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Abstract. Decision trees are regarded as convenient machine learning
techniques for solving complex classification problems. However, the ma-
jor shortcoming of the standard decision tree algorithms is their unability
to deal with uncertain environment. In view of this, belief decision trees
have been introduced to cope with the case of uncertainty present in class’
value and represented within the belief function framework. Since in var-
ious real data applications, uncertainty may also appear in attribute val-
ues, we propose to develop in this paper another version of decision trees
in a belief function context to handle the case of uncertainty present only
in attribute values for both construction and classification phases.
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1 Introduction
Decision trees are one of the well known supervised learning techniques applied
in a variety of fields, particulary in artificial intelligence. Indeed, decision trees
have the ability to deal with complex classification problems by producing un-
derstandable representations easily interpreted not only by experts but also by
ordinary users and providing logical classification rules for the inference task.
Numerous decision tree building algorithms have been introduced over the years
[?, ?, ?]. Such algorithms take as inputs a training set composed with objects
described by a set of attribute values as well as their assigned classes and out-
put a decision tree that enables the classification of new objects. A significant
shortcoming of the classical decision trees is their inability to handle data within
an environment characterized by uncertain or incomplete data. In the case of
missing values, several kinds of solutions are usually considered. One of the most
popular solutions is dataset preprocessing strategy which aims at removing the
missing values. Other solutions are exploited by some systems implementing
decision tree learning algorithms. Missing values may also be considered as a
particular case of uncertainty and can be modeled by several uncertainty the-
ories. In the literature, various decision trees have been proposed to deal with



uncertain and incomplete data such as fuzzy decision trees [?], probabilistic deci-
sion trees [?], possibilistic decision trees [?, ?, ?] and belief decision trees [?, ?, ?].
The main advantage that makes the belief function theory very appealing over
the other uncertainty theories, is its ability to express in a flexible way all kinds
of information availability from full information to partial ignorance to total ig-
norance and also it allows to specify the degree of ignorance in a such situation.
In this work, we focus our attention only on the belief decision trees approach
developed by authors in [?] as an extension of the classical decision tree to cope
with the uncertainty of the objects’ classes and also allows to classify new objects
described by uncertain attribute values [?]. In such a case, the uncertainty about
the class’ value is represented within the Transferable Belief Model (TBM), one
interpretation of the belief function theory for dealing with partial or even total
ignorance [?]. However, in several real data applications, uncertainty may appear
in the attribute values [?]. For instance, in medicine, symptoms of patients may
be partially uncertain. In this paper, we get inspired from the belief decision tree
paradigm to handle data described by uncertain attribute values. Particulary,
we tackle the case where the uncertainty occurs in both construction and clas-
sification phases. The reminder of this paper is organized as follows: Section 2
highlights the fundamental concepts of the belief function theory as interpreted
by the TBM framework. In Section 3, we detail the building and the classifica-
tion procedures of our new decision tree version. Section 4 is devoted to carrying
out experiments on several real world databases. Finally, we draw our conclusion
and our main future work directions in Section 5.

2 Belief function theory

In this Section, we briefly recall the fundamental concepts underlying the belief
function theory as interpreted by the TBM [?].

Let us denote by Θ the frame of discernment including a finite non empty set
of elementary events related to a given problem. The power set of Θ, denoted
by 2Θ is composed of all subsets of Θ.

The basic belief assignment (bba) expressing beliefs on the different subsets
of Θ is a function m : 2Θ → [0,1] such that:∑

A⊆Θ

m(A) = 1. (1)

The quantity m(A), also called basic belief mass (bbm), states the part of
belief committed exactly to the event A. All subsets A in Θ such that m(A) > 0
are called focal elements.

Decision making within the TBM framework consists of selecting the most
probable hypothesis for a given problem by transforming beliefs into probability
measure called the pignistic probability and denoted by BetP . It is defined as
follows:

BetP (A) =
∑
B⊆Θ

|A ∩B|
|B|

m(B)

1−m(∅)
∀ A ∈ Θ (2)



Let m1 and m2 be two bba’s provided by fully reliable distinct information
sources [?] and defined in the same frame of discernment Θ. The resulting bba
using the conjunctive rule is defined by:

(m1 ∩©m2)(A) =
∑

B,C⊆Θ:B∩C=A

m1(B).m2(C) (3)

It is important to note that some cases require the combination of bba’s
defined on different frames of discernment. Let Θ1 and Θ2 be two frames of
discernment, the vacuous extension of belief functions consists of extending Θ1

and Θ2 to a joint frame of discernment Θ defined as:

Θ = Θ1 ×Θ2 (4)

The extended mass function of m1 which is defined on Θ1 and whose focal
elements are the cylinder sets of the focal elements of m1 is computed as follows:

mΘ1↑Θ(A) = m1(B) where A = B×Θ2, B ⊆ Θ1 (5)

mΘ1↑Θ(A) = 0 otherwise

3 Decision tree classifier for partially uncertain data

Authors in [?], have proposed what is called belief decision trees to handle
real data applications described by known attribute values and uncertain class’s
value, particulary where the uncertainty is represented by belief functions within
the TBM framework. However, for many real world applications, uncertainty
may appear either in attribute values or in class value or in both attribute and
class values. In this paper, we propose a novel decision tree version to tackle the
case of uncertainty present only in attribute values for both construction and
classification phases. Throughout this paper, we use the following notations:

– T : a given training set composed by J objects Ij , j = {1,. . . ,J}.
– L: a given testing of L objects Ol, l = {1,. . . ,L}.
– S: a subset of objects belonging to the training set T .
– C= {C1,. . . , Cq}: represents the q possible classes of the classification prob-

lem.
– A={A1,. . .,An}: the set of n attributes.
– ΘAk : represents the all possible values of an attribute Ak ∈ A, k = {1, . . . , n}.
– mΘAk {Ij}(v): expresses the bbm assigned to the hypothesis that the actual

attribute value of object Ij belongs to v ⊆ ΘAk .

3.1 Decision tree parameters for handling uncertain attribute
values

Four main parameters conducted to the construction of our proposed decision
trees approach:



– The attribute selection measure: The attribute selection measure is
relied on the entropy calculated from the average probability obtained from
the set of objects in the node. To choose the most appropriate attribute, we
propose the following steps:

1. Compute the average probability relative to each class, denoted by
Pr{S}(Ci), by taking into account the set of objects S. This function is
obtained as follows:

Pr{S}(Ci) =
1∑

Ij∈S P
S
j

∑
Ij∈S

PSj γij (6)

where γij equals 1 if the object Ij belongs to the class Ci, 0 otherwise
and PSj corresponds to the probability of the object Ij to belong to the
subset S. Assuming that the attributes are independent, the probability
PSj will be equal to the product of the different pignistic probabilities
induced from the attribute bba’s corresponding to the object Ij and
enabling Ij to belong to the node S.

2. Compute the entropy Info(S) of the average probabilities in S which is
set to:

Info(S) = −
q∑
i=1

Pr{S}(Ci)log2Pr{S}(Ci) (7)

3. Select an attribute Ak. For each value v ∈ ΘAk , define the subset SAk
v

composed with objects having v as a value. As the Ak values may be un-
certain, SAk

v will contain objects Ij such that their pignistic probability
corresponding to the value v is as follows:

BetPΘ
Ak {Ij}(v) 6= 0 (8)

4. Compute the average probability, denoted by Pr{SAk
v }, for objects in

subset SAk
v , where v ∈ ΘAk and Ak ∈ A. It will be set as:

Pr{SAk
v }(Ci) =

1∑
Ij∈S

Ak
v
PS

Ak
v

j

∑
Ij∈S

Ak
v

PS
Ak
v

j γij (9)

where PS
Ak
v

j is the probability of the object Ij to belong to the subset

SAk
v having v as a value of the attribute Ak (its computation is done in

the same manner as the computation of PSj ).

5. Compute InfoAk
(S) as discussed by Quinlan [?], but using the proba-

bility distribution instead of the proportions. We get:

InfoAk
(S) =

∑
v∈ΘAk

|SAk
v |
|S|

Info(SAk
v ) (10)



where Info(SAk
v ) is calculated from Equation 7 using Pr{SAk

v } and we

define |S| =
∑
Ij∈S P

S
j and |SAk

v | =
∑
Ij∈S

Ak
v
PS

Ak
v

j .

6. Compute the information gain yielded by the attribute Ak over the set
of objects S such that:

Gain(S,Ak) = Info(S)− InfoAk
(S) (11)

7. Compute the Gain Ratio relative to the attribute Ak by the use of the
SplitInfo

GainRatio(S,Ak) =
Gain(S,Ak)

SplitInfo(S,Ak)
(12)

where the SplitInfo value is defined as follows:

SplitInfo(S,Ak) = −
∑

v∈ΘAk

|SAk
v |
|S|

log2
|SAk
v |
|S|

(13)

8. Repeat the same process for each attribute Ak ∈ A (from step 3 to step
7) and then select the one that has the maximum GainRatio.

– Partitioning Strategy: The partitioning strategy, also called the splitting
strategy, consists of splitting the training set according to the attribute
values. As we only deal with categorical attributes, we create an edge for
each attribute value chosen as a decision node. Due to the uncertainty in
the attribute values, after the partitioning step each training instance may
belong to more than one subset with a probability of belonging calculated
according to the pignistic probability of its attribute values.

– Stopping criteria: Four key strategies are suggested as stopping criteria:

1. The treated node contains only one instance.
2. The treated node contains instances belonging to the same class.
3. There is no further attribute to test.
4. The gain ratio of the remaining attributes are equal or less than zero.

– Structure of leaves: Leaves, in our proposed decision tree classifier, will
be represented by a probability distribution over the set of classed computed
from the probability of instances belonging to these leaves. This is justified
by the fact that leaves may contain objects with different class values called
heterogeneous leaves. Therefore, the probability of the leaf L relative to each
class Ci ∈ C is defined as follows:

Pr{L}(Ci) =
1∑

Ij∈L P
L
j

∑
Ij∈L

PLj γij (14)

where PLj is the probability of the instance Ij to belong to the leaf L.



3.2 Decision tree procedures to deal with uncertain attribute values

By analogy to the classical decision tree, our new decision tree version will be
composed mainly of two procedures: the construction of the tree from data
present uncertain attributes and the classification of new instances described
by uncertain attribute values.

A. Construction procedure

Suppose that T is our training set composed by J objects characterized
by n uncertain attributes A = {A1, . . . , An} represented within the TBM
framework. Objects of L may belong to the set of classes C = {C1, . . . , Cq}. The
different steps of our building decision tree algorithm are described as follows:

1. Create the root node of the decision tree that contain all the training set
objects.

2. Check if the node verify the stopping criteria presented previously.
– If yes, declare it as a leaf node and compute its probability distribution.
– If not, the attribute that has the highest GainRatio will be designed as

the root of the decision tree related to the whole training set.
3. Perform the partitioning strategy by creating an edge for each attribute value

chosen as a root. This partition leads to several training subsets.
4. Create a root node for each training subset.
5. Repeat the same process for each training subset from the step 2.
6. Stop when all nodes of the latter level are leaves.

B. Classification procedure

Once our decision tree classifier is constructed, it is possible to classify
new objects of the testing set L described by uncertain attribute values [?].
As previously mentioned, the uncertainty about a such attribute values Ak
relative to a new object to classify can be defined by a bba mΘAk expressing
the part of beliefs committed exactly to the different values of this attribute.

The bba mΘAk will be defined on the frame of discernment ΘAk including all
the possible values of the attribute Ak. Let us denote by ΘA the global frame
of discernment relative to all the attributes. It is equal to the cross product of
the different ΘAk :

ΘA = ×
k=1,...,n

ΘAk . (15)

Since an object is characterized by a set of combination of values where
each one corresponds to an attribute, we have firstly to look for the joint bba
representing beliefs on the different attribute values relative to the new object
to be classified. To perform this goal just have to apply the following steps:

– Extend the different bba’s mΘAk to the global frame of attributes ΘA.

Thus, we get the different bba’s mΘAk↑ΘA

.



– Combine the different extended bba’s through the conjunctive rule of com-
bination:

mΘA

= ∩©
k=1,...,n

mΘAk↑ΘA

(16)

Once we have obtained the joint bba denoted by mΘA

, we consider individ-
ually the focal elements of this latter. Let x be a such focal element. The
next step in our classification task consists of computing the probability
distribution Pr[x](Ci)(i = 1, . . . , q). It is important to note that the
computation of this latter depends on the subset x and more exactly on the

focal elements of the bba mΘA

:

• If the treated focal element x is a singleton, then Pr[x](Ci) is equal to
the probability of the class Ci corresponding to the leaf to which the
focal element is attached.

• If the focal element is not a singleton (some attributes have more than
one value), then we have to explore all possible paths relative to this
combination of values. Two possible cases may arise:

∗ If all paths lead to the same leaf, then Pr[x](Ci) is equal to the
probability of the class Ci relative to this leaf.

∗ If these paths lead to distinct leaves, then Pr[x](Ci) is equal to
the average probability of the class Ci relative to the different leaves.

• Finally, each test object’s probability distribution over the set of classes
will be computed as follows:

Prl(Ci) =
∑
x⊆ΘA

mΘA

(x)Pr[x](Ci) ∀ C ∈ {C1, . . . , Cq} and l = {1, . . . , L}

(17)

The most probable class of the object Ol is the one having the highest
probability Prl.

4 Experimentations

To evaluate the feasibility of our novel decision trees approach, we have carried
our experiments on real categorical databases obtained from the UCI repository
[?]. Due to the computational cost of our proposed approach, we have performed
our experiments on several small databases. Table 1 provides a brief description
of these data sets where #Instances, #Attributes and #Classes denote respec-
tively the total number of instances, the total number of attributes and the
total number of classes. It is important to note that our approach can also be



Table 1. Description of databases

Databases #Instances #Attributes #Classes

Tic-Tac-Toe 958 9 2
Parkinsons 195 23 2
Balloons 16 4 2
Hayes-Roth 160 5 3
Balance 625 4 3
Lenses 24 4 3

applied in the case of numerical databases when applying some kinds of data
preprocessing such as discretization, etc.

Let us remind that our purpose is to construct our decision tree classifier
from datasets characterized by uncertain attribute values. Thus, we propose to
include uncertainty in attribute values by tacking into consideration the original
data sets and a degree of uncertainty P such that:

mΘAk {Ij}(v) = 1− P (18)

mΘAk {Ij}(ΘAk) = P

The degree of uncertainty P takes value in the interval [0,1]:

– Certain Case: P=0
– Low Uncertainty: 0 ≤ P < 0.4
– Middle Uncertainty: 0.4 ≤ P < 0.7
– High Uncertainty: 0.7 ≤ P ≤ 1

The performance of our novel decision tree paradigm when classifying new ob-
jects can be measured through several classification accuracies. In this work, we
relied on:

– The PCC criterion that represents the percent of correct classification of
objects belonging to the test set. It is computed as follows:

PCC =
Number of well classified instances

Number of classified instanced
(19)

The number of well classified instances corresponds to the number of
test instances for which the most probable classes obtained through our
proposed decision tree classifier are the same as the real ones.

– The distance criterion: the main idea underling this criterion is to perform
a comparison between a test instance’s probability distribution over the set
of classes and its real class. It is set as follows:

DistanceCriterionj = Distance(Prj(Ci), C(Ij)) (20)

=

q∑
i=1

(Prj(Ci)− γij)2



where C(Ij) corresponds to the real class of the test instance Ij and γij
equals 1 when C(Ij) = Ci and 0 otherwise.

Note that this distance satisfies the following property:

0 ≤ DistanceCriterionj ≤ 2 (21)

Besides, we just have to compute the average distance yielded from all test
instances to get a total distance.

We run our proposed classifier using the 10-folds cross validation technique
that randomly split the original data set into 10 equal sized subsets. Of the 10
subsets, a single subset is used as a test data and the remaining subsets are used
as training data. The cross-validation process is then repeated 10 times where
each subset is used exactly once as a test set. Our experimental results in terms
of classification accuracy and distance are depicted in Figure 1 and Figure 2 for
the different mentioned databases.
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Fig. 1. PCC results
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Fig. 2. Distance results

From the results given in Figure 1, we can remark that our proposed decision
tree classifier has yielded good classification accuracy for the different uncertainty
levels for the different databases. For instance, for Balloons database, we have
75.2%, 77.1%, 75.7% and 67.5% as PCCs relative respectively to no, low, mid-
dle and high uncertainties. Concerning the distance criterion, from Figure 2, we
deduce that our classifier has given interesting results in term of distance crite-
rion. In fact, all distance values belong to the closed interval [0.386,1]. Mostly,
the distance increases with the increasing of the uncertainty degree. For exam-
ple, the distance results relative to Balloons database are 0.46, 0.59, 0.93 and
1 for respectively no, low, middle and high uncertainties. This interpretation is
available for the major remaining databases.

5 Conclusion

Tackling classification problem in the case of uncertainty present in attribute
values remains a challenging task but currently very under-studied. Thus, in



this paper, we have proposed a new decision tree classifier to handle uncertainty
present in the attribute values. Since we have obtained promising results, time
complexity is still a critical problem, especially for large or even medium sized
databases. So, as a future work we look forward reducing time complexity. We
intend also to apply a pruning technique to reduce the dimensionality space and
improve the classification accuracy.
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