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Abstract. Data uncertainty arises in several real world domains, includ-
ing machine learning and pattern recognition applications. In classifica-
tion problems, we could very well wind up with uncertain attribute values
that are caused by sensor failures, measurements approximations or even
subjective expert assessments, etc. Despite their seriousness, these kinds
of data are not well covered till now. In this paper, we propose to de-
velop a machine learning model for handling such kinds of imperfection.
More precisely, we suggest to develop a new version of the well known
k-nearest neighbors classifier to handle the uncertainty that occurs in
the attribute values within the belief function framework.

Keywords: Evidential k-nearest neighbors, uncertainty, belief function
theory, classification.

1 Introduction

The k Nearest Neighbor (k-NN) classifier, firstly proposed by Fix and Hodges
[4], is regarded as one of the well commonly used classification techniques in
the fields of machine learning and pattern recognition. The original k-NN ver-
sion consists of assigning a query pattern to the majority class of its k nearest
neighbors. The major shortcoming of this technique arises from learning a k-NN
classifier with skewed class distributions, meaning that training instances with
the most prevalent class may dominate the prediction of new query patterns
due a large value of k. From this, numerous researchers have proven that the
uncertainty about the class label of a given test pattern can be modeled through
various uncertainty theories such as the possibilistic theory [8], the fuzzy theory
[15], the belief function theory [9], etc. This latter, also referred to as evidence
theory, has shown a great success in several pattern recognition problems, no-
tably for representing and managing the uncertainty relative to the label class of
new patterns to be classified. In [2], Denoeux has proposed an evidence theoretic
k-NN (Ek-NN) method relied on the belief function theory where each neighbor
of a pattern to be classified is regarded as a piece of evidence supporting some hy-
pothesis concerning its class membership. The basic belief assignments obtained



by all the k nearest neighbors are then merged through the Dempster rule to
identify the class label relative to each test pattern. An extended version of the
Ek-NN, denoted by EEk-NN, has been introduced in [5], where the label class
of each training instance will be represented by an evidential label to handle the
uncertainty that occurs in the training data. Its is worth noting that, in several
real world data, the attribute values may also contain some noise and outliers
that can make erroneous classification results. Thus, evidential databases where
attributes’ values are represented using the evidence theory have been intro-
duced over the past few years. Despite their accuracy, neither the Ek-NN nor
the EEk-NN are able to handle such kinds of data. Inspired from both Ek-NN
and EEk-NN, in this paper, we suggest to develop a new k-NN version for deal-
ing with data described by uncertain attribute values, particularly where the
uncertainty is represented within the belief function framework. The reminder
of this paper is organized as follows: Section 2 is devoted to highlighting the ba-
sic concepts of the belief function theory as explained by the Transferable Belief
Model framework, one interpretation of the belief function theory. In Section 3,
we present our novel k-NN version for handling evidential databases. Our exper-
imentation on several synthetic databases are described in Section 4. Finally, in
Section 5, we draw our conclusion and our main future work directions.

2 Belief function theory: background

The belief function theory, originally pointed out by Dempster [1] and Shafer [9],
has shown a great success for modeling uncertain knowledge. In what follows,
we recall the main concepts of this theory.

2.1 Frame of discernment

The frame of discernment, denoted by Θ, is the set of all possible answers for a
given problem which should be mutually exhaustive and exclusive:

Θ = {H1, . . . ,HN} (1)

From the frame of discernment Θ, one can deduce the set 2Θ containing all
subsets of Θ:

2Θ = {∅, H1, H2, . . . ,HN , H1 ∪H2, . . . , Θ} (2)

2.2 Basic Belief Assignment

A basic belief assignment (bba), denoted by m, is a mapping function m: 2Θ →
[0, 1], such that: ∑

A⊆Θ

m(A) = 1 (3)

Each subset A of 2Θ fulfilling m(A) > 0 is called a focal element.



2.3 Combination operators

Several combination rules have been introduced to merge reliable independent
information sources issued from independent information sources. The conjunc-
tive operator, proposed within the Transferable Belief Model (TBM) [11], is a
well known one. For two information sources S1 and S2 having respectively the
bbas m1 and m2, the conjunctive rule, denoted by ∩©, will be written in the
following form:

m1 ∩©m2(A) =
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ Θ. (4)

The belief committed to the empty set is called conflictual mass. A normalized
version of the conjunctive operator, proposed by Dempster [1], manages the con-
flict by redistributing the conflictual mass over all focal elements. The Dempster
rule is defined as follows:

m1 ⊕m2(A) =
1

1−K
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ Θ (5)

where K (K 6= 1), representing the conflictual mass between the two bbas m1

and m2, is set as:

K =
∑

B∩C=∅

m1(B)m2(C) (6)

2.4 Decision making

To make decisions within the belief function framework, Smets, in [10], has
proposed the so-called pignistic probability denoted by BetP which transforms
the beliefs held into probability measures as follows:

BetP (A) =
∑

B∩A=∅

|A ∩B|
|B|

m(B), ∀A ∈ Θ (7)

2.5 Dissimilarity between bbas

In the literature, there have been several measures allowing the computation of
the degree of dissimilarity between two bodies of evidence [6, 12]. One of the
commonly used measures is the Jousselme distance which is set as follows for
two given bbas m1 and m2:

dist(m1,m2) =

√
1

2
(m1 −m2)TD(m1 −m2) (8)

where D is the Jaccard similarity measure defined by:

D(X,Y ) =


1 if X=Y= ∅
|X ∩ Y |
|X ∪ Y |

∀ X,Y ∈ 2Θ
(9)



3 Nearest Neighbor classifiers for uncertain data

In what follows, we address classification problems with uncertain data. More
precisely, we get inspired from the Evidential k-NN classifier and its extended
version [2, 5] to handle the uncertainty that occurs in the attribute values and is
represented within the belief function framework. Let X = {xi = (xi1,. . .,xin)|i =
1,. . .,N} be a set of N n-dimensional training samples, and let Θ ={H1,. . .,HM}
be a set of M classes. Each sample xi is described by n uncertain attribute
values represented within the belief function framework and a class label Li ∈
{1,. . .,M} expressing with certainty its membership to one class in Θ. Assume
that L is the set of labels, we denote by T = {(x1, L1), ...(xN , LN )} the training
set that will be used to classify new objects. Suppose that y is a new pattern
to be classified based on the information contained in the training set T . The
idea consists of computing the distance between the test pattern y and each
pair (xi, Li) in T using a distance metric dy,i which is calculated as the sum
of the absolute differences between the attribute values. More specifically, we
have resorted to the Jousselme distance metric to cope with the uncertainty
that arises in the attribute values. Thus, dy,i is set as follows:

dy,i =

n∑
j=1

√
1

2
(xij − yj)TDj(xij − yj) (10)

where Dj is the Jaccard similarity measure defined by:

D(X,Y ) =


1 if X=Y= ∅
|X ∩ Y |
|X ∪ Y |

∀ X,Y ∈ 2Θj
(11)

A small value of dy,i reflects the situation that both instances y and xi have the
same label class Li. On the contrary, a large value of dy,i may reflect the situation
of almost complete ignorance concerning the label class of y. The information
concerning the label class of the pattern query y can be modeled through the
belief function theory. Thus, for the test sample y, each training instance xi

provides an item of evidence m(i)(.|xi) over Θ as follows:

m(i)(Hq|xi) = αΦq(dy,i) (12)

m(i)(Θ|xi) = 1− αΦq(dy,i)
m(i)(A|xi) = 0,∀A ∈ 2Θ\{Θ,Hq}

where Hq is the class label of the instance xi and α is a parameter such that 0
< α < 1. Author in [2] has proven that setting α to 0.95 can yield good results.
The decreasing function Φq, verifying Φq(0)=1 and limd→∞Φq(d) = 0, should
be set as:

Φq(d) = exp(−γqd2), (13)

where γq be a positive parameter relative to the class Hq that can be optimized
using either an exact method relying on a gradient search procedure for medium



or small training sets or a linearization method for handling large training sets
[16]. For both exact and approximated methods, the best values of γ are de-
termined by minimising the mean squared classification error over the whole
training set T of size N . The final bba my regarding the class of the query pat-
tern y can be obtained by merging the N bbas issued from the different training
instances. We ultimately resorted to the Dempster rule, one of the well-known
rules used for ensuring fusion. It is set as follows:

my = m(1)(.|x1)⊕m(2)(.|x2)⊕ . . .⊕m(N)(.|xN ) (14)

As some training instances may be too far from y, only the k nearest neighbors
of the test sample y should be considered to determinate its class membership.
The final bba will be set as follows:

my = m(1)(.|x1)⊕m(2)(.|x2)⊕ . . .⊕m(k)(.|xk) (15)

To make a decision about the label class of the query pattern y, the pignistic
probability BetP should be computed based on the combined bba my as shown
in Equation 7. The test pattern is then assigned to the class with the maximum
pignistic probability:

Ly = argmaxHqBetP (Hq) (16)

where BetP (Hq) corresponds to the pignistic probablity of the hypothesis Hq

associated to the bba my.

4 Experimentations

In this Section, we present our carried out experimentations to assess the per-
formance of our proposed k-NN classifiers.

4.1 Experimentation settings

For checking the performance of our proposed k-NN classifier, we have performed
experimentations on several synthetic databases obtained by adding uncertainty
to some real world databases acquired from the well known UCI machine learning
repository. As we only deal with categorical attributes, in this paper, we have
resorted to only symbolic databases. A brief description of these databases is
presented in Table 1. We have managed various uncertainty levels according to
certain degrees of uncertainty denoted by P :

– No uncertainty: P=0
– Low Uncertainty: 0 < P < 0.4
– Middle Uncertainty: 0.4 ≤ P < 0.7
– High Uncertainty: 0.7 ≤ P ≤ 1

Given a database described by N objects xi (i ∈ {1, . . . , N} ), n attributes xij (j

∈ {1, . . . , n}) for each instance xi and a specific degree of uncertainty P . Suppose



Table 1: Description of databases
Databases #Instances #Attributes #Classes

Voting Records 435 16 2
Heart 267 22 2
Tic-Tac-Toe 958 9 2
Monks 195 23 2
Balloons 16 4 2
Hayes-Roth 160 5 3
Balance 625 4 3
Lenses 24 4 3

that Θj is the frame of discernment relative to the attribute j. Let us denote by
|Θj | the cardinality of Θj , each attribute value vij,t corresponds to an instance

xi such that vij,t ∈ Θj (t ∈ {1, ..., |Θj |}) will be represented through the belief
function framework as follows:

mΘj{xi}({vij,t}) = 1− P and mΘj{xi}(Θj) = P (17)

To evaluate the performance of our proposed k-NN classifier, we have relied
on a distance criterion that measures the error rate between the test instance’s
bba and its real label class. It is set as follows where M corresponds to the
number of classes, Pi = {BetPi(H1), . . . , BetPi(HM )} is the output vector of
the pignistic probabilities of the bba obtained by Equation 15 and δiq equals 1
when Li represents the real class of the test instance xi, and 0 otherwise:

Distancei = Distance(Pi, L
i) =

M∑
q=1

(BetPi(Hq)− δiq)2 (18)

Then, we just have to calculate the average distance obtained by all test instances
to get a final error rate. Note that the final distance should satisfy the following
property:

0 6 Distancei 6 2 (19)

In the way, the lower the distance metric the better the classification performance
can be obtained.

4.2 Experimentation results

For assessing the results, we have performed the 10-fold cross-validation tech-
nique that divides randomly a given dataset into ten equal sized parts where one
part is used as a testing set and the remaining parts are used as training sets.
This process will be repeated ten times where each part should be used exactly
once as a test set. The distance results yielded by our new k-NN classifier are
given from Figure 1 to Figure 8 for k ∈ [1,15]. We can remark from Figure 1 to
Figure 8 that our proposed classifier has yielded interesting results for the dif-
ferent uncertainty levels. In fact, the distance results obtained for the mentioned



benchmark data sets with the different uncertainty degrees are almost in the
range [0.04,0.775]. For instance, the distance results yielded by the balance-scale
database for the best values of k with No, Low, Middle and high uncertainties
are respectively equal to 0.405, 0.397, 0.372 and 0.543. As well, there are equal
to 0.642, 0.583 0.574 and 0.615 for the worst values of k. These encouraging
results may be explained by the fact that our novel k-NN classifier has a great
power for predicting the label classes of instances to be classified. We have sug-
gested to evaluate the performance of our novel k-NN classifier against other
evidential classifiers dealing also with uncertainty that arises in the attribute
values. In our previous works [13, 14], we have proposed extensions of the deci-
sion tree classifiers inspired from the belief decision tree paradigm [3] to handle
such kind of imperfection. Precisely, we have tackled the case of uncertainty that
occurs in both construction and classification phases. For the construction step,
we have mainly relied on the ratio Gain Ratio criterion proposed by Quinlan
[7] to construct decision trees in [13], while in [14], we have relied on a Diff
Ratio criterion based on distance that calculates the difference before and after
the partitioning process has been performed using a such attribute. It is worth
noting have both versions have yielded interesting results. The performance of
our proposed k-NN classification technique for best and worst values of k will
then be compared to [13] and [14]. The comparative results are given from Table
2 to Table 5 where Belief DT V ersion1 and Belief DT V ersion2 cor-
respond to our extended decision trees published respectively in [13] and [14].
From the distance results, given in Table 2 to Table 5, we can remark that our
proposed k-NN classifier has given mostly distance results smaller than those
yielded in [13] and [14] for both best values of k (the values of k that yield the
lowest distances) and worst values of k (the values of k that yield the highest
distances). From this, we can conclude that our k-NN is the best performance
classification technique compared with the two other ones within the framework
of uncertain data represented by the evidence theory.
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database
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Fig. 3: Distances for Monks database
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Fig. 4: Distances for Balloons database
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Fig. 5: Distances for Lenses database
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Table 2: Comparative results: No uncertainty
Bases New k-NN

Best values of k
New k-NN

Worst values of k
Belief DT
Version 1

Belief DT
Version 2

Voting records 0.103 (k=8) 0.167 (k=1) 0.832 1.04

Heart 0.570 (k=14) 1.04 (k=1) 0.649 0.972

Tic-Tac-Toa 0.1 (k=2) 0.185 (k=1) 0.521 1.11

Monks 0.187 (k=4) 0.286(k=15) 0.726 1.18

Balloons 0.0049 (k=15) 0.183 (k=1) 0.468 1.35

Hayes-Roth 0.487 (k=2) 0.586 (k=13) 0.449 1.22

Balance-Scale 0.406 (k=12) 0.645 (k=1) 0.71 1.37

Lenses 0.362 (k=4) 0.511 (k=14) 0.45 1.15

Table 3: Comparative results: Low uncertainty
Bases New k-NN

Best values of k
New k-NN

Worst values of k
Belief DT
Version 1

Belief DT
Version 2

Voting records 0.104 (k=8) 0.241 (k=1) 0.914 1.09

Heart 0.461 (k=13) 0.815 (k=1) 0.713 0.998

Tic-Tac-Toa 0.167 (k=13) 0.372 (k=1) 0.654 1.21

Monks 0.259 (k=8) 0.301 (k=15) 0.817 1.13

Balloons 0.0315 (k=15) 0.335 (k=1) 0.59 1.15

Hayes-Roth 0.469 (k=1) 0.526 (k=13) 0.624 1.16

Balance-Scale 0.397 (k=9) 0.583(k=1) 0.62 1.28

Lenses 0.400 (k=4) 0.654(k=1) 0.581 1.14

Table 4: Comparative results: Middle uncertainty
Bases New k-NN

Best values of k
New k-NN

Worst values of k
Belief DT
Version 1

Belief DT
Version 2

Voting records 0.130 (k=13) 0.341 (k=1) 0.927 1.17

Heart 0.462 (k=15) 0.789 (k=1) 0.802 1.01

Tic-Tac-Toa 0.177 (k=13) 0.437 (k=1) 0.897 1.32

Monks 0.270 (k=9) 0.303(k=2) 0.901 1.01

Balloons 0.205 (k=15) 0.520(k=1) 0.9304 1.02

Hayes-Roth 0.450 (k=10) 0.544(k=1) 0.946 1.04

Balance-Scale 0.372 (k=15) 0.574(k=1) 0.94 1.25

Lenses 0.526 (k=4) 0.703(k=1) 0.925 1.028

Table 5: Comparative results: High uncertainty
Bases New k-NN

Best values of k
New k-NN

Worst values of k
Belief DT
Version 1

Belief DT
Version 2

Voting records 0.426 (k=15) 0.485 (k=1) 0.987 1.23

Heart 0.45(k=15) 0.813 (k=1) 0.868 1.21

Tic-Tac-Toa 0.485 (k=15) 0.608 (k=1) 0.986 1.35

Monks 0.476 (k=10) 0.490(k=1) 0.985 1

Balloons 0.537 (k=14) 0.586(k=1) 1 1

Hayes-Roth 0.529 (k=2) 0.606(k=1) 0.95 1.03

Balance-Scale 0.543 (k=13) 0.615(k=1) 1 1.08

Lenses 0.757 (k=15) 0.775(k=1) 0.998 1



5 Conclusion

In this paper, we have developed a new version of the well-known k-NN classifier
to handle the case of the uncertainty that exists in the attribute values and is
represented with the belief function framework. Our novel k-NN technique has
been compared to other belief decision tree classifiers that deal with the same
kind of uncertainty. The experimental results in terms of the distance criterion
have proven the efficiency of our proposed k-NN classifier compared with the
two other evidential ones. As a future work, we intend to extend our proposed
k-NN in order to handling numerical and mixed databases.
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