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Abstract. With the rapid growth of high dimensional data, feature se-
lection has become a substantial task for several machine learning prob-
lems. In fact, it is regarded as an important process for classification
performance owing to its ability to remove redundant and inconsistent
features. The rough set theory is regarded as a well known tool allowing
relevant feature selection. As the task of attribute selection using rough
sets is an NP-hard problem, several heuristic algorithms have been intro-
duced. The Johnson’s algorithm, handling data characterized by certain
and precise attribute values, is one of the most known ones. In this pa-
per, we propose to extend this latter algorithm to an uncertain context,
precisely where data contain uncertain condition attribute values repre-
sented within the belief function framework. We test the performance of
our belief Johnson’s algorithm through several experiments on synthetic
databases.

Keywords: Classification, feature selection, rough set theory, heuristic
algorithms, belief function theory.

1 Introduction

Classification is a substantial problem in the area of machine learning and data
mining and it has become increasingly challenging owing to the exponential
data growth in both simple size and dimensionality [21]. Dimensionality reduc-
tion techniques such as feature selection are widely used to deal with high-
dimensionality [15, 20]. In fact, they allow to exclude as much as possible irrele-
vant and redundant attributes from the ordinal set of attributes for the purpose
of reducing the computational cost and the dimensionality space of huge data
sets as well to improve the classification accuracy. Mainly, there exist two fea-
ture selection approaches: wrapper and filter. These former methods incorporate
classification algorithms to search and select a subset of attributes, while these
latter methods select a subset of attributes independently of any classification
algorithm. As the classification of each attribute or subsets of attributes is costly
in term of computation time, we resort, in this investigation, to filter approaches.
Rough set theory is one of the most popular filter methods allowing to find out
the minimal set of relevant attributes also called reduct [14]. The main advan-
tages of the reduct is its ability to predict the decision concepts as well as the



whole set of attributes. Basically, finding the set of all reducts or finding the
optimal reduct is regarded as an NP-hard problem which has led to the intro-
duction of several heuristic approaches such as the QuickReduct algorithm [3],
the Johnson’s algorithm [8], etc. In this paper, we propose to adopt this lat-
ter heuristic algorithm thanks to its capacity to discover only one reduct with
the minimal number of attributes generally close to the optimal from a given
data. It is substantial to note that Johnson’s algorithm handles only the case of
perfect data. However, real world databases may be susceptible to imprecision,
incompleteness and uncertainty. Such cases require to adopt the concept of rough
sets heuristic algorithms to an uncertain environment. In several domains, uncer-
tainty may exist either in decision attributes or in condition attributes or in both
decision and condition attributes. For instance, in medicine, patients’ symptoms
(condition attributes) or patients’ diseases (decision attribute) can be uncertain.
Therefore, in this paper, we propose to adopt the Johnson’s heuristic algorithm
to an uncertain environment. Several theories have been discussed in the litera-
ture to handle uncertainty such as the bayesian theory [1], the fuzzy theory [6],
the belief function theory [5], etc. As this latter formalism has the advantage
to deal with partial or even total ignorance, we propose a belief Johnson algo-
rithm to find reducts from a partially uncertain decision table. More precisely,
we tackle the problem where uncertainty exists only in the condition attributes.
This paper is organized as follows. Section 2 is dedicated to hightailing the basic
concepts of the rough set theory. We detail Johnson’s algorithm in Section 3.
Section 4 provides an overview of the fundamental concepts of the belief function
theory. Our novel approach for feature selection based on the belief Johnson’s
algorithms has been presented in Section 5. Section 6 describes the experimental
results yielded from several uncertain databases under the classifier fusion frame-
work, in order to evaluate the performance of our novel approach. In Section 7,
we draw conclusion and we highlight some future works.

2 Rough Set Theory

Rough Sets (RS), introduced by Pawlak [14], is a valid mathematical tool for
dealing with imperfect knowledge (vague, imprecise and uncertain) in variety of
applications related to machine learning area which mainly includes the prob-
lems of knowledge discovery, clustering [13], classification [7, 10], feature selection
[2, 11], etc. This latter paradigm consists of extracting the smallest subsets of
relevant features, also called reducts, from the original set of features of a given
data. In a practical point of view, information and knowledge are represented by
a decision information system which is defined as a pair A = (U,R), where U =
{O1, . . . , On} is a non-empty, finite set of objects called the universe and R = C
∪ D is a finite set of attribute, C = {c1, . . . , cK} is a non-empty, finite set of K
condition attributes, vck is a non-empty set of values of ck ∈ C, D = {d} is the
decision attribute set and vd is the decision attribute value [23]. Given a subset
of attributes B ⊆ C, an indiscernibility relation, denoted IND(B), is defined as
follows ∀ k = {1, . . . ,K}:

IND(B) = {(Oi, Oj) ∈ U × U |∀ck ∈ B, vck(Oi) = vck(Oj)} (1)



Let B ⊆ C and X ⊆ U . We can approximate X by using only the informa-
tion contained by constructing the B-lower and B-upper approximations of X,
denoted respectively by B(X) and B(X) and defined by:

B(X) = {Oj |[Oj ]B ⊆ X} (2)

and

B(X) = {Oj |[Oj ]B ∩X = ∅} (3)

where

[Oj ]B = {Oi|∀ck ∈ B, vck(Oi) = vck(Oj)} (4)

Let B and D be equivalence relations over U , then the positive region can
be set as:

PosB(D) =
⋃

x∈U/D

B(X) (5)

The positive region embraces all objects of U that can be classified to classes
of U/D by the use of the information in attributes B. Keeping only attributes
that preserve the positive region is regarded as a practical way for feature re-
duction. It is noteworthy that there exist several subsets of condition attributes
and those which are minimal are called reducts. A subset B ⊆ C is a reduct of
C with respect to the decision attribute d, if B is minimal and:

PosB(d) = PosC(d) (6)

In other terms, the attributes that do not belong to any reduct are un-
necessary for the classification of the universe elements. Authors in [17], have
introduced the notation of discernibility matrix and function as other ways for
finding reducts for a decision table DT . The discernibility matrix of DT , denoted
by M , is a |U | × |U | matrix, in which the element M(Oi, Oj) for an object pair
(Oi, Oj) is defined by:

M(Oi, Oj) = {vc ∈ C|vc(Oi) 6= vc(Oj) and vd(Oi) 6= vd(Oj)} ∀ i, j = {1, . . . , n}

The matrix element M(Oi, Oj) represents the set of all condition attributes
discerning objects Oi and Oj that do not have the same value of the decision
attribute d. The notion of discernibility function can be defined from the dis-
cernibility matrix as follows:

f(M) = ∧{∨(M(Oi, Oj))|∀Oi, Oj ∈ U,M(Oi, Oj) = ∅} (7)

Reducts may be yielded by transforming the discernibility function from
conjunctive normal form into disjunctive normal form. The major shortcoming
of this solution is its costly operation which makes it impractical for medium
sized or large sized data sets. Therefore, several heuristic algorithms have been
discussed to overcome this drawback. The Johnson’s heuristic algorithm [8] is
one of the most known ones.



3 Johnson’s heuristic algorithm

Johnson’s algorithm proposed in [8] is an heuristic algorithm that uses a greedy
search technique which consists of picking out attributes having the most fre-
quency appearing in the discernibility matrix. Algorithm 1 below underlines the
main steps of the Johnson algorithm.

Algorithm 1 Johnson’s Algorithm(U,C ∪ d)

1: input:U: a finite set of instances, C: a set of conditional attributes, d: a set of
decision attributes

2: Output: R:reduct, R ⊆ C
3: R ← ∅
4: M ← DiscernibilityMatrix (U,C ∪ d)
5: repeat
6: c ← SelectAttributeWithMaxWeight(M)
7: R ← R ∪ {c}
8: for i=1 to |U | do
9: for j=1 to |U | do

10: if c ∈ M(Oi, Oj) then
11: M(Oi, Oj) = ∅
12: end if
13: end for
14: end for
15: until (M(Oi, Oj) =∅ ∀ i,j)

Johnson’s algorithm begins by setting the reduct candidate, denoted by R,
to an emptyset. Subsequently, it computes the number of occurrences of each
attribute in the discernibility matrix. The attribute that has the highest count
of appearances will be added to R and all cells containing this attribute will be
removed from the discernibility matrix. This process should be repeated until all
non empty cells are removed. Then, the algorithm returns R as a final reduct.
Though Johnson’s algorithm guarantees to uncover a single reduct, it is unuseful
in the case where data sets are characterized by uncertain attributes. Thus, we
propose to extend this algorithm to an uncertain context, more particulary to
the context of the belief function theory.

4 Belief function theory

The belief function theory, also known as Dempster-Shafer Theory (DST) or
theory of evidence [16], is considered as a useful theory for representing and
managing uncertain knowledge. In what follows, we briefly introduce the main
concepts of the belief function theory as interpreted in the Transferable belief
Model (TBM) [19].

Let Θ be a finite non-empty set of N elementary events related to a given
problem, these events are assumed to be exhaustive and mutually exclusive.



Such Θ is called the frame of discernment. The power set of Θ, denoted by 2Θ,
is composed of all the subsets of Θ.

The impact of evidence assigned to each subsets of the frame of discernment
Θ is named basic belief assignment (bba). It is defined as:

m : 2Θ → [0, 1]∑
A⊆Θ

m(A) = 1 (8)

The amount m(A), known as basic belief mass (bbm), expresses the degree
of belief committed exactly to the event A.

To make decision within the belief function framework, we must transform
the bba into a probability measure called pignistic probability denoted BetP
and defined as follows [18]:

BetP (A) =
∑
B⊆Θ

|A ∩B|
|B|

m(B)

1−m(∅)
∀ A ∈ Θ (9)

5 Belief Johnson’s algorithm for partially uncertain data

This Section is devoted to describing our heuristic approach for feature selection
form partially uncertain decision table. Our proposed solution, namely belief
Johnson’s algorithm, aims to extract the subset of relevant attributes which
enables the same classification ability as the entire set of attributes. In what fol-
lows, we provide firstly a brief description of a partially uncertain decision table
under the belief function framework and then we detail our heuristic approach.

5.1 Partially uncertain decision table

Our partially uncertain decision table will be defined as a pair UDT=(U , uC ∪
d) where U is a finite set of n objects U={O1,. . .,On} described by a set of K un-
certain condition attributes denoted by uC={c1, . . ., cK} and a certain decision
attribute denoted by {d}. In this work, we suggest to represent the uncertainty
of each condition attribute within the belief function framework. Thus, a basic
belief assignment mΘk

i , defined on the frame of discernment Θk which represents
all possible values of a condition attribute ck ∈ uC, will be assigned to each con-
dition attribute value vck of an instance Oi. These bbas can be induced by one or
several agents and they may express the case of total certainty (mΘk

i ({vck}) = 1

and mΘk
i (Θk) = 0) or even the case of total ignorance (mΘk

i ({vck}) = 0 and

mΘk
i (Θk) = 1).

Example: Let Table 1 be our uncertain decision table composed with eight in-
stances characterized by three uncertain categorical condition attributes uC =



{Hair,Eye,Height} and a certain decision attribute d with possible values
{d1, d2}. To simplify the notations, we will use 1, 2 and 3 instead of Hair,
Eye and Height. The basic belief assignments, which are randomly affected
to the condition attribute values, will be defined on the frame of discernments
Θ1 = {Blond,Dark}, Θ2 = {Brown,Blue} and Θ3 = {Short,Middle, Tall}.

Table 1. Uncertain decision table

Hair Eye Height d

O1 mΘ1
1 ({Dark})=0.5

mΘ1
1 (Θ1)=0.5

mΘ2
1 ({Brown})=1

mΘ2
1 (Θ2)=0

mΘ3
1 ({Middle})=0.95

mΘ3
1 (Θ3)=0.05

d1

O2 mΘ1
2 ({Blond})=0.1

mΘ1
2 (Θ1) = 0.9

mΘ2
2 ({Blue})=0.82

mΘ2
2 (Θ2)=0.18

mΘ3
2 ({Middle})=1

mΘ3
2 (Θ3)=0

d1

O3 mΘ1
3 ({Blond})=0.6

mΘ1
3 (Θ1) = 0.4

mΘ2
3 ({Brown})=0.2

mΘ2
3 (Θ2)=0.8

mΘ3
3 ({Tall})=0.55

mΘ3
3 (Θ3)=0.45

d2

O4 mΘ1
4 ({Dark})=0.7

mΘ1
4 (Θ1) = 0.3

mΘ2
4 ({Brwon})=0

mΘ2
4 (Θ2)=1

mΘ3
4 ({Short})=1

mΘ3
4 (Θ3)=0

d1

O5 mΘ1
5 ({Blond})=1

mΘ1
5 (Θ1) = 0

mΘ2
5 ({Blue})=0.18

mΘ2
5 (Θ2)=0.82

mΘ3
5 ({Middle})=0.15

mΘ3
5 (Θ3)=0.85

d2

O6 mΘ1
6 ({Blond})=0.3

mΘ1
6 (Θ1) = 0.7

mΘ2
6 ({Brwon})=0.13

mΘ2
6 (Θ2)=0.87

mΘ3
6 ({Tall})=0.8

mΘ3
6 (Θ3)=0.2

d2

O7 mΘ1
7 ({Dark})=1

mΘ1
7 (Θ1) = 0

mΘ2
7 ({Brown})=0.8

mΘ2
7 (Θ2)=0.2

mΘ3
7 ({Tall})=0.25

mΘ3
7 (Θ3)=0.75

d1

O8 mΘ1
8 ({Dark})=0.5

mΘ1
8 (Θ1) = 0.5

mΘ2
8 ({Blue})=0.22

mΘ2
8 (Θ2)=0.78

mΘ3
8 ({Short})=0.1

mΘ3
8 (Θ3)=0.9

d1

5.2 Reducts for partially uncertain decision table

Let us remind that the reduct, using Johnson’s algorithm, is constructed by
sequentially adding the most discernable attributes for a given decision attribute.
Therefore, the computation of the discernibility matrix M will be a preliminary
step in Johnson’s algorithm. However, computing M from partially uncertain
decision table UDT=(U , uC ∪ d) remains really a challenging task which has
not attracted great attention yet. To cope with this problem, we propose to adopt
Johnson’s heuristic algorithm to an uncertain environment, precisely to the belief
function framework. Our belief Jonson’s algorithm tackles mainly the problem
where the uncertainty exists only in the condition attributes and represented
within the framework of belief functions. In such cases, dissimilarity metrics must
be used to discern all pairs of objects with different decision values. Consequently,
entries of the discernibility matrix should be set as follows ∀ i, j ∈ {1, . . . , n}
and k ∈ {1, . . . ,K}:

M ′(Oi, Oj) = {ck ∈ C|dist(mΘk
i ,mΘk

j ) > S and vd(Oi) 6= vd(Oj)} (10)

where S denotes a tolerance threshold and dist corresponds to a distance mea-
sure between two bbas. Different distance metrics have been investigated in the
literature such as the Tessems distance [22], the Euclidean distance [4], the Jous-
selme distance [9], etc. This latter is one of the most commonly used distances.



Given two bbas m1 and m2, the Jousselme distance measure is computed as
follows:

dist(m1,m2) =

√
1

2
(m1 −m2)TD(m1 −m2) (11)

with D is the Jaccard index matrix, the elements of which are calculated as
follows:

D(A,B) =


1 if A=B= ∅
|A ∩B|
|A ∪B|

∀ A,B ∈ 2Θ
(12)

Once the discernibility matrix is computed, the reduct will be incrementally
composed by adding the condition attribute that occurs with the most frequency
and then removing any cells contain this attribute. This procedure must be re-
peated until all non-empty cells will be eliminated.

Example: In order to extract the reduct relative to our partially uncertain
decision table (see Table 1), we start by computing the discernibility matrix
M ′ where the threshold S is setting to 0.1 (see Table 2). To simplify, we use
the notations Ha, E and He respectively for Hair, Eye and Height. For in-
stance, M ′(O1, O2)=∅ due to the fact that vd(O1) = vd(O2). Another example,
M ′(O1, O5)={Ha,E,He} because dist(mΘ1

1 ,mΘ1
5 ) = 0.5 > 0.1, dist(mΘ2

1 ,mΘ2
5 ) =

0.7185 > 0.1, dist(mΘ3
1 ,mΘ3

5 ) = 0.6532 > 0.1 and vd(O1) 6= vd(O5).

Table 2. Discernibility matrix M ′

O1 O2 O3 O4 O5 O6 O7 O8

O1 -

O2 - -

O3 E,He Ha,E,He

O4 - - Ha,E,He

O5 Ha,E,He Ha,E,He - Ha,E,He -

O6 Ha,E,He Ha,E - Ha,He - -

O7 - - Ha,E,He - Ha,E,He Ha,E,He

O8 - - E,He - Ha,E,He Ha,E,He - -

Let us now compute the reduct using our belief Johnson’s algorithm. Firstly,
we count the number of occurrences relative to each condition attribute and the
feature with the highest frequency will be added to the reduct. In our discerni-
bility matrix (Table 2), the attributes Eye and Height appear 14 times, while
the attribute Hair appears 13 times. As attributes Eye and Height have equal
weights, we randomly add one among them to the reduct R. If the attribute
Eye is chosen then we remove all cells containing Eye from M ′ and the next
best feature will be selected. By removing Eye, we still have Hair and Height
with weights equal to 1. As Hair and Height have equal weights, we add either



Hair or Height to R and then we remove the chosen attribute for M ′ and the:
if we remove the attribute Hair, R will be set to R = {Eye,Hair} and M ′ will
be empty. By against, if we remove the attribute Height, R will be equal to
R = {Eye,Height} and M ′ will be empty.

6 Experimentations

In order to evaluate the performance of our heuristic feature selection approach,
we propose to carry out several experimental tests on real world databases ob-
tained from the U.C.I. repository [12]. Table 3 gives a brief description of the
databases where #Instances and #Attributes denote respectively the total num-
ber of instances and the total number of condition attributes.

Table 3. Description of databases

Databases #Instances #Attributes

Tic-Tac-Toe 958 9

SPECT Heart 267 22

Lymphography 148 18

Wine 178 13

Zoo 101 17

As all these databases do not contain uncertain condition attributes repre-
sented within the belief function framework, we propose to generate synthetic
databases by taking into account the original database D and a degree of un-
certainty P to transform actual condition attribute value vck of each object Oi,
where ck ∈ uC, into a basic belief assignment as follows:

mΘk
i ({vck}) = 1− P

mΘk
i (Θk) = P (13)

The degree of uncertainty P takes value in the interval [0,1]: Certain Case (P=0),
Low Uncertainty (0 ≤ P < 0.4), Middle Uncertainty (0.4 ≤ P < 0.7) and High
Uncertainty (0.7 ≤ P ≤ 1).

To check the validity of our proposed heuristic approach, we try to per-
form an empirical comparison in terms of dimensionality space and classification
accuracy criterion (PCC) between results yielded by our initial databases and
those obtained by our belief Johnson’s algorithm in both certain and uncertain
cases. In order to compare PCCs, we resort to three well known classification
algorithms, namely the Decision Tree classifier (DT), the Naive Bayes classifier
(NB) and the k-Nearest Neighbor classifier (k-NN) with k equals to 1. As these
classification algorithms cannot handle data characterized by uncertain condi-
tion attributes represented within the framework of belief functions, we perform



the pignistic transformation, using Equation 9, to make decision about condition
attribute values which should be chosen. Once computing the pignistic proba-
bility of all condition attribute beliefs, we run the three mentioned classifiers
using the leave one out cross validation approach which divides a data set with
N instances into N -1 instances for training and the remaining instance for test-
ing. This procedure will be repeated N times where each existing instance is
used once as a test set. Experimental results are given from Table 4 to Table 6
where #F denotes the number of selected attributes. Note that, for the sake of
simplification, we have replaced the attribute names in the reduct by numbers
according to their order in the databases.

Table 4. Classification accuracy (%) without dimensionality reduction

Databases NB DT 1-NN

Tic-Tac-Toe 82.04 69.41 99.16

SPECT Heart 84.64 79.40 82.39

Lymphography 79.05 83.78 82.43

Wine 92.69 98.31 98.87

Zoo 92.07 95.04 96.03

Table 5. Belief Johnson’s algorithm: certain case

Databases Reduct #F
PCC (%)

NB DT 1-NN

Tic-Tac-Toe R={1, 2, 3, 4, 5, 6, 8, 9} 8 80.58 71.71 81.41

SPECT Heart R={1, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14,
16, 19, 20, 21, 22}

16 79.40 79.77 80.52

Lymphography R={2, 13, 14, 15, 16, 18} 6 77.02 80.40 81.75

Wine R={1, 5, 7, 11, 13} 5 97.19 98.87 87.87

Zoo R={4, 7, 9, 11, 14} 5 94.05 90.09 96.03

We remind that our ultimate objective is to reduce dimensionality space as
well as the computational time and keep or increase the classification accuracy.
Let us note that in certain case our belief Johnson’s algorithm gives exactly
the same results as the original Johnson’s algorithm. From the results given in
Tables 4, 5 and 6, we have deduced that in both certain and uncertain cases,
our belief Johnson’s algorithm allows a significant dimensionality reduction. For
instance, applying our belief Johnson’s algorithm to the Lymphography database
containing 18 condition attributes we obtain 6 selected features in certain case,
while applying this proposed algorithm to synthetic Lymphography database
we obtain 5 selected features for both low and middle uncertainty cases and 6
selected feature for high uncertainty case.
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In terms of the PCC criterion, we emphasize that for our certain case fea-
ture reduction allows the improvement of the PCC criterion compared to those
yielded by initial databases, though not always. However, the PCCs yielded fol-
lowing to the feature reduction process are often close to those obtained with
the initial databases. For example, for the initial Spect-Heart database, we have
84.64%, 79.40% and 82.39% as PCCs relative to respectively DT, NB and 1-NN
classifiers, while applying our belief Johnson’s algorithm in certain case, we get
79.40%, 79.77% and 80.52% as PCCs relative to respectively DT, NB and 1-NN
classifiers. Consequently, we can admit that feature reduction allows not only
to reduce dimensionality space and computational time, but also to provide sig-
nificant classification accuracies and thus, it is worth applying belief Johnson’s
algorithm to partially uncertain databases. Concretely, we have tackled three
levels of uncertainty: Low, Middle and High. From Table 6, we can deduce that
the Decision Tree, the Naive Bayes and the 1-Nearest Neighbors classifiers have
yielded interesting PCC values for the different synthetic databases obtained
by using the three levels of uncertainty. For instance, for Wine database, we
have gotten 93.25%, 98.31% and 97.19% as PCCs obtained respectively by the
DT, the NB and the 1-NN classifiers in low uncertainty case, for the middle un-
certainty case, we have obtained 96.62%, 95.50% and 94.38% as PCCs relative
respectively to the DT, the NB and the 1-NN classifiers. Also, we have reported
97.75%, 99.43% and 98.97% as PCCs obtained respectively by the DT, the NB
and the 1-NN classifiers in high uncertainty case.

7 Conclusion

In this paper, we have proposed a new heuristic approach for relevant feature
selection from partially uncertain decision table, precisely where uncertainty ex-
ists only in the condition attributes and represented within the belief function
framework. Our experimental tests have shown the efficiency of our proposed
method in terms of dimensionality reduction and classification accuracy. How-
ever, it is important to note that our heuristic method does not give optimal
reduct. So, as a future work, we look forward to improving our proposed method
by allowing the optimal reduct. We further intend to introduce uncertainty in
both condition and decision attributes.
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