
HAL Id: hal-03649400
https://hal.science/hal-03649400

Submitted on 22 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MFC: An open-source high-order multi-component,
multi-phase, and multi-scale compressible flow solver
Spencer Bryngelson, Kevin Schmidmayer, Vedran Coralic, Jomela Meng,

Kazuki Maeda, Tim Colonius

To cite this version:
Spencer Bryngelson, Kevin Schmidmayer, Vedran Coralic, Jomela Meng, Kazuki Maeda, et al..
MFC: An open-source high-order multi-component, multi-phase, and multi-scale compressible flow
solver. Computer Physics Communications, 2021, 266, pp.107396. �10.1016/j.cpc.2020.107396�. �hal-
03649400�

https://hal.science/hal-03649400
https://hal.archives-ouvertes.fr


MFC: An open-source high-order multi-component,
multi-phase, and multi-scale compressible flow solver

Spencer H. Bryngelsona, Kevin Schmidmayera, Vedran Coralicb, Jomela C. Mengc, Kazuki Maedad,
Tim Coloniusa

aDivision of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
bPrime Air, Amazon Inc, Seattle, WA 98108, USA

cBosch Research and Technology Center, Sunnyvale, CA 94085, USA
dDepartment of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA

Abstract

MFC is an open-source tool for solving multi-component, multi-phase, and bubbly compressible
flows. It is capable of efficiently solving a wide range of flows, including droplet atomization, shock–
bubble interaction, and gas bubble cavitation. We present the 5- and 6-equation thermodynamically-
consistent diffuse-interface models we use to handle such flows, which are coupled to high-order
interface-capturing methods, HLL-type Riemann solvers, and TVD time-integration schemes that are
capable of simulating unsteady flows with strong shocks. The numerical methods are implemented in
a flexible, modular framework that is amenable to future development. The methods we employ are
validated via comparisons to experimental results for shock–bubble, shock–droplet, and shock–water-
cylinder interaction problems and verified to be free of spurious oscillations for material-interface
advection and gas–liquid Riemann problems. For smooth solutions, such as the advection of an
isentropic vortex, the methods are verified to be high-order accurate. Illustrative examples involving
shock–bubble-vessel-wall and acoustic–bubble-net interactions are used to demonstrate the full
capabilities of MFC.

Keywords: computational fluid dynamics, multi-phase flow, diffuse-interface method, compressible
flow, ensemble averaging, bubble dynamics

Program summary

Title of program: MFC (Multi-component Flow Code)
Licensing provisions: GNU General Public License 3
Permanent link to code/repository: https://mfc-caltech.github.io
Operating systems under which the program has been tested: UNIX, macOS, Windows
Programming language used: Fortran 90 and Python
Nature of problem: Computer simulation of multi-component flows requires careful physical model
selection and sophisticated treatment of spatial and temporal derivatives to keep solutions both
thermodynamically consistent and free of spurious oscillations. Further, such methods should
be high-order accurate for smooth solutions to reduce computational cost and promote sharper
interfaces for discontinuous ones. These problems are particularly challenging for flows with material
interfaces, which are important in numerous applications.
Solution method: The present software incorporates multiple physical models and numerical schemes
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for treatment of compressible multi-phase and multi-component flows. Additional physical effects
and sub-grid models are included, such as an ensemble-averaged bubbly flow model. The architecture
was designed to ensure that further development is straightforward.

1. Introduction

The multi-component flow code (MFC) is an open source high-order solver for multi-phase
and multi-component flows. Such flows are central to a wide range of engineering problems. For
example, cavitating flow phenomena are of critical importance to the development of artificial
heart valves and pumps [1], minimizing injury due to blast trauma [2, 3], and improving shock-
and burst-wave lithotripsy treatments [4–6]. Bubble cavitation is also pervasive in flows around
hydrofoils, submarines, and high-velocity projectiles [7–9], during underwater explosions [10, 11],
and within pipe systems and hydraulic machinery [12, 13]. Unfortunately, cavitation in these
settings is usually detrimental, causing noise and material deterioration [12, 13]. Other cases of
interest include the breakup of liquid droplets and jets [14–16], erosion of aircraft surfaces during
supersonic flight [17, 18], shock-wave attenuation of nuclear blasts [19], and needle-free injection for
drug delivery [20, 21].

Robust simulation of multi-component compressible flow phenomena requires a numerical method
that maintains discrete conservation, suppresses oscillations near discontinuities, and preserves
numerical stability. For such simulations to be computationally efficient, the method used should
also be high-order accurate away from discontinuities. Schemes that can potentially achieve these
requirements can be classified as either interface-tracking or interface-capturing [22]. Examples of
interface-tracking methods include free-Lagrange [23, 24], front-tracking [25, 26], and level-set/ghost
fluid schemes [27–33]; these methods differ from interface-capturing as they treat material interfaces
as sharp features in the flow. This allows interfacial fluids to have differing equations of state
and ensures that interfacial physics are straightforward to implement. Unfortunately, they do not
naturally enforce discrete or total conservation, though there have been some recent attempts to
partially include these properties [34, 35]. Interface-capturing methods instead treat interfaces as
discontinuities in material properties via advected volume fractions. Such methods are generally
more efficient than interface-tracking schemes [36] and can achieve discrete conservation by simply
solving the governing equations in conservative form. However, they also smear material interfaces
via numerical diffusion [37–39]. In these smeared regions, we must ensure that the mixture properties
are treated in a thermodynamically- and numerically-consistent way, such that spurious oscillations
(and other physical inconsistencies) are avoided in the presence of high density contrasts between
materials. Fortunately, such methods have been developed and prove to be a robust treatment of
interfacial dynamics [37, 40, 41]. Still, the lack of a coherent material interface means that interfacial
physics are more challenging to implement than interface-tracking methods, though conservative
treatments do exist for both interfacial heat transfer [42] and capillary effects [16, 38, 43].

Here, we choose to use an interface-capturing scheme because computational efficiency and
discrete conservation are of principal importance to many problems of interest. The interface-
capturing schemes we use follow from the so-called 5- and 6-equation models, which are known to be
sufficient for representing a wide range of flow phenomenologies [42, 44–46]. They are complemented
by a discretely-conservative numerical method that solves the conservative form of the compressible
flow equations. To maintain a non-oscillatory behavior near material interfaces, the material
advection equations are formulated in a quasi-conservative form [47]. The equations of motion are
then closed by a thermodynamically consistent set of mixture rules [44]. The governing equations
are solved with a shock-capturing finite-volume method. Specifically, we adopt a WENO spatial
reconstruction that can achieve high-order accuracy while maintaining non-oscillatory behavior
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near material interfaces [41, 48–50]. This scheme is then coupled with an HLL-type approximate
Riemann solver [51, 52] and a total-variation-diminishing (TVD) time stepper [53].

MFC is, of course, not the only viable option for simulation of compressible multi-phase flows.
For example, ECOGEN [54] offers a pressure-disequilibrium-based interface-capturing scheme that is
well suited for the same problems reached by MFC. However, ECOGEN is built upon an intrinsically
low-order MUSCL scheme that can inhibit both efficient simulation and physically fidelity when
compared to the WENO schemes we use here, especially when augmented with our high-order
cell-average approximations. This is demonstrated in section 5.4 for an isentropic vortex problem
and in section 5.3 and Schmidmayer et al. [55] for cavitating gas bubbles. In pursuit of this,
MFC was also constructed with a phase-averaged flow model that represent unresolved multi-phase
dynamics at the sub-grid level. More mature CFD solvers such as OpenFOAM are also available.
OpenFOAM natively supports finite-volume methods for multi-component flows [56], though higher-
order methods and interface-capturing models are only available via links to external forked projects.
MFC instead offers an integrated approach that avoids any conflicts from such libraries. Finally, the
parallel I/O file systems we employ ensures that the MFC architecture can scale up to the largest
modern HPC systems.

Herein, we describe version 1.0 of MFC. In section 2 we present an overview of what is included
in the MFC package, including its organization, features, and logistics. The physical models we use
are presented in section 3, including the associated mixture rules, governing equations, equations
of state, and our implementation of an ensemble-averaged bubbly flow model. The numerical
methods used to solve the associated equations are presented in section 4. A series of test cases
simulated using MFC are discussed in section 5; these verify and validate our method. These are
complemented by a set of illustrative example cases that further demonstrate MFC’s capabilities in
section 6 and parallel benchmarking in section 7, which analyzes the performance of MFC on large
scale computing clusters. Section 8 concludes our presentation of MFC.

2. Overview and features

2.1. Package, installation, and testing

MFC is available at https://mfc-caltech.github.io. The source code is written using Fortran
90 with MPI bindings used for parallel communication and Python scripts are used to generate input
files. Installation of MFC requires the FFTW package for cylindrical coordinate treatment [57],
and, optionally, Silo and its dependencies for post-treatment of data files [58]. We only provide the
FFTW package with MFC to keep the package relatively small.

The MFC package includes several directories; their organization and descriptions are shown
in table 1. New users should consult the CONFIGURE and INSTALL files for instructions on how
to compile MFC. In brief, the user must ensure that Python and an MPI Fortran compiler are
loaded and that the FFTW package can be located by Makefile; this can be done by pointing
Makefile.user to the correct location or by installing the included FFTW distribution in the
installers directory. Once the software has been built, the test target of Makefile should be
called; it runs multiple tests (which are located in the tests directory) to ensure that MFC is
operating as intended.

2.2. Features

MFC uses a fully parallel environment via message passing interfaces (MPI), the performance of
which is the subject of section 7. Computationally, it includes structured Cartesian and cylindrical
grids with non-uniform mesh stretching available; characteristic-based Thompson, periodic, and
free-slip boundary conditions have also been implemented. The 5- and 6-equation flow models can
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Name Description

example cases/ Example and demonstration cases
doc/ Documentation
installers/ Package installers: Includes FFTW
lib/ Libraries
src/ Source code

master scripts/ Python modules and dictionaries, optional source files
pre process code/ Generates initial conditions and grids
simulation code/ Flow solver

post process code/ Processes simulation data
tests/ Test cases to ensure software is operating as intended
AUTHORS List of contributors and their contact information
CONFIGURE Package configuration guide
COPYRIGHT Copyright notice
INSTALL Installation guide
LICENSE The GNU public license file
Makefile.in Makefile input; generally does not need to be modified
Makefile.user User inputs for compilation; requires attention from user
Makefile Targets: all (default), [component], test, clean
RELEASE Release notes

Table 1: Descriptions of the files and directories included in MFC. [component] is one of pre process, simulation, or
post process.

be used with a flexible number of components, as discussed in section 3. Ensemble-averaged dilute
bubbly flow modeling is also available, including options for Gilmore and Keller–Miksis single-bubble
models (see section 3.3). The numerical methods are discussed in section 4; they include 1-, 3-, and
5-th order accurate WENO reconstructions on optionally the primitive, conservative, or characteristic
variables. Within each finite volume, high-order evaluation is available for the cell-averaged variables
via Gaussian quadrature for multi-dimensional problems. The shock-capturing schemes are paired
with either HLL, HLLC, or exact Riemann solvers. For time-stepping, 1–5-th order accurate
Runge–Kutta methods are available. These features will, of course, evolve and expand with time.

Of great practical importance are the user interfaces we utilize. MFC features Python input
scripts, which operate via dictionaries to automatically write input files that are read via Fortran
namelists. Additionally, the file system and data formats were selected to enable large-scale parallel
simulations. Specifically, we use the Lustre file system to generate and read restart files; it can
support gigabyte-per-second-scale IO operations and petabyte-scale storage requirements [59], which
ensures that the MFC can utilize the full capabilities of modern HPC systems. We also utilize
HDF5 Silo databases, which keeps the file structure compact and enables parallel visualization. We
have confirmed that MFC works as expected on various high-performance computing platforms,
including modern SGI- and Dell-based supercomputers.

2.3. Software structure

2.3.1. Pre-processing

The pre-processor generates initial conditions and spatial grids from the physical patches specified
in the Python input file and exports them as binary files to be read by the simulator. Specifically,
this involves allocating and writing either a Cartesian or cylindrical mesh, with the option of
mesh stretching, according to the input parameters. The specified physical variables for each
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Name Description
In

p
u

t
input.py Input parameters

pre process.inp Pre-process input parameters, auto-generated
simulation.inp Simulation input parameters, auto-generated

post process.inp Post-process input parameters, auto-generated

O
u

tp
u

t

run time.inf Run-time information including current simulation time and CFL
D/ Formatted simulation output files
p all/ Binary simulation restart files (depending upon options used)
restart data/ Lustre restart files (depending upon options used)
silo HDF5/ Silo post-process files (depending upon options used)
binary/ Binary post-process files (depending upon options used)

Table 2: Input/output files in the case-specific directory.

patch are transformed into their conservative form and written in a manner consistent with the
mesh. The pre-processor is comprised of individual Fortran modules that read input values and
export mesh and initial condition files, assign then distribute global variables via MPI, perform
variable transformations, generate grids, parse and assign patch types, and check that specified
input variables are physically consistent and that specified options do not contradict each other.

2.3.2. Simulation

The simulator, given the initial-condition files generated by the pre-processor, solves the cor-
responding governing flow equations with the specified boundary conditions using our interface-
capturing numerical method. Simulations are conducted for the number of time steps indicated.
The simulator exports run-time information, restart files that can be used to either restart the
simulation or post-process the associated data, and, optionally, human-readable output data. The
structure of the simulator follows that of pre-processor, with individual Fortran modules conducting
each software component; this includes reading and exporting data and grid files, performing Fourier
transforms, assigning and distributing global variables via MPI, performing variable transformations,
computing time and spatial derivatives using WENO and the Riemann solver specified, computing
boundary values, including ensemble-averaged bubbly flow physics, and checking that the input
variables are valid.

2.3.3. Post-processing

The post-processor reads simulation data and exports HDF5/Silo databases that include variables
and derived variables, as specified in the input file. Since the simulator can export human-readable
data, post-processing is not essential for the usage of MFC, but is a useful tool, especially for large or
parallel data structures. Specifically, the post-process component of the MFC reads the restart files
exported by the simulator at distinct time intervals and computes the necessary derived quantities.
The HDF5 database is then generated and exported, and can be readily viewed using, for example,
VisIt [60] or Paraview [61]. Again, individual Fortran modules perform the associated tasks, including
reading data, parameter conversion, assigning and distributing global MPI variables, computing
Fourier transforms, exporting HDF5 Silo databases, and checking that the input parameters are
consistent.

2.4. Description of input/output files

We next describe the contents of a case-specific directory and its logistics. The specific file
structure is shown in table 2. The Python script input.py is used to generate the input files
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(∗.inp) for the source codes and execute an MFC component (one of pre process, simulation, or
post process) either in the active window or as a submitted batch script. This Python file contains
the input parameters available for the MFC. MFC, depending upon the component used and
options selected, will generate several files and directories. If enabled, the run time.inf file will be
generated by the simulator and includes details about the current time step, simulation time, and
stability criterion. Directories that contain binary restart data and output files for visualization or
further post-treatment are generated, again depending upon the specified options, by the simulator
and post-processor.

3. Physical model and governing equations

The mechanical-equilibrium compressible multi-component flow models we use can be written as

∂q

∂t
+∇ ·F (q) + h (q)∇ ·u = s (q) , (1)

where q is the state vector, F is the flux tensor, u is the velocity field, and h and s are non-
conservative quantities we describe subsequently.

3.1. 5-equation model

We first introduce our implementation of the thermodynamically consistent mechanical-equilibrium
model of Kapila et al. [45]. Our multi-component implementation can be used for Nk components,
though we present a two-component (Nk = 2) configuration here for demonstration purposes. It
consists of five partial differential equations as

q =


α1

α1ρ1

α2ρ2

ρu
ρE

 , F =


α1u
α1ρ1u
α2ρ2u

ρu⊗ u+ pI − T
(ρE + p)u− T ·u

 , h =


−α1 −K

0
0
0
0

 , s = 0, (2)

where ρ, u, and p are the mixture density, velocity, and pressure, respectively, αk is the volume
fraction of component k, and T is the viscous stress tensor

T = 2η

(
D − 1

3
(∇ ·u)I

)
, (3)

where η is the mixture shear viscosity and

D =
1

2

(
∇u+ (∇u)>

)
(4)

is the strain rate tensor. The mixture total and internal energies are E = e+ ‖u‖2/2 and

e =

Nk∑
k=1

Ykek (ρk, p) , (5)

respectively, where Yk = αkρk/ρ are the mass fractions of each component. We close (5) using the
stiffened-gas equation of state, which is chosen for its ability to faithfully model both liquids and
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gases [62]; for component k it is

pk = (γk − 1)ρkek − γkπ∞,k, (6)

where γ is the specific heat ratio and π∞ is the liquid stiffness (gases have π∞ = 0) [63]. For liquids,
these are usually interpreted as fitted parameters from shockwave-Hugoniot data [64, 65]. The speed
of sound of each component is then

ck =

√
γk(pk + π∞,k)

ρk
. (7)

The K term in h of (2) represents expansion and compression in mixture regions. For an Nk = 2
configuration it is

K =
ρ2c

2
2 − ρ1c

2
1

ρ2c22
α2

+
ρ1c21
α1

(8)

and the mixture speed of sound c follows as the so-called Wood speed of sound [66, 67]

1

ρc2
=

Nk∑
k=1

αk
ρkc

2
k

. (9)

Ultimately, the equations are closed by the usual set of mixture rules

1 =

Nk∑
k=1

αk, ρ =

Nk∑
k=1

αkρk, ρe =

Nk∑
k=1

αkρkek, and η =

Nk∑
k=1

αkηk. (10)

We note that the models of Allaire et al. [44] and Massoni et al. [42] do not include the K term
in (2) and thus do not strictly obey the second-law of thermodynamics, nor reproduce the correct
mixture speed of sound (9). While MFC also supports these models, accurately representing the
sound speed is known to be important for some problems, such as the cavitation of gas bubbles [55].
However, it is also known that the K term can result in numerical instabilities for problems with
strong compression or expansion in mixture regions due to its non-conservative nature [55]. Thus,
the decision of what 5-equation model to use (if any) is problem dependent and left to the user.

3.2. 6-equation model

While the 5-equation model described in section 3.1 is efficient and represents the correct physics,
the K∇ ·u term that makes the model thermodynamically consistent can sometimes introduce
numerical instabilities [46, 55]. In such cases, a pressure-disequilibrium is preferable [55]. We also
support the 6-equation pressure-disequilibrium model of Saurel et al. [46], which for a two-component
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configuration is expressed as

q =



α1

α1ρ1

α2ρ2

ρu
α1ρ1e1

α2ρ2e2

 , F =



α1u
α1ρ1u
α2ρ2u

ρu⊗ u+ pI − T
α1ρ1e1u
α2ρ2e2u

 , h =



−α1

0
0
0

α1p1

α2p2

 , s =



µδp
0
0
0

−µpIδp− α1T1 : ∇u
µpIδp− α2T2 : ∇u

 ,
(11)

where Tk are the component-specific viscous stress tensors and the other terms of s represent the
relaxation of pressures between components with coefficient µ. The interfacial pressure is

pI =
z2p1 + z1p2

z1 + z2
, (12)

where zk = ρkck is the acoustic impedance of component k and

δp = p1 − p2, (13)

is the pressure difference. Since p1 6= p2, the total energy equation of the mixture is replaced by the
internal-energy equation for each component. The mixture speed of sound is defined according to

c2 =

2∑
k=1

Ykc
2
k, (14)

though after applying the numerical infinite pressure-relaxation procedure detailed in section 4.6
the effective mixture speed of sound matches (9).

3.3. Bubbly flow model

3.3.1. Implementation

MFC includes support for the ensemble-phase-averaged bubbly flow model of Zhang and Pros-
peretti [68], and our implementation of it matches that of Bryngelson et al. [69]. The bubble
population has void fraction αb, which is assumed to be small, and the carrier components have
mixture pressure pl. The equilibrium radii of the bubble population are represented discretely
as Ro, which are Nbin bins of an assumed log-normal PDF with standard deviation σp [70]. The
instantaneous bubble radii are a function of these equilibrium states as R(Ro) = {R1, R2, . . . , RNbin

}.
The total mixture pressure is modified as

p = (1− αb)pl + αb

(
R3pbw

R3
− ρR

3Ṙ2

R3

)
, (15)

where Ṙ are the bubble radial velocities and pbw are the bubble wall pressures. Overbars · denote
the usual moments with respect to the log-normal PDF. The bubble void fraction is advected as

∂αb
∂t

+ u ·∇αb = 3αb
R2Ṙ

R3
, (16)
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and the bubble dynamic variables are evolved as

∂nφ

∂t
+∇ · (nφu) = nφ̇, (17)

where φ ≡
{
R, Ṙ,pb,mv

}
(see section 3.3.2) and n is the conserved bubble number density per

unit volume

n =
3

4π

αb

R3
. (18)

3.3.2. Single-bubble dynamics

A partial differential equation following (17) is evolved for each bin representing equilibrium
radius Ro. These equations assume that each bubble evolves, without interaction with its neighbors,
in an otherwise uniform flow whose properties are dictated by the local mixture-averaged flow
quantities [71]. We also assume that the bubbles remain spherical, maintain a uniform internal
pressure, and do not break-up, or coalesce. Our model includes the thermal effects, viscous and
acoustic damping, and phase change. The bubble radial accelerations R̈ are computed by the
Keller–Miksis equation [72]:

RR̈

(
1− Ṙ

cb

)
+

3

2
Ṙ2

(
1− Ṙ

3cb

)
=
pbw − pl

ρ

(
1 +

Ṙ

cb

)
+
Rṗbw
ρcb

, (19)

where cb is the usual speed of sound associated with the bubble and

pbw = pb −
4µṘ

R
− 2σ

R
(20)

is the bubble wall pressure, for which pb is the internal bubble pressure, σ is the surface tension
coefficient, and µ is the liquid viscosity. The evolution of pb is evaluated using the model of Ando
[71]:

ṗb =
3γb
R

(
RvTbwṁv − Ṙpb +

γb − 1

γb
λbw

∂T

∂r

∣∣∣∣
r=w

)
, (21)

where T is the temperature, λ is the thermal conductivity, Rv is the gas constant and γb is the
specific heat ratio of the gas. Mass transfer of the bubble contents follows the reduced model
of Preston et al. [73] as

ṁv =
Dρbw

1− χvw
∂χv
∂r

∣∣∣∣
w

. (22)

4. Solution method

Our numerical scheme generally follows that of Coralic and Colonius [41]. The spatial discretiza-
tion of (1) in three-dimensional Cartesian coordinates is

∂q

∂t
+
F x(q)

∂x
+
F y(q)

∂y
+
F z(q)

∂z
= s(q)− h(q)∇ ·u, (23)

where F xi are the i ∈ (x, y, z)-direction flux vectors and the treatment of ∇ ·u is discussed later.
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4.1. Treatment of spatial derivatives

We use a finite volume method to treat the spatial derivatives of (23). The finite volumes are

Ii,j,k = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2]× [zk−1/2, zk+1/2]. (24)

We spatially integrate (23) within each cell-centered finite volume as

dqi,j,k
dt

=
1

∆xi
[F x
i−1/2,j,k − F

x
i+1/2,j,k]+

1

∆yj
[F y
i,j−1/2,k − F

y
i,j+1/2,k]+

1

∆zk
[F z
i,j,k−1/2 − F

z
i,j,k+1/2] + s(qi,j,k)− h(qi,j,k)(∇ ·u)i,j,k,

(25)

where

qi,j,k =
1

Vi,j,k

∫∫∫
Ii,j,k

q(x, y, z, t) dxdydz, (26)

si,j,k =
1

Vi,j,k

∫∫∫
Ii,j,k

s(x, y, z, t) dxdydz, (27)

Fi+1/2,j,k =
1

∆yj∆zk

∫∫
Ai+1/2,j,k

F (x, y, z, t) dydz, (28)

are cell-volume and face averages, for which ∆xi = xi+1/2 − xi−1/2 are the mesh spacings (∆y and
∆z have the same form), and Vi,j,k and Ai+1/2,j,k are the cell volumes and face areas.

MFC can approximate this equation using high-order quadratures as opposed to simple cell-
centered averages. This approach computes the flux surface integrals and source terms using a
two-point, fourth-order, Gaussian quadrature rule, e.g.

Fi+1/2,j,k =
1

4

2∑
m=1

2∑
l=1

F (q(xi+1/2, yjl , zkm)), (29)

where l and m are the Gaussian quadrature point indices and

yjl = yj + (2l + 1)
∆yj

2
√

3
and zkm = zk + (2m+ 1)

∆zk

2
√

3
. (30)

The divergence terms are treated using a midpoint rule

(∇ ·u)i,j,k =

1

∆xi
(ui+1/2,j,k − ui−1/2,j,k) +

1

∆yj
(vi,j+1/2,k − vi,j−1/2,k) +

1

∆zk
(wi,j,k+1/2 − wi,j,k−1/2),

(31)

where u = {u, v, w} are the cell-averaged velocity components computed analogous to (29).
To avoid spurious oscillations at material interfaces, we ultimately evaluate the fluxes by

reconstructing the primitive or characteristic variables at the cell faces via a 5th-order-accurate
WENO scheme [41] (though reconstruction of the conservative variables and lower-order WENO
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schemes are also supported). This allows us to apply a Riemann solver, so

Fi+1/2,j,k =
1

4

2∑
m=1

2∑
l=1

F̂ (qLi+1/2,j,k, q
R
i+1/2,j,k), (32)

where F̂ is the numerical flux function of the Riemann solver. We use the HLLC approximate
Riemann solver to compute the fluxes [52], though other Riemann solvers are also supported.

4.2. Limiters for improved numerical stability

4.2.1. Volume fraction limiting

Following our mixture rules (10), the volume fractions are physically required to sum to unity.
However, the accumulation of numerical errors can preclude this if the first Nk − 1 volume fractions
exceed unity, and thus one of the volume fractions must be negative [74]. This is of course unphysical
and leads to other numerical issues, such as complex speeds of sound. To treat this, we impose the
volume fraction mixture rule by limiting each volume fraction as 0 ≤ αk ≤ 1 for all components k,
then rescaling them as

αk =
αk∑Nk
k=1 αk

for k = 1, . . . , Nk. (33)

We note that we only use this limiting when computing the mixture properties, and do not alter
them otherwise as to avoid polluting the mass conservation properties of the method.

4.2.2. Flux limiting

The WENO schemes we utilize are, in general, not TVD. This can be problematic when WENO
cannot form a smooth stencil to reconstruct, and can lead to numerical instabilities even when
the usual CFL criteria are met. MFC supports advective flux limiting to treat this issue, which
improves stability, though it also increases numerical dissipation and thus smearing of material
interfaces. However, we use the gradient of the local volume fraction χ to minimize this effect, which
localizes the limiter to non-smooth regions of the flow. In one dimension of our dimensional-splitting
procedure this yields

χi =


αi − αi−1

αi+1 − αi
if u∗ ≥ 0,

αi+2 − αi+1

αi+1 − αi
if u∗ < 0,

(34)

where i is the spatial index and u∗ is the local velocity computed by the Riemann solver. Ultimately,
the modified flux is a combination of a low- and high-order accurate flux approximation. The
low-order flux is chosen to be equivalent to a first-order WENO reconstruction and the high-order
flux is the Riemann flux from the WENO reconstruction. Specifically, MFC supports the minmod,
MC, ospre, superbee, Sweby, van Albada, or van Leer flux limiters, each of which is a function of the
volume fraction gradient χ. Further details of our numerical implementation are located in Meng
[74].

4.3. Cylindrical coordinate considerations

MFC also supports the use of cylindrical coordinates. They are formulated in similar fashion
to (23), though with the addition of an additional set of source terms on the right-hand-side associated
with the 1/r cylindrical terms of the divergence operator. Our implementation was detailed by Meng
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[74] and does not use an alternative treatment of the WENO weights in the azimuthal direction,
such as would be required to ensure high-order accuracy away from discontinuities. While such
methods for this exist, they are generally complex and suffer from numerical stability issues [75–77].
The cylindrical coordinate treatment also requires velocity gradients, rather than just velocities, at
cell boundaries. For this, we use a second-order-accurate finite-difference and averaging procedure
to obtain the necessary velocity gradients at these points. Finally, the coordinate singularity at
r → 0 is treated using the method of Mohseni and Colonius [78], which performs differentiation
in the radial direction via a redefinition of the radial coordinate; in our implementation, we place
the singularity at the finite-volume cell boundary (rather than the center). We note that this
implementation requires an even number of grid cells in the azimuthal coordinate direction. A
consequence of the cylindrical coordinate system is that the grid cells near the radial center are
much smaller than those far away, which restricts the global CFL criterion. Following Mohseni
and Colonius [78], we address this issue by using a spectral filter, which filters the high-frequency
components of the solution near the centerline and relaxes the CFL criterion. Our implementation
was verified by Meng [74] to be second-order accurate away from discontinuities via a propagating
spherical pressure pulse, while the construction of the viscous stress tensor was verified using the
method of manufactured solutions.

4.4. One-way acoustic wave generation

The source term s of (1) and (23) can be augmented with additional terms ss(t) for the
generation of one-way acoustic waves, for examples to model an ultrasound transducer immersed in
the flow. Following Maeda and Colonius [79], these take the form

ss(t) =

∫
Γ

ΩΓ(ξ, t)δ(X(ξ, t)− x)dξ (35)

where ΩΓ is (possibly time dependent) forcing, Γ is the surface the forcing acts upon, δ is the Dirac
delta function, and X maps the ξ coordinate to physical space x. In our numerical framework this
is represented at cell Ii,j,k as

ssi,j,k(t) =
M∑
m=1

ΩΓ(ξm, t)δh(|X(ξm, t)− xi,j,k|)∆ξm, (36)

where δh is the discrete delta function operator, ∆ξk are the sizes of the discrete patch or line the
forcing is applied to, and M are the number of such patches. For example, in two dimensions the
one-dimensional line operator follows as

δh(h) =
1

2πσ2
e−

1
2
h2

σ2 , (37)

where σ = 3∆ and ∆ is the largest mesh spacing. For a single-component, two-dimensional problem
(note that there is no volume-fraction advection equation in this case) the forcing is expressed as

ΩΓ(t) = f(t)[1/co, cos(θ), sin(θ), c2
o/(γ − 1)], (38)

where f(t) is the time-dependent pulse amplitude, co is the speed of sound, and θ is the forcing
direction as measured from the first-coordinate axis.
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4.5. Time integration

Once the spatial derivatives have been approximated, (23) becomes a semi-discrete system of
ordinary differential equations in time. We treat the temporal derivative using a Runge–Kutta
time-marching scheme for the state variables. To achieve high-order accuracy and avoid spurious
oscillations, we use the third-order-accurate total variation diminishing scheme of Gottlieb and Shu
[53]:

q
(1)
i,j,k = qni,j,k + ∆tL(qni,j,k),

q
(2)
i,j,k =

3

4
qni,j,k +

1

4
q

(1)
i,j,k +

1

4
∆tL(q

(1)
i,j,k), (39)

qn+1
i,j,k =

1

3
qni,j,k +

2

3
q

(2)
i,j,k +

2

3
∆tL(q

(2)
i,j,k),

where (1) and (2) are intermediate time-step stages, L represents the right hand side of (25), and n
is the time-step index. We note that MFC also supports Runge–Kutta schemes of orders 1–5.

4.6. Pressure-relaxation procedure

The pressure-disequilibrium model (11) requires a pressure-relaxation procedure to converge
to an equilibrium pressure. We use the infinite-relaxation procedure of Saurel et al. [46]. At each
time step, it solves the non-relaxed hyperbolic equations (µ→ 0) using first-order-accurate explicit
time step integration and a re-initialization procedure that ensures total energy conservation at the
discrete level. After this, the disequilibrium pressures are relaxed as µ→ +∞. This procedure is
performed at each Runge–Kutta stage, and so there is a unique pressure at the end of each stage
and the 5- and 6-equation models reconstruct the same variables. As a result, simulations of the
pressure-disequilibrium model are only modestly more expensive than the 5-equation models (about
5% for spherical bubble collapses [55]).

5. Simulation verification and validation

We next present several test cases that validate and verify MFC’s capabilities. These include
one-, two-, and three-dimensional cases that span a wide variety of flow problems.

5.1. Shock–bubble interaction

We first consider a Mach 1.22 shock wave impinging on a 5 cm diameter spherical helium bubble
in air. This problem was investigated via experimental methods by Haas and Sturtevant [80] and
has been previously used as a validation case for multi-component flow simulations [81–83]. Our
simulations are performed using an axisymmetric configuration; further simulation specifications
can be found in Coralic and Colonius [41].

Visualizations of the shock impinging the bubble and subsequent breakup and vortex ring
production are shown in figure 1. We see that the simulation results qualitatively match those of
the experiment. Importantly, no spurious oscillations can be seen in the numerical schlieren images,
despite their sensitivity to small density differences. We quantitatively compare our results to the
experiment by considering the velocity of key flow features: Haas and Sturtevant [80] measured
the velocity of the incident, reflected, and transmitted shocks, as well as the up and down-stream
interfaces and jets. Our simulation results are within 10% of the experiments for all cases and
are generally within about 5% of the experimental means. Our results are also consistent with
those computed independently via the level set [85] and diffuse-interface methods [86], including the
Kelvin–Helmholtz instability that develops along the bubble interface (see figure 1 (b)–(e)).
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(a) t = 37 µs (b) t = 245 µs (c) t = 427µs (d) t = 674 µs (e) t = 983µs

Figure 1: Comparison between (i) experimental shadowgraphs of Haas and Sturtevant [80] and (ii) numerical schlieren
visualizations [84] using MFC at select times (a)–(e) as labeled. Experimental images are ©Cambridge University
Press 1987.

5.2. Shock–droplet/cylinder interaction

We next consider air shocks interacting with liquid media in two and three dimensions. These
problems are more computationally challenging, primarily due to the larger density ratio. The first
case we analyze consists of a Mach 1.47 shock impinging a 4.8 mm diameter liquid water cylinder.
The simulation parameterization can be found in Meng and Colonius [15].

(a) t = 16 µs (b) t = 32 µs

(i) Experiment (ii) MFC (i) Experiment (ii) MFC

Figure 2: Comparison between (i) holographic interferograms [87] and (ii) numerical schlieren visualizations using
MFC at select times (a) and (b) as labeled. The experimental images are reprinted from Igra and Takayama [87].

Figure 2 shows a visualization of experimental and our numerical results as the shock passes
over the liquid cylinder. At early times it is difficult to assess the cylinder’s deformation, so we
instead compare the primary and secondary waves that are generated. In figure 2 (a) we see that
the primary wave system, including the incident and reflected shock, have the same locations for
both experimental and numerical results. The secondary wave system is generated when the Mach
stems on both sides of the cylinder converge to the rear stagnation point; in figure 2 (b) we see that
these also match closely.

We also consider the breakup of a spherical water droplet due to a helium shock (Mach 0.59
observed in the post-shock flow), following the experimental conditions of Theofanous et al. [88].
A full exposition of the simulation conditions can be found in Meng and Colonius [14]. Figure 3
shows their experimental image and volume fraction isosurfaces and sliced isocontours from our
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(a) (b) (c)

Figure 3: Comparison of (a) experimental [88] and (b) numerical water droplets isosurface αl = 0.01. (c) shows
isocontours of αl ranging from 0.01 to 0.99.

simulations. We use a small αl = 0.01 value for the isosurface of figure 3 (b) for comparison purposes
since images from experiments are often obscured by the fine mist generated. While it is challenging
to obtain accurate timing data from the experiments, a qualitative agreement between experiment
and simulation are still observed for the shear-induced entrainment of the droplet.

5.3. Spherical bubble dynamics

Numerical simulation of cavitating spherical gas bubbles is challenging because mixture-region
compressibility must be properly treated, discrete conservation must be enforced, and sphericity
should be maintained in the presence of large density and pressure ratios. We consider a collapsing and
rebounding air bubble in water at 10 times higher pressure as a test of the capabilities of MFC. Specific
simulation specifications were presented in Schmidmayer et al. [55]; further, we include a guided
description of the simulation setup for this problem in the example cases/3D sphbubcollapse

directory of the MFC package (see table 1).
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Figure 4: Evolution of (a) the dimensionless bubble radius R and (b) its sphericity ψ. In (b) the nominal bubble
shapes, represented by αl = 0.5 isosurfaces, are shown at select times for MFC (WENO) and ECOGEN (MUSCL).

Figure 4 (a) shows the evolution of the bubble radius; it reaches a minimum near the nominal
Rayleigh collapse time tc [89], then rebounds, as expected. The radius R of our simulations is
computed from the gas volume by assuming the shape is nearly spherical; this closely matches the
solution expected following the Keller–Miksis equation [72]. We assess and compare the quality of our
simulation with ECOGEN [54] via computation of the bubble sphericity during the collapse-rebound
process. Figure 4 (b) shows this sphericity ψ of the bubble, which is defined following Wadell [90] and
a value of 1 indicates a spherical bubble. We see that the WENO scheme used by MFC can better
maintain sphericity than a MUSCL scheme of ECOGEN formulated for the same diffuse-interface
model [55], and is thus preferable for this problem.
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5.4. Isentropic and Taylor–Green vortices

We next consider two- and three-dimension vortex problems as a means to verify our solutions
of the flow equations. The two-dimension problem we consider is the evolution of a steady, inviscid,
isentropic, ideal-gas vortex. This problem has been used previously to assess the convergence
properties of high-order WENO schemes for smooth solutions to the Euler equations [49, 91]. We
use it here to verify that we obtain high-order accuracy away from shocks and material interfaces;
details regarding the numerical parameters and exact problem formulation can be found in Coralic
and Colonius [41].
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Figure 5: (a) L∞ density error associated with an isentropic steady vortex for the cell-averaged scheme accuracy
labeled. (b) Non-dimensional kinetic energy dissipation rate ε associated with the three-dimensional Taylor–Green
vortex problem; the MFC solution is compared to the direct spectral solution of Brachet et al. [92].

Figure 5 (a) shows the density error for both low- and high-order finite volume cell-averaging
(following section 4). Since the solution should be steady, the error is computed as the deviation
from the initial condition after 1 dimensionless time unit as a function of the grid size, for which
N is the number of finite volumes in one spatial direction. The convergence is 2nd- and 5th-order
accurate for 2nd- and 4th-order-accurate cell-averaging schemes, respectively. Thus, we conclude
that for multi-dimensional problems the 4th-order-accurate cell averaging we employ is required to
achieve 5th-order accuracy associated with the WENO reconstructions.

We use the three-dimensional Taylor–Green vortex problem of Brachet et al. [92] to study the
production of small length scales, including vortex stretching and dissipation. The simulation
parameters again follow from Coralic and Colonius [41]. Figure 5 (b) shows the dimensionless
dissipation rate of the kinetic energy ε in dimensionless time t, as computed over the entire
computational domain. We see that the vortex stretching grows until t ≈ 5, after which the effects
of viscous dissipation begin to dominate. MFC results closely match those of the direct solution
computed by Brachet et al. [92] using spectral methods.

5.5. Further verification

MFC has been verified using several other problems, including several one-dimensional test cases.
For example, of great importance are the development of spurious oscillations at material interfaces,
which can significantly pollute simulation quality. To determine if such oscillations appear when
using our method, Coralic and Colonius [41] considered the advection of an isolated air–water
interface at constant velocity in a periodic domain. It was shown that when conservative variables
are reconstructed, the interface is corrupted by spurious oscillations and the pressures can even
become negative. Whereas when primitive variables are reconstructed, their character is oscillation
free for both velocity and pressure down to round off error.
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It is also challenging to predict the correct position and speed of waves that emit from shock–
interface interactions. While the shock–bubble interaction problem considered in section 5.1 showed
that our method can approximate these quantities when comparing to experiments, it is helpful
to consider a similar problem in one-dimension where exact solutions are available. Following Liu
et al. [28], Coralic and Colonius [41] used the methods employed by MFC to analyze a Mach 8.96
helium shock wave impinging an air interface. It was shown that the numerical results quantitatively
matches the associated exact solution, correctly identifying the position and speed of all waves in
the problem while avoiding any spurious oscillations. Of similar character is the gas–liquid shock
tube problem of Cocchi et al. [93], which has been used as a model for underwater explosions. For
this, Coralic and Colonius [41] also showed that the numerical solution matches the exact one and
correctly identifies the position and speed of all waves.

Finally, the ensemble-averaged bubbly flow model introduced in section 3.3 was verified by
simulating a weak acoustic pulse impinging a dilute bubble screen and comparing to the linearized
bubble dynamic results of Commander and Prosperetti [94]. We saw that the measured phase speed
and acoustic attenuation, computed via the method of Ando [71] and Bryngelson et al. [69], match
the expected results. Further, Bryngelson et al. [69] showed that this method quantitatively matches
the volume-averaged formulation of the same problem [95, 96].

6. Illustrative examples

6.1. Shock-bubble dynamics in a vessel phantom

We demonstrate the capabilities of MFC by first considering the shock-induced collapse of a
gas bubble inside a deformable vessel. This is closely related to the vascular injury that can occur
during shock-wave lithotripsy treatments [41, 97]. This problem is particularly challenging because
it involves lareg density-, pressure-, and viscosity-ratios as well as components with significantly
different equation of state parameters. Specifically, we consider a 20 µm diameter air bubble
centered in a 26 µm diameter cylindrical vessel filled with water and surrounded by 10% gelatin (see
figure 6 (a)). The problem is initialized via a 40 MPa shock wave impinging the side of the vessel.
Details on the specific numerical setup can be found in Coralic [98].

(a) t = 0ns (b) t = 39ns (c) t = 46ns (d) t = 58ns

Figure 6: Temporal snapshots (a)–(d) that show the bubble collapse and vessel wall deformation. The shock impinges
the vessel from right to left. The bubble and vessel walls are illustrated via their 0.5 volume-fraction isosurfaces.

We visualize the bubble dynamics and subsequent impingement and deformation of the vessel
in figure 6. We see that by t = 39 ns the bubble shape is asymmetric and the vessel contracts due
to the incoming shock, after t = 46 ns the bubble surface has gained an inflection point and by
t = 66 ns it impinges the vessel surface and becomes mushroom-shaped. Importantly, all surfaces
remain smooth and free of spurious oscillations, despite the large density- and viscosity-ratios.
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6.2. Vocalizing humpback whales

We next demonstrate the utility, flexibility, and robustness of the ensemble-averaged bubbly
flow model described in section 3.3. For this, we model the humpback whale bubble-net feeding
process [99]. Specifically, multiple humpback whales vocalize towards an annular bubbly region
called a bubble net, which is modeled using the acoustic source terms of section 4.4 and bubbly
regions described using the phase-averaged model.

(a) (b)

Figure 7: Visualizations of four model humpback whales vocalizing towards an annular bubble net in (a) three- and
(b) two-dimensions. The acoustics are shown via isocontours of pressure and the annular bubble net is shaded.

We show the acoustics associated with the periodic excitation of the bubble net in figure 7 for
both two- and three-dimensional configurations. In both cases, we see that the impedance associated
with the relatively dilute bubble net (void fraction 10−4) effectively shields the core region from
the vocalizations. Indeed, it is anticipated that the whales use their nets as a tool for corralling
their prey into this relatively quiet, compact region. We also see that the curved material interfaces
remain smooth and free of spurious oscillations.

7. Parallel performance benchmarks

It is important to ensure that our parallel implementation can utilize modern, large computer
resources. To do this, we benchmark MFC’s parallel architecture via the usual scaling and speedup
tests. These tests were carried out using 288 compute nodes, each containing two 2.6 GHz six-core
AMD Opteron processors.
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Figure 8: MFC performance benchmarks: (a) strong scaling, (b) weak scaling, and (c) speedup tests.

Figure 8 shows parallel performance benchmarks of MFC. The strong scaling test of figure 8 (a)
measures how the solution time varies for a fixed problem size as the number of computing cores
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varies, the weak scaling test (figure 8 (b)) measures how well the computational load is balanced
across the available cores by measuring solution time while fixing the grid size distributed to each
core and varying the number of cores (thus changing the overall problem size), and the speedup test
(figure 8 (c)) measures how the solution time increases with respect to serial computation as the
number of cores varies. Thus, speedup is defined by the ratio of time cost of a parallel simulation
with a certain of cores to a serial computation. The strong scaling and speedup tests are carried out
on a 5003 grid, while a constant load of 503 cells per core is maintained during the weak scaling
test. For all tests, MFC performs very near the ideal threshold until the number of cores is 4096, at
which point the results deviate slightly from ideal.

8. Conclusions

We presented MFC, an open-source tool capable of simulating multi-component, multi-phase, and
multi-scale flows. It uses state-of-the-art diffuse-interface models, coupled with high-order interface-
capturing and Riemann solvers, to represent multi-material dynamics. MFC includes a variety of flow
models and numerical methods, including spatial and temporal orders of accuracy, that are useful
when considering the computational requirements of challenging open problems. It also includes
options for additional physics and modeling techniques, including a sub-grid ensemble-averaged
bubbly flow model.

We also described the requirements to build MFC and its design. This included external
open-source software libraries that are readily available online. MFC was divided into three main
components that initialize and simulate the flow, then process the exported simulation data. Each
of these components is modular, and thus can be readily modified by new developers. They are
coupled together via an intuitive input Python script that automatically generates the required
Fortran input files and executes the software component. The exported simulation files can be
readily analyzed or treated via parallel post-processing.

Finally, we presented a comprehensive set of validations, verifications, and illustrative examples.
Validation was performed via comparisons to expected bubble dynamics and shock-bubble, shock-
droplet, shock-water-cylinder experiments, while verification was obtained via numerical experiments
involving isentropic and Taylor–Green vortices, as well as advected- and interface-interaction
problems. The capabilities and fidelity of MFC were also illustrated using challenging studies of
shock–bubble-viscous-vessel-wall interaction in application to shock-wave lithotripsy and acoustic-
bubble-net dynamics in application to feeding humpback whales. A set of performance benchmarks
also showed that MFC was able to perform near the ideal threshold of parallel computational
efficiency.
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