommon neighbors of (u, v) in G i , the transferred masses are fused using the disjunctive rule of combination (Equation 3). Hence, we consider at least one of the common neighbors as a reliable source of evidence. G i is ignored if (u, v) does not share any common neighbor in it and we get a vacuous mass function.

Accordingly, if considering Ava and Con from Figure 1 as the query nodes, we catch the subgraph containing their common neighbors which are Dan, Eve and Gil (the node Ben is disregarded as it is not a common neighbor). The common neighbors subgraph is subsequently decomposed into three graphs where each one includes the links belonging to a specific type as shown in Fig. 2. G 1 contains the shared links of type 1, G 2 contains the shared links of type 2 and G 3 contains the shared links of type 3. In order to get the overall mass function for each type, we combine the transferred masses according to the presence of the common neighbors in the subgraphs.

For instance, we fuse the obtained masses in G 1 using the conjunctive rule of combination (Equation 2) since all the common neighbors are present. Hence, we get:

m ac 1 = m ac ad,1 ∩ m ac ae,1 ∩ m ac ag,1 ∩ m ac gc,1 ∩ m ac dc,1 ∩ m ac ec,1
However, the masses from G 3 are combined using the disjunctive rule (Equation 3) since there are common and uncommon neighbors i.e., only Eve is a common neighbor, Gil and Dan are not common neighbors anymore. That is, the bba's are combined using the disjunctive rule:

m ac 3 = m ac ad,3 ∪ m ac ae,3 ∪ m ac ec,3
On the other hand, G 2 is discarded since there are no common neighbors on it and we get a final bba (m ac 2 (Θ ac 2 ) = 1).

Reliability evaluation

Next, we focus on the overall reliability of the sub-graphs G i with respect to the global graph G C . We compute the distribution of the common neighbors across all the subgraphs G i defined by

λ i = |CNuv i | |CNuv| .
We use α i = 1-λ i as a discounting rate to discount m uv i . In doing so, we get a discounted mass function αi m uv i as follows:

     αi m uv i ({E uv }) = (1 -α i ) • m uv i ({E uv }) αi m uv i ({¬E uv }) = (1 -α i ) • m uv i ({¬E uv }) αi m uv i (Θ uv i ) = α i + (1 -α i ) • m uv i (Θ uv i ) (8) 
For example, in Figure 2, Ava and Con share three common neighbors in G 1 (Gil, Eve and Dan) thus, λ 1 = 3 3 = 1. They share one common neighbor in G 3 which is Eve thus, λ 3 = 1 3 . That is, the reliabilities of G 1 and G 3 are respectively quantified by the reliability coefficients α 1 = 1 -1 = 0 and α 3 = 1 -1 3 . That is, G 1 is fully reliable. The discounting operation gives α1 m ac 1 and α3 m ac 3 .

Evidence reinforcement

The obtained masses are revised according to the distribution of the simultaneous links of more than two types in the multiplex G(V, E). For instance, if we consider a sub-graph G i and it already exists exactly one link of a type j = i between u and v. We compute the distribution of simultaneous 2-relational associations of types i and j denoted by S 2 ij with respect to all the simultaneous relations of exactly two types in G denoted by S 2 G . Generally, when there are m ≤ n -1 simultaneous links between (u, v), we seek to the distribution S m+1 * j where * = {1, . . . , m} are the types of the shared links. If S m+1 * j = 0, we reinforce the mass on the element "exist" using β = S m * j S m G as a reinforcement rate (Equation 5) and obtain the mass β m uv i . As illustrated in Fig. 1, Ava and Con do not share any links. Thus, the obtained bba's after the discounting operation are final. However, if they had a link, for example of type 1. One goes through the reinforcement step (Subsection 5.3) by considering the overall simultaneous 2-relational connections in the global graph. As illustrated in Fig. 1, there are five 2-relational associations i.e., between (Ava, Ben), (Ava, Eve), (Ava, Dan), (Eve, Con), and (Gil, Con). Hence, we compute the distribution of simultaneous 2-relational associations of types 1 and 2 i.e., S 2 12 = 2 and the types 1 and 3 i.e., S 2 13 = 3 with respect to all the simultaneous relations of exactly two types in G i.e., S 2 G = 5. That is, α3 m ac 2 ({E}) and α3 m ac 3 ({E}) are reinforced using respectively

β 2 = S 2 12 S 2 G = 2 5 and β 3 = S 2 13 S 2 G = 3
5 as reinforcement rates. We get the final bba's β2 m ac 2 and β3 m ac 3 .

Links selection

Most of the methods use the ranking of the similarity scores and consider the L highest ones as the predicted links. In contrast, we first compute the pignistic probability BetP uv i of the query link uv. Decision about its existence is made later according to the ranking of the pignistic probabilities on the event "exists" of all the analyzed links.

EXPERIMENTAL EVALUATION

In order to evaluate our proposals, we test our approach on two real word networks. A network of 185 students cooperation linked by 362 edges according to 3 relations [START_REF] Fire | Predicting student exam's scores by analyzing social network data[END_REF] and a relationships network of 21K links between 84 persons with 5 links' types collected from the social evolution dataset [START_REF] Madan | Sensing the health state of a community[END_REF]. To the best of our knowledge, there are no uncertain multiplex social network datasets available. Thus, we build our networks artificially by simulating mass functions on the links regarding their existence. We proposed, in previous works [START_REF] Mallek | Evidential link prediction based on group information[END_REF][START_REF] Mallek | The link prediction problem under a belief function framework[END_REF], methods for the pre-processing of a social network to transform it into an uncertain one where the links are valued with bba's. That is, we simulate mass functions according to the technique proposed in [START_REF] Mallek | Evidential link prediction based on group information[END_REF]. It is based on a widely applied procedure of graph sampling used in link prediction literature [START_REF] Zhang | Potential Theory for Directed Networks[END_REF].

A comparative study with the method proposed in [START_REF] Mallek | The link prediction problem under a belief function framework[END_REF] is conducted for the two datasets. Actually, the latter method called belief link prediction (BLP), predicts new links under the belief function theory framework. It is stimulated from the common neighbor method. However, it only predicts new links of single types. Therefore, it is applied for each set of links of a particular type separately.

Precision and recall are used for performance evaluation. The precision depicts the number of relevant links according to the number of analyzed links δ. It is defined as follows:

Precision = δ . (9) 
The recall expresses the correctly predicted existing links with respect to the number of correctly and falsely predicted existing ones γ. It is defined as follows:

Recall = γ . (10) 
Table 1 reports the obtained results in terms of precision and recall for the two networks. For the BLP method, we average the values of the precision and recall obtained solely in each layer in the networks. As it can be seen, the proposed algorithms outperforms the BLP method in terms of both precision and recall among the two datasets. The LPEM approach gives higher prediction quality measured by precision 80% for the students cooperation dataset compared to 46% for the BLP and 72% for the relationships network compared to 53% for the BLP. That is, our method is able to predict both links' existence and types efficiently. The same applies to recall, the LPEM gives much higher values than the BLP method i.e., 65% for the students cooperation compared to 35% given by the BLP method. A possible reason for having such results by the BLP method is the sparsity of the homogeneous relationships. This implies that global information about the network contributes to the prediction task. Besides, our method is more convenient as it does not inquire its application as many times as there are layers. Yet, results given by the precision are higher than those of the recall measure for both methods. This points out that we are getting more incorrect existing links than incorrect non existing links. Still, the new approach has proved validity and performance empirically. To the best of our knowledge, this is the first approach proposed to predict future links' existence and types in multiplex social network while dealing with uncertainty.

CONCLUSION

In this paper, we have presented an uncertain multi-relational graph model for multiplex social networks that encapsulates the uncertainty degrees using mass functions encoding the likelihood of the edges' existence. In addition, we have given a new link prediction method that permits to predict both the existence and the type of new associations in multiplex social networks and deals with uncertainty at the same time. Specifically, the proposed method fully operated using the tools of the belief function framework. Evidence from the common neighbors of the global graph is revised and transferred to the query link frame of discernment. It is subsequently updated and fused with the overall information gathered from all the layers to predict both existence and type of the link. A future direction is to take the actors attributes into consideration. It is clear that some attributes relate directly to the type of the associations between the nodes. Therefore, we intend to investigate the impact of the nodes' attributes on the links' types and consequently link prediction.
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	Method	Evaluation metric	Students cooperation	Relationships network
	LPEM	Precision Recall	0.80 0.65	0.72 0.59
	BLP	Precision Recall	0.46 0.35	0.53 0.41