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Abstract. Link prediction is an important problem that permits to an-
alyze networks’ evolution. The task is to estimate the likelihood of the
existence of future links. Yet, social networks relate individuals via sev-
eral types of relationships. Thus, it is more interesting to predict the ex-
istence and the type of a future link. We focus in this paper on predicting
links in multiplex social networks since these latter allow simultaneous
relationships with several types. Furthermore, we take into account the
uncertainty characterizing the prediction process and social networks
noisy and missing data. To this end, we firstly propose an uncertain
graph-based model for multiplex social networks that encodes the un-
certainty degrees at the edges level using the belief function framework.
Furthermore, a novel link prediction approach is subsequently introduced
to estimate both the existence and the type of a new link while taking
uncertainty into account. Empirical evaluation on two preprocessed real
world social networks that support our proposals is provided.

Keywords: social network analysis, link prediction, uncertain social
network, multiplex social networks, belief function theory

1 INTRODUCTION

During the last years, the World Wide Web has linked tens of thousands to
millions of individuals through the Social Web. A great deal of information has
become accessible, social network analysis has arisen as a tool to extract and
study the patterning of such data. Social networks became the main focus of re-
searchers and analysts from various domains. They are generally conceptualized
as graphs where the nodes represent the actors linked by social relationships.
One of the major problems handled in network mining and social network anal-
ysis is the study of social networks evolving including the prediction of future
or hidden links, which is known as the link prediction problem. The task is to
evaluate the likelihood of the establishment of a new link between two nodes
according to an observed snapshot of the network.

The structure of social networks depends on the quality of the entities and
the ties under consideration. They can be homogenous/heterogeneous, uniplex/



multiplex, weighted/unweighted, directed/undirected, etc. For instance, if there
is only one type of a relationship between two actors i.e., two friends, two
co-workers or two collaborated authors then the tie is called uniplex. On the
other hand, if several relationships are shared then it is called multiplex (multi-
relational, multi-layered, multi-dimensional) i.e., if two people are friends, co-
workers and live in the same building, their association is a multiplex tie (a
three-way one). The link prediction has to take into account the topological
structure of the social network, especially the characteristics of the links. Most
of the traditional methods ignore the relationships labels between the entities,
they only treat the existence of the links. However, the likelihood and the type
of a connection are frequently interrelated [2, 4].

Yet, most of the state of the art link prediction methods consider links with
binary values i.e., 1 (exists) or 0 (¬ exists). Conversely, social networks struc-
ture highly rely on the precise nature of the data. Sparse bias alter considerably
the analysis results. In contrast, as discussed in [1, 11], social networks data are
often exposed to observation errors and are frequently noisy. Uncertainty can
be cast from lack of information for determining the correctness of a statement
then quantified on a numerical scale. For example, we can quantify imprecision
about the responses that we get when constructing networks from surveys and
encapsulate these uncertainties in the structure processing to get an uncertain
network. According to [20], errors about the components of multiplex social net-
works are expected to be larger as a result of inaccurate experimental settings or
technical issues. In particular, the complexity of multiplex network may affect
their properties more adversely. For instance, the extra links can possibly be
just duplicates that were generated erroneously by the tools used for the con-
struction of the social network. Besides, real world collections are often missing
or have a number of incorrect labels and links. Consequently, one has either to
remove a probable valuable information or to take into account all the uncertain
information from the data [11]. This imprecision impacts directly the network
structure and therefore the outcomes of the analysis. Indeed, we show in pre-
vious works [14, 15] the relevance of handling uncertainty whether within the
structure or throughout the link prediction process. However, we treated uniplex
social networks where there are only uni-relational links between the actors.

Accordingly, we embrace the belief function theory [5, 19] to deal with im-
perfect data and manage uncertain knowledge as it is a general framework for
reasoning under uncertainty. We first introduce a new graph model for multiplex
social network graph that encodes uncertainty at the edges level. Subsequently, a
novel approach for the prediction of new links along with their types in multiplex
social networks is proposed. It is inspired from node neighborhood methods and
uses exclusively the belief function tools. The common neighbors are considered
as independent sources of evidence, information is transferred and combined and
is revised afterwords to get a closer picture about the existence of a future link.
This paper is organized as follows. Section 2 presents briefly some related works
on link prediction. In section 3, essential belief function notations and concepts
are re-called. Section 4 and 5 detail our proposals where a new model for uncer-



tain multiplex social network is presented along with a method for the prediction
of new connections and their type. Section 6 reports the experimental results.
Section 7 concludes the paper.

2 RELATED WORK ON LINK PREDICTION

Link prediction has a great applicability in a wide variety of domains as it plays
a key role in network analysis. Namely, it is applied to recommend new friends
or items in social networks, detect criminals in dark networks, explore missing
links in biological networks, etc. The objective is to evaluate the likelihood of a
new association between two unlinked nodes given a snapshot of the network.

Most traditional methods consider simple networks allowing only one type of
relations. However, a relevant aspect is not treated which is the types of the links.
Actually, prediction of link existence and link type are often considered as two
independent problems. In the first case, one predicts the future linkage between
two nodes, conversely, in the second case, one assumes that the link exists and
tries to predict its type. Yet, these two problems are interrelated [2, 4].

As a matter of fact, multiplex social networks highlight the diversity of the
links’ types and allow simultaneous relationships as it is an aspect of real social
life. Besides, multiplex information is sometimes more useful which is why many
works join networks from several platforms to get a more informative multi-
relational network [7, 22]. Formally, a multiplex social network can be defined as
a graph G(V,E1, . . . , En) where V is the set of entities and E1, . . . , En are the
sets of edges each belonging to specific relationship (layer, dimension). In the
following, we present traditional methods for link prediction for both uniplex and
multiplex structures and we introduce the intuition of our proposed approach.

2.1 Link prediction in uniplex networks

There are two groups of link prediction methods depending on the considered
information of the network. The first group of methods uses the local structural
properties of the nodes i.e., common neighbors, common circles, or the nodes’
attributes i.e., age, interests, gender. Yet, the nodes’ attributes are usually not
available or hidden due to privacy anonymization constraints. Thus, most of
the local information based methods use structural similarities metrics. Namely,
the most popular ones are “Common Neighbors”, “Jaccard’s Coefficient” and
“Adamic/Adar”. For instance, the common neighbors measure, denoted by CN ,
counts the jointly connected neighbors of a pair of nodes (u, v). It can be defined
as CNuv = |τ(u)∩τ(v)| where τ(u) and τ(v) are respectively the set of neighbors
of u and v. The common neighbors metric predicts links to nodes with many
common neighbors. It is based on the intuition that the more two persons share
mutual friends, the likely to become friends which has been demonstrated by
Kossinets’ and Watts analysis [10] made on a large scale social network of student
friendships. Furthermore, it is fast and yields to very well results in practice. The
second group of methods uses global information based on global topological



properties of the network. Popular approaches include Hitting time, SimRank
or the shortest path to reach a node. However, these latter suffer from high
complexity since they inquire for global topological properties. Besides, global
information is not always available. Also, the additional complexity does not
always pay off since local methods can give great performance as well [12].

2.2 Link prediction in multiplex networks

Correspondingly, when dealing with multiplex social networks, two options are
available. Treat each layer independently using uniplex graph measures or handle
directly the network using multiplex measures [2]. For instance, the neighbor-
hood of a node may be considered in different ways in a multiplex i.e., the union
of all the neighbors in all the dimensions or more restrictively, the intersection
of the neighbors set across all the layers [9]. Few attempts have been made to
address link prediction in multiplex social networks due to manipulation difficul-
ties and the lack of available data of such networks. Some methods tackled it via
supervised and unsupervised learning [18]. There is another category of meth-
ods that treated link prediction in multiplex networks as a matrix factorization
problem [3, 8]. For instance, the authors in [8] proposed a latent factor model
to predict multiple links using tensor factorization. However, this category of
methods suffer from high complexity issues especially when the number of links’
types increases. Other methods applied measures based on local or global in-
formation. For instance, the authors in [4] proposed a probabilistic weighted
version of the common neighbors method and computed prediction scores for
each link type. They subsequently tested the new score under unsupervised and
supervised learning. Actually, structural similarity measures are frequently used
as features for classification or as similarity scores for unsupervised learning.

In this paper, the intuition of the structural local measures is adopted. More
precisely, we draw on the method of the common neighbors as it is simple and
shows great results in many previous works [10, 17]. Yet, we take both infor-
mation across local layers and the overall information about the global network
into consideration in the prediction task. We adopt the belief function theory to
handle uncertainty as it permits to represent and manage imperfect knowledge.

3 BASICS OF BELIEF FUNCTION THEORY

Mathematical notations and definitions of the belief function theory [5, 19] es-
sential for the understanding of our proposals are given in this section.

Let Θ be the frame of discernment. It is a finite set including exhaustive and
mutually exclusive events associated to the problem. Let 2Θ be the power set of
Θ. A basic belief assignment (bba), denoted by m, is the mass attached to an
event given a piece of evidence. It is defined as:

m : 2Θ → [0, 1]∑
A⊆Θ

m(A) = 1. (1)



When an element A ⊆ Θ of a mass function m such that m(A) > 0, it is
called a focal element.

The fusion of two masses m1 and m2 derived from two reliable and distinct
sources of evidence is ensured using the conjunctive rule of combination [21]
denoted by ∩©. It is defined by:

m1 ∩©m2(A) =
∑

B,C⊆Θ:B∩C=A

m1(B) ·m2(C). (2)

On the other hand, when at least one of the sources is reliable but we do not
know which one it is, the disjunctive rule of combination denoted by ∪© is used
[21]. It is defined by:

m1 ∪©m2(A) =
∑

B,C⊆Θ:B∪C=A

m1(B) ·m2(C). (3)

The reliability of the source can be evaluated by a coefficient α ∈ [0, 1]. A
discounting mechanism [19] could therefore be performed on m. The discounted
mass function is denoted by αm and we have:{

αm(A) = (1− α) ·m(A),∀A ⊂ Θ
αm(Θ) = α+ (1− α) ·m(Θ).

(4)

where α is called the discounting rate. m(Θ) symbolizes the state of igno-
rance, it is equal to 1 when α = 1. It corresponds to a vacuous mass function.
In other terms, the source is fully unreliable. On the other hand, when α = 0,
the source is considered to be fully reliable.

In some cases, one may want to revise a mass function m by reinforcing
an element A of the frame. This can be done using the reinforcement correction
mechanism [16], which is similar to the discounting operation but unlike the later
the masses of the focal elements are recovered and redistributed to the element A
instead of Θ. Let β ∈ [0, 1] be the reinforcement rate, the reinforcement towards
the element A is defined by:{

βm(A) = (1− β)m(A) + β
βm(B) = (1− β)m(B),∀B ⊆ Θ and B 6= A.

(5)

To set up the relation between two disjoint frames Θ and Ω, we can use a
multi-valued mapping operation [5]. Actually, a multi-valued mapping function
denoted by τ allows to assign the subsets B ⊆ Ω that can possibly accord a
subset A ⊆ Θ:

mτ (A) =
∑

τ(B)=A

m(B). (6)

One of the solutions for decision making in the belief function framework is
the transformation of the mass functions into pignistic probabilities denoted by
BetP . It is defined by [21] :

BetP (A) =
∑
B⊆Θ

|A ∩B|
|B|

m(B)

(1−m(∅))
,∀A ∈ Θ. (7)



4 EVIDENTIAL MULTIPLEX SOCIAL NETWORK

In previous works [14, 15], we developed an evidential graph-based versions of
social networks that handle uncertainty at the edges level. However, the latter
model only supports uni-relational homogenous connections between the nodes.
Consequently, this paper extends it the multi-relational case. The proposed ev-
idential multiplex social network graph is defined as G(V,E1, . . . , En) where
V = {v1, . . . , v|V |} is the set of nodes, and E1, . . . , En are the sets of edges with
n being the number of types. Each edge uv ∈ Ei has assigned a bba defined on
the frame of discernment Θuvi = {Euv,¬Euv} denoted by muv

i . The event Euv
means that uv exists and ¬Euv means that it is absent. The bba muv

i quantifies
the degree of uncertainty regarding the existence of a link of type i between
(u, v).
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Fig. 1. A multiplex social network graph with bba’s weighted edges

Fig. 1 gives an illustration of such a graph structure. The links are weighted
with bba’s rather than binary values (either 1 or 0) to quantify the uncertainty
regarding their existence. The nodes may share three different types of relation-
ships namely m1, m2 and m3. These latter are schematized differently where
each type represents a specific association. Hence, there are three layers with
the same number of nodes. For the sake of lucidity, a link uv of type i is schema-
tized if its pignistic probability BetPuvi (Euv) > 0.5. In other words, its likelihood
to exist is greater than 50%.

5 LINK PREDICTION IN EVIDENTIAL MULTIPLEX
SOCIAL NETWORKS (LPEM)

Our proposed approach is based on the intuition of the common neighbors tech-
nique. This latter has proved its effectiveness in various real networks and usually
got the best performances with respect to other local measures [10, 17]. We have



proposed, in previous works [14, 15], methods for future links’ existence in un-
certain social networks. However, we worked on uniplex social network graphs
where only a single type of a relationship is allowed. Application of these meth-
ods to the multiplex case is possible by carrying out the same process for each
layer separately. However, information regarding the whole structure of the mul-
tiplex is not treated. In this work, we take into account the multiplicity of the
relations between the nodes. Information about the links’ types is treated in or-
der to predict the likelihood of the existence of a link in a specific layer. We draw
on the methods based on local structural properties by considering the common
neighbors present throughout the global graph.

At first, evidence from the neighboring nodes is gathered from all the layers
of the network where each one is considered as an independent source of evi-
dence. Then, the evidence collected from each layer is evaluated according to its
reliability. Subsequently, the resulting beliefs are revised according to the dis-
tribution of simultaneous links of specific types in the multiplex. Indeed, global
information is mandatory for a successful overall link prediction. From this point
of view, the steps for the prediction of a future link uv in an evidential multiplex
social network G(V,E1, . . . , En), where n is the number of possible types, are as
outlined below. Each step is illustrated according to the network presented in
Figure 1 where the aim is to predict the potential existence of one or multiple
relations between Ava and Con.

5.1 Information gathering and fusion

Firstly, we extract the subgraph GC(VC , EC) containing the common neighbors
of u and v. Since these latter may share various types of relationships with their
common neighbors, we decompose GC into n graphs where each graph Gi(Vi, Ei)
includes the links belonging to the type of associations i ∈ {1, . . . , n} such that

VC = Vi and EC =
n⋃
i=1

Ei.

Then, for each graph Gi, the masses of each neighboring link xy are trans-
ferred to the frame of uvi using a multivalued mapping operation (Equation 6)
τ : Θxyi → 2Θ

uv
i in order to get the mass in Gi collected from xy denoted muv

xy,i

as follows:

– The mass mxy
i ({Exy}) is transferred to muv

xy,i({Euv});
– The mass mxy

i ({¬Exy}) is transferred to muv
xy,i({¬Euv});

– The mass mxy
i (Θxyi ) is transferred to muv

xy,i(Θ
uv
i ).

Thereafter, we combine the masses that we get from the neighboring links
according to the presence of the common neighbors in Gi to get the overall mass
of uvi denoted muv

i . For instance, if all the common neighbors of the pair (u, v)
are in Gi, the masses are fused using the conjunctive rule (Equation 2). That is,
all the common neighbors are considered as reliable sources. In contrast, if there
are common and uncommon neighbors of (u, v) in Gi, the transferred masses are
fused using the disjunctive rule of combination (Equation 3). Hence, we consider
at least one of the common neighbors as a reliable source of evidence. Gi is



ignored if (u, v) does not share any common neighbor in it and we get a vacuous
mass function.

Accordingly, if considering Ava and Con from Figure 1 as the query nodes, we
catch the subgraph containing their common neighbors which are Dan, Eve and
Gil (the node Ben is disregarded as it is not a common neighbor). The common
neighbors subgraph is subsequently decomposed into three graphs where each
one includes the links belonging to a specific type as shown in Fig. 2. G1 contains
the shared links of type 1, G2 contains the shared links of type 2 and G3 contains
the shared links of type 3.

Fig. 2. Decomposition into common neighbors’ subgraphs of each type

The masses of the neighboring links in each subgraph Gi are transferred to
the mass mac of the query link ac connecting Ava and Con. Hence, for each
subgraph Gi of type i we get the following bba’s:

G1 : mac
ad,1,m

ac
ae,1,m

ac
ag,1,m

ac
gc,1,m

ac
dc,1 and mac

ec,1

G2 : mac
gc,2

G3 : mac
ad,3,m

ac
ae,3 and mac

ec,3

In order to get the overall mass function for each type, we combine the transferred
masses according to the presence of the common neighbors in the subgraphs.
For instance, we fuse the obtained masses in G1 using the conjunctive rule of
combination (Equation 2) since all the common neighbors are present. Hence,
we get:

mac
1 = mac

ad,1 ∩©mac
ae,1 ∩©mac

ag,1 ∩©mac
gc,1 ∩©mac

dc,1 ∩©mac
ec,1

However, the masses from G3 are combined using the disjunctive rule (Equa-
tion 3) since there are common and uncommon neighbors i.e., only Eve is a
common neighbor, Gil and Dan are not common neighbors anymore. That is,
the bba’s are combined using the disjunctive rule:

mac
3 = mac

ad,3 ∪©mac
ae,3 ∪©mac

ec,3

On the other hand, G2 is discarded since there are no common neighbors on
it and we get a final bba (mac

2 (Θac2 ) = 1).



5.2 Reliability evaluation

Next, we focus on the overall reliability of the sub-graphs Gi with respect to the
global graph GC . We compute the distribution of the common neighbors across

all the subgraphs Gi defined by λi =
|CNuvi

|
|CNuv| . We use αi = 1−λi as a discounting

rate to discount muv
i . In doing so, we get a discounted mass function αimuv

i as
follows: 

αimuv
i ({Euv}) = (1− αi) ·muv

i ({Euv})
αimuv

i ({¬Euv}) = (1− αi) ·muv
i ({¬Euv})

αimuv
i (Θuvi ) = αi + (1− αi) ·muv

i (Θuvi )

(8)

For example, in Figure 2, Ava and Con share three common neighbors in G1

(Gil, Eve and Dan) thus, λ1 = 3
3 = 1. They share one common neighbor in G3

which is Eve thus, λ3 = 1
3 . That is, the reliabilities of G1 and G3 are respectively

quantified by the reliability coefficients α1 = 1− 1 = 0 and α3 = 1− 1
3 . That is,

G1 is fully reliable. The discounting operation gives α1mac
1 and α3mac

3 .

5.3 Evidence reinforcement

The obtained masses are revised according to the distribution of the simultaneous
links of more than two types in the multiplexG(V,E). For instance, if we consider
a sub-graph Gi and it already exists exactly one link of a type j 6= i between
u and v. We compute the distribution of simultaneous 2-relational associations
of types i and j denoted by S2

ij with respect to all the simultaneous relations

of exactly two types in G denoted by S2
G. Generally, when there are m ≤ n− 1

simultaneous links between (u, v), we seek to the distribution Sm+1
∗j where ∗ =

{1, . . . ,m} are the types of the shared links. If Sm+1
∗j 6= 0, we reinforce the mass

on the element “exist” using β =
Sm
∗j
Sm
G

as a reinforcement rate (Equation 5) and

obtain the mass βmuv
i .

As illustrated in Fig. 1, Ava and Con do not share any links. Thus, the
obtained bba’s after the discounting operation are final. However, if they had
a link, for example of type 1. One goes through the reinforcement step (Sub-
section 5.3) by considering the overall simultaneous 2-relational connections in
the global graph. As illustrated in Fig. 1, there are five 2-relational associations
i.e., between (Ava,Ben), (Ava,Eve), (Ava,Dan), (Eve,Con), and (Gil, Con).
Hence, we compute the distribution of simultaneous 2-relational associations of
types 1 and 2 i.e., S2

12 = 2 and the types 1 and 3 i.e., S2
13 = 3 with respect to

all the simultaneous relations of exactly two types in G i.e., S2
G = 5. That is,

α3mac
2 ({E}) and α3mac

3 ({E}) are reinforced using respectively β2 =
S2
12

S2
G

= 2
5 and

β3 =
S2
13

S2
G

= 3
5 as reinforcement rates. We get the final bba’s β2mac

2 and β3mac
3 .

5.4 Links selection

Most of the methods use the ranking of the similarity scores and consider the L
highest ones as the predicted links. In contrast, we first compute the pignistic



probability BetPuvi of the query link uv. Decision about its existence is made
later according to the ranking of the pignistic probabilities on the event “exists”
of all the analyzed links.

6 EXPERIMENTAL EVALUATION

In order to evaluate our proposals, we test our approach on two real word net-
works. A network of 185 students cooperation linked by 362 edges according to
3 relations [6] and a relationships network of 21K links between 84 persons with
5 links’ types collected from the social evolution dataset [13]. To the best of our
knowledge, there are no uncertain multiplex social network datasets available.
Thus, we build our networks artificially by simulating mass functions on the links
regarding their existence. We proposed, in previous works [14, 15], methods for
the pre-processing of a social network to transform it into an uncertain one where
the links are valued with bba’s. That is, we simulate mass functions according
to the technique proposed in [14]. It is based on a widely applied procedure of
graph sampling used in link prediction literature [23].

A comparative study with the method proposed in [15] is conducted for the
two datasets. Actually, the latter method called belief link prediction (BLP),
predicts new links under the belief function theory framework. It is stimulated
from the common neighbor method. However, it only predicts new links of single
types. Therefore, it is applied for each set of links of a particular type separately.

Precision and recall are used for performance evaluation. The precision de-
picts the number of relevant links ε according to the number of analyzed links
δ. It is defined as follows:

Precision =
ε

δ
. (9)

The recall expresses the correctly predicted existing links ε with respect to the
number of correctly and falsely predicted existing ones γ. It is defined as follows:

Recall =
ε

γ
. (10)

Table 1 reports the obtained results in terms of precision and recall for the two

Table 1. Results measured by precision and recall

Method Evaluation metric Students cooperation Relationships network

LPEM
Precision 0.80 0.72
Recall 0.65 0.59

BLP
Precision 0.46 0.53
Recall 0.35 0.41

networks. For the BLP method, we average the values of the precision and recall
obtained solely in each layer in the networks. As it can be seen, the proposed



algorithms outperforms the BLP method in terms of both precision and recall
among the two datasets. The LPEM approach gives higher prediction quality
measured by precision 80% for the students cooperation dataset compared to
46% for the BLP and 72% for the relationships network compared to 53% for
the BLP. That is, our method is able to predict both links’ existence and types
efficiently. The same applies to recall, the LPEM gives much higher values than
the BLP method i.e., 65% for the students cooperation compared to 35% given
by the BLP method. A possible reason for having such results by the BLP
method is the sparsity of the homogeneous relationships. This implies that global
information about the network contributes to the prediction task. Besides, our
method is more convenient as it does not inquire its application as many times
as there are layers. Yet, results given by the precision are higher than those of
the recall measure for both methods. This points out that we are getting more
incorrect existing links than incorrect non existing links. Still, the new approach
has proved validity and performance empirically. To the best of our knowledge,
this is the first approach proposed to predict future links’ existence and types
in multiplex social network while dealing with uncertainty.

7 CONCLUSION

In this paper, we have presented an uncertain multi-relational graph model for
multiplex social networks that encapsulates the uncertainty degrees using mass
functions encoding the likelihood of the edges’ existence. In addition, we have
given a new link prediction method that permits to predict both the existence
and the type of new associations in multiplex social networks and deals with
uncertainty at the same time. Specifically, the proposed method fully operated
using the tools of the belief function framework. Evidence from the common
neighbors of the global graph is revised and transferred to the query link frame
of discernment. It is subsequently updated and fused with the overall information
gathered from all the layers to predict both existence and type of the link. A
future direction is to take the actors attributes into consideration. It is clear that
some attributes relate directly to the type of the associations between the nodes.
Therefore, we intend to investigate the impact of the nodes’ attributes on the
links’ types and consequently link prediction.
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