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Abstract

Numerical simulation of bubble dynamics and cavitation is challenging; even the seemingly

simple problem of a collapsing spherical bubble is difficult to compute accurately with a gen-

eral, three-dimensional, compressible, multicomponent flow solver. Difficulties arise due to

both the physical model and the numerical method chosen for its solution. We consider the 5-

equation model of Allaire et al. [1] and Massoni et al. [2], the 5-equation model of Kapila et al.

[3], and the 6-equation model of Saurel et al. [4] as candidate approaches for spherical bubble

dynamics, and both MUSCL and WENO interface-capturing methods are implemented and

compared. We demonstrate the inadequacy of the traditional 5-equation model for spherical

bubble collapse problems and explain the corresponding advantages of the augmented model

of Kapila et al. [3] for representing this phenomenon. Quantitative comparisons between the

augmented 5-equation and 6-equation models for three-dimensional bubble collapse problems

demonstrate the versatility of the pressure-disequilibrium model. Lastly, the performance

of the pressure-disequilibrium model for representing a three-dimensional spherical bubble

collapse for different bubble interior/exterior pressure ratios is evaluated for different numer-

ical methods. Pathologies associated with each factor and their origins are identified and

discussed.
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1. Introduction

Amongst other features, cavitation involves the growth and collapse of a gas bubble

in a liquid. Many applications require a detailed understanding of this process in or near

soft materials, including biological tissues for medical purposes [5–9] and polymeric coatings

and biofouling in industry [10]. Preliminary studies have shown that bubble dynamics are

sensitive to the properties of these materials [11, 12], motivating a comprehensive multi-scale

theory capable of predicting complex bubble cavitation.

Before considering the viscoelasticity of soft materials, accurate algorithms for bubble dy-

namics in Newtonian liquids must be developed. Indeed, even the seemingly simple problem

of a collapsing spherical bubble is challenging to compute accurately with general, three-

dimensional (3D), fully-compressible computational methods for a significant range of bub-

ble/ambient pressure ratios (and thus interface Mach numbers). Here, we use this problem

as a case study for the ability of a physical model, and its coupled numerical method, to

predict bubble dynamics generally.

Computational models for multi-component flows can generally be categorized as either

interface tracking and interface capturing. Interface-tracking methods treat material in-

terfaces as sharp features in the flow, and thus fluids and interfacial physics are modeled

separately. Such methods are generally subdivided into free-Lagrange methods [10, 13, 14],

front-tracking methods [15, 16], and level-set/ghost fluid methods [8, 17–20]. Unfortunately,

interface-tracking schemes do not naturally enforce discrete or total conservation properties.

Herein, we instead use interface-capturing methods because the discrete conservation prop-

erties they naturally achieve are of principal interest to many of the key phenomenologies

outlined above. Such methods combine a multicomponent flow model with shock-capturing

finite volume method. Their discrete-level conservation allows the compressibility of all

phases and mixtures to be represented on the computational grid and interfaces appear and

vanish naturally, irrespective of their corresponding density ratio. We note that finite dif-

ference shock-capturing methods can also be used and fulfill these requirements [21], though
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they do not generally improve performance when compared to finite volume implementa-

tions. We also prefer interface capturing here as they are generally more efficient than

interface-tracking methods [22] and their complexity does not increase with simulation di-

mensionality or the number of components. Here, we assess the difficulties that arise during

a spherical bubble collapse from the physical multicomponent flow model and its coupling

to the numerical method.

The mechanical-equilibrium multicomponent model of Allaire et al. [1] and Massoni

et al. [2] has been widely used and can faithfully represent shock-induced collapses [23–26]

and droplet atomization [27, 28]. Unfortunately, this model cannot predict the collapse

time and minimum radius of the Rayleigh collapse problem [29, 30]. This problem can

be averted via the thermodynamically consistent model of Kapila et al. [3] [29, 30], which

includes a term (K∇ ·u) in the volume-fraction evolution equation that follows from an

asymptotic expansion of the total-disequilibrium model of Baer and Nunziato [31]. This

additional term represents compressibility in mixture regions, though unfortunately it leads

to numerical instabilities during strong compression and expansion near the interface [4, 32].

This is because the equations cannot be cast in a purely hyperbolic form, and thus a unique

solution to the associated Riemann problem does not exist [33]. Instead, we propose using a

pressure-disequilibrium model [4], which relaxes the phase-specific pressures algorithmically

at each time step and averts the stability issues of the K∇ ·u term. This model theoretically

converges to the mechanical-equilibrium model of Kapila et al. [3] under mesh refinement,

and while it has been utilized for cavitating flows [4, 34], detonating flows [35], surface-

tension driven flows [36], droplet atomization [37, 38], and fracture and fragmentation in

ductile materials [39, 40], it has not been applied to bubble dynamics or particularly to

collapsing bubbles. We note that other, more modern pressure-disequilibrium models are

also viable [41], though they do not directly address challenges associated with simulating

bubble cavitation.

The multicomponent flow models are solved using shock-capturing finite-volume schemes

and Riemann solvers for the fluxes [42, 43]. High-order spatial reconstructions, such as
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MUSCL [43–45] and WENO [23, 29, 46, 47], are often used, along with their variants WENO-

Z [48], WENO-CU6 [49, 50], and TENO [51]. Herein, we will consider MUSCL and the

WENO of Jiang and Shu [46], coupled with the HLLC approximate Riemann solver [4, 23, 43]

as standard approaches for solving the multicomponent flow equations. Following the usual

procedure, these are coupled to total-variation-diminishing time integrators as an attempt

to suppress spurious oscillations at material interfaces under refinement [42, 43, 52, 53].

We first present the diffuse-interface multicomponent models in section 2. The numerical

methods we employ to solve the resulting equations are outlined in section 3. The setup of

the spherical-bubble-collapse problems we consider are presented in section 4. In section 5.1

we demonstrate and explain the utility of the K∇ ·u term in the mechanical-equilibrium

models. The convergence and behavior of this improved equilibrium model and the usual

pressure-disequilibrium model are studied in section 5.2 for the collapse and rebound of

spherical bubbles. Artifacts of the numerical methods we consider are examined in sec-

tion 5.3, including an investigation of interface sharpening techniques in section 5.4. Finally,

the pathologies identified are discussed in section 6.

2. Multicomponent flow models

The compressible multicomponent flow models we present can all be written as

∂q

∂t
+∇ ·F (q) + h (q)∇ ·u = r (q) , (1)

where q is the state vector, F is the flux tensor, u is the velocity field, and h and r are non-

conservative quantities we describe subsequently. We only consider mechanical-equilibrium

models that formally conserve mass, momentum, and total energy, and neglect the effects of

viscosity, phase change and surface tension.
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2.1. Mechanical-equilibrium model of Allaire et al. [1] and of Massoni et al. [2]

We first consider the mechanical-equilibrium model of Allaire et al. [1] and Massoni et al.

[2], which we call the 5-equation model. For a two-component flow, it is

q =



α1

α1ρ1

α2ρ2

ρu

ρE


, F =



α1u

α1ρ1u

α2ρ2u

ρu⊗ u + pI

(ρE + p) u


, h =



−α1

0

0

0

0


, r =



0

0

0

0

0


, (2)

where ρ, u, and p are the mixture density, velocity, and pressure, respectively, and αk is the

volume fraction, for which k indicates the phase index. The mixture total energy is

E = e+
1

2
‖u‖2, (3)

where e is the mixture specific internal energy

e =
2∑

k=1

Ykek (ρk, p) . (4)

In (4), ek is defined via an equation of state (EOS) and Yk are the mass fractions

Yk =
αkρk
ρ

. (5)

Herein, we will consider a two-phase mixture of gas (g) and liquid (l), for which the gas is

modeled by the ideal-gas EOS

pg = (γg − 1)ρgeg, (6)

where γg = 1.4, and the liquid is modeled by the stiffened-gas EOS

pl = (γl − 1)ρlel − γlπ∞, (7)

where γl and π∞ are model parameters [54]. We note that the stiffened-gas EOS is not

a complete EOS but is reasonably accurate at the conditions considered here [54]. More

general EOS could easily be substituted in our framework. The mixture quantities are

ρ =
2∑

k=1

αkρk and p =
2∑

k=1

αkpk, (8)
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and

ρc2 =
2∑

k=1

αkρkc
2
k

β (γk − 1)
, β =

2∑
k=1

αk
γk − 1

, (9)

where c is the mixture speed of sound, and ck and γk are the speed of sound and polytropic

coefficient of phase k. We note that while this model conserves mass, momentum, and total

energy, it does not strictly obey the second law of thermodynamics [1, 2, 36].

2.2. Mechanical-equilibrium model of Kapila et al. [3]

The thermodynamically consistent mechanical-equilibrium model of Kapila et al. [3],

which we call the 5-equation model with K∇ ·u, has

q =



α1

α1ρ1

α2ρ2

ρu

ρE


, F =



α1u

α1ρ1u

α2ρ2u

ρu⊗ u + pI

(ρE + p) u


, h =



−α1 −K
0

0

0

0


, r =



0

0

0

0

0


, (10)

where only h is different from (2). Here, K is

K =
ρ2c

2
2 − ρ1c21

ρ2c22
α2

+
ρ1c21
α1

, (11)

and K∇ ·u represents expansion and compression of each phase in mixture regions. In this

case, the mixture speed of sound follows from

1

ρc2
=

2∑
k=1

αk
ρkc2k

, (12)

which is also the Wood speed of sound [55, 56].
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2.3. Pressure-disequilibrium model of Saurel et al. [4]

The pressure-disequilibrium model of Saurel et al. [4], which we call the 6-equation model,

is expressed as

q =



α1

α1ρ1

α2ρ2

ρu

α1ρ1e1

α2ρ2e2


, F =



α1u

α1ρ1u

α2ρ2u

ρu⊗ u + pI

α1ρ1e1u

α2ρ2e2u


, h =



−α1

0

0

0

α1p1

α2p2


, r =



µδp

0

0

0

−µpIδp
µpIδp


, (13)

where r represents the relaxation of pressures between the phases with coefficient µ. The

interfacial pressure is

pI =
z2p1 + z1p2
z1 + z2

, (14)

where zk = ρkck is the acoustic impedance of the phase k, and

δp = p1 − p2, (15)

is the pressure difference between the two phases. Since p1 6= p2 here, the total energy equa-

tion of the mixture is replaced by the internal-energy equation for each phase. Nevertheless,

conservation of the mixture total energy can be written in its usual form

∂ρE

∂t
+∇ · [(ρE + p) u] = 0. (16)

We note that (16) is redundant when the internal energy equations are also computed.

However, in practice we include it in our computations to ensure that the total energy is

numerically conserved, and thus preserve a correct treatment of shock waves (more details

can be found in Saurel et al. [4]).

The mixture speed of sound is defined according to

c2 =
2∑

k=1

Ykc
2
k. (17)
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After applying the infinite pressure-relaxation procedure detailed in section 3.3, the effective

mixture speed of sound matches (12). We will discuss the influence of sound speed for

interface problems in section 5.3.2.

3. Numerical methods

We solve (1) numerically using a splitting procedure between the left-hand-side terms

associated with the flow and the right-hand-side terms associated with our relaxation pro-

cedure. First, the time evolution of q on a computational cell i with volume Vi and surface

A with normal unit vector n is given by the explicit finite-volume Godunov [42] scheme

qn+1
i = qni −

∆t

Vi

(
N∑
s=1

AsF
?
s ·ns + h (qni )

N∑
s=1

Asu
?
s ·ns

)
, (18)

where n is the time-step index. The relaxation terms, if any, are then solved using the

procedure detailed in 3.3 to complete the time-step integration. Here, we label this basic

first-order-accurate finite-volume scheme as FV1. We also utilize both MUSCL and WENO

spatial reconstructions of the primitive state variables; these are presented in the following

subsections. We note that reconstructing the conservative variables instead leads to spurious

oscillations near material interfaces [23], and using a characteristic-based reconstruction in

our implementation significantly increases computational costs but does not improve results.

At the volume–volume interfaces, the associated Riemann problem is computed using the

HLLC approximate solver [4, 23, 43], giving the flux tensor and flow-velocity vector F?
s and

u?s, respectively. The solution of (18) is restricted by the usual CFL criterion.

3.1. MUSCL scheme

We use the second-order-accurate MUSCL scheme of Schmidmayer et al. [45] (labeled

here as MUSCL2) with two-step time integration

q
n+ 1

2
i = qni +

1

2
∆tL (qni ) , (19)

qn+1
i = qni + ∆tL

(
q
n+ 1

2
i

)
, (20)
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where the operator L is the numerically approximated fluxes and non-conservative terms,

function of the state vector q at different time stages. The first step is a prediction for

the second step and the usual piece-wise linear MUSCL reconstruction [43] is used on the

primitive variables. The monotonized central (MC) [52] slope limiter is employed as an

attempt to minimize interface diffusion and its behavior is investigated in section 5.3. This

method has been previously implemented for the pressure-disequilibrium model [4, 34–36,

38, 40, 45, 57].

3.2. WENO scheme

We also implement third- and fifth-order accurate WENO schemes for comparison pur-

poses (labeled here as WENO3 and WENO5, respectively). In this case, the time derivative is

computed via the third-order TVD Runge–Kutta algorithm [53]

q
(1)
i = qni + ∆tL (qni ) , (21)

q
(2)
i =

3

4
qni +

1

4
q
(1)
i +

1

4
∆tL

(
q
(1)
i

)
, (22)

qn+1
i =

1

3
qni +

2

3
q
(2)
i +

2

3
∆tL

(
q
(2)
i

)
. (23)

This method has previously been implemented for the pressure-equilibrium models of Allaire

et al. [1] and of Massoni et al. [2] [23–25, 27, 28], and of Kapila et al. [3] [29, 30, 58]; here,

we also utilize it for the pressure-disequilibrium model of Saurel et al. [4].

3.3. Pressure-relaxation procedure

The pressure-disequilibrium model (13) requires stiff pressure relaxation to converge to

a single, equilibrium pressure. We use the infinite-relaxation procedure of Saurel et al.

[4]. At each time step it solves the non-relaxed, hyperbolic equations (µ → 0) using (18),

then relaxes the disequilibrium pressures for µ → +∞. Specifically, after manipulation

of the equations realized in agreement with thermodynamic considerations and saturation

constraint (
∑

k αk = 1) , (13) is solved with respect to∑
k

(αρ)k vk (p) = 1, (24)
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where (αρ)k are constant during the relaxation process and vk (p) are the specific volumes

of each state determined with the help of the EOS as

vk (p) =
p0k + γkπ∞k + p(γk − 1)

γk(p+ π∞k)
v0k, (25)

where superscript 0 indicates the hyperbolic step index. We ultimately solve (24) using the

Newton–Raphson method to find the relaxed pressure and the phase densities and volume

fractions are determined for the next step.

This relaxation procedure is combined with a re-initialization procedure to ensure the con-

servation of total energy, and thus converges to the mechanical-equilibrium model of Kapila

et al. [3] (10). This follows from the EOS and the mixture total-energy conservation law as

p =

ρe−∑
k

αkγkπ∞k

γk−1∑
k

αk

γk−1
, (26)

where ρe is determined using (16). Once p is determined, the internal energies of the phases

are reinitialized using their respective EOS. When multi-stage time integration is used, these

procedures are performed at each stage. Thus, there is only one pressure at the end of each

stage and the reconstructed variables are the same for all models. As a result, simulations

of the pressure-disequilibrium model are only about 5% more expensive than the models

of Allaire et al. [1], Massoni et al. [2] and Kapila et al. [3] for the spherical-bubble-collapse

cases we consider subsequently.

4. Setup of the spherical-bubble-collapse problem

As a step towards understanding the practical differences between the presented models

and methods, we consider the behavior of a collapsing spherical bubble. The problem setup

is shown in Figure 1. We initialize the bubble with radius R0 and the computational domain

has size L = 320R0, which is sufficiently large to avoid boundary effects. Initially, the bubble

has a uniform internal pressure pb, and the exterior pressure increases gradually up to the

far-field pressure p∞ according to the Rayleigh–Plesset equation [29, 59]:

p(R) = p∞ +
R0

R
(pb − p∞) . (27)
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Air, pb

Water, p∞

R0

Figure 1: Problem configuration for a collapsing spherical bubble.

In the following, this pressure initialization is labeled as initial interface equilibrium with

Ṙ0 = 0. We consider cases with both modest and high initial pressure ratios, as shown in

Table 1. The water is parameterized by γl = 2.35 and π∞ = 109 Pa [24, 34, 41, 54, 60, 61].

Case p∞ [Pa] pb [Pa] p∞/pb

1: Low-pressure-ratio 105 104 10

2: High-pressure-ratio 5× 106 3550 1427

Table 1: Nominal initial conditions for the cases simulated.

We simulate the flow on a cubical, rectilinear grid with NR0 nodes in each coordinate

direction per initial bubble radius near the bubble (R 6 1.5R0); far from the bubble (R >

1.5R0), the grid is stretched nonuniformly to accommodate the large computational domain

L. To reduce the computational cost, one octant of the domain is computed, with symmetry

boundary conditions mimicking the bubble dynamics in neighboring regions. We performed

two simulations for each pressure ratio, one without mesh stretching and another with the

complete physical domain (no symmetry boundary conditions), and compared them against

the simulations presented hereafter to confirm that our results are insensitive to both of

these procedures.

When using the WENO5 method, the bubble interface is smeared in the radial direction over

a few grid cells. The smearing procedure is commonly employed in models when fifth-order

WENO reconstruction is used [23–25, 29, 30, 32, 47, 62–66], as it appears that unphysical

oscillations or numerical instabilities can occur without it. The initial interface smearing
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procedure we employ involves smearing the volume fraction across the interface using an

hyperbolic tangent function [29]

αg =
1

2

[
1− tanh

(
R−R0

2D

)]
, (28)

where D is the characteristic length of the corresponding computational cell; the conservative

variables then follow from simple mixture relations, allowing thermodynamic consistency.

The physical artifacts associated with this procedure are discussed in section 5.3.2.

In the following, we use the radial bubble-wall evolution to compare the performance of

the three different models. We define an effective bubble radius, R, as

R =

(
3Vb
4π

) 1
3

, where Vb =
N∑
i=1

αg,iVc,i (29)

is the total volume of the gas phase, N is the total number of grid cells, and αg,i and Vc,i

are the gas volume fraction and the volume of cell i, respectively. The radial bubble-wall

evolution is presented in a non-dimensionalized form where

tc = 0.915R0

√
ρl
p∞

(30)

is the nominal total collapse time from its initial (maximum) radius R0 [59]. In our imple-

mentation, we compute about 69 × 103 and 18 × 103 time steps per tc for cases 1 and 2,

respectively.

5. Results

5.1. Effect of K∇ ·u on the 5-equation model

We first reconsider the behavior and influence of the K∇ ·u term from the 5-equation

models on the spherical-bubble-collapse problem using the WENO5 scheme as previously pre-

sented by Tiwari et al. [29].

Figure 2 shows that in both pressure-ratio cases, only the model with K∇ ·u agrees with

a semi-analytical solution following the Keller–Miksis equation [67]; a compressible form

of the Rayleigh–Plesset equation. The Keller–Miksis equation is based on an asymptotic
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Figure 2: Radial bubble-wall evolution for (a) p∞/pb = 10 with NR0
= 25 and (b) p∞/pb = 1427 with

NR0
= 50. Solutions are computed using the 5-equation models with WENO5 as well as the Keller–Miksis

equation.

expansion in Mach number which also assumes that the bubble remains spherical. Its use

here is predicated on the idea that errors measured relative to it are larger than any errors

associated with the asymptotic expansion and presumption of sphericity inherent to it. This

assumption is borne out in the results presented below. Furthermore, in this case, the initial

interface smearing does not affect the agreement with the Keller–Miksis solution.

The inability of the 5-equation model without K∇ ·u to represent spherical bubble col-

lapse was previously observed by Tiwari et al. [29], who attributed the better results of the

model of Kapila et al. [3] to the enforcement of the second law of thermodynamics. Herein,

we seek an alternative explanation in terms of the bubble dynamics themselves.

Figure 3 shows key quantities and K∇ ·u along a radial coordinate at two instances in

time. For t ≈ 0, the initial interface smearing results in a mixture region at the interface,

for which K 6= 0, but K∇ ·u ≈ 0 because ∇ ·u ≈ 0. However, during the collapse, ∇ ·u 6= 0

and the fluid volume fractions are modified. We see that K∇ ·u is positive and is larger

on the liquid side of the interface. As a result, the liquid volume fraction increases faster,

particularly on the liquid side of the interface, than it would without the K∇ ·u term. This

keeps the interface relatively sharp and results in the larger interface velocity observed in
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t = 0.85tc
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Figure 3: Liquid volume-fraction, pressure, and K∇ ·u for varying radial position R and the case p∞/pb = 10

and NR0
= 25 using the 5-equation model with K∇ ·u. Times (a) t ≈ 0 and (b) t = 0.85tc are shown.

Figure 2.

This behavior can be explained via the bubble pressure evolution. Initially, the pressure is

small inside the bubble and increases gradually outside of it. During the collapse, the bubble

pressure increases, which reduces the bubble volume due to compression of the gas. This

is dynamically coupled to the interface and intensifies the collapse. Further, the pressure

always increases in the radial direction. Thus, the gas in the mixture region is more highly

compressed on the water side of the bubble interface, and so its volume fraction decreases

more rapidly. This process also intensifies the bubble collapse. Note that this second effect is

not present into the 5-equation model without K∇ ·u, since this term accounts for expansion

and compression in mixture regions.

5.2. Comparison of the 5- and 6-equation models

While the 5-equation model with K∇ ·u can accurately represent spherical bubble dy-

namics in some cases, it is also often numerically unstable. This is a result of significant

compression and expansion near the interface, which can occur during strong shock or ex-

pansion waves and cannot be easily treated due to the non-conservative nature of the K∇ ·u
term [33] as discussed in section 1. Here, we consider the 6-equation model as a potential
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Figure 4: Radial bubble-wall evolution for (a) p∞/pb = 10 and (b) p∞/pb = 1427. Solutions are computed

using WENO5.

solution to this issue; under infinite pressure-relaxation, it theoretically converges to the

5-equation model with K∇ ·u. However, when discretized, the equation sets are different

and equivalence has neither been demonstrated for high-order schemes, such as the WENO5

method we consider, nor for the challenging spherical-bubble-collapse test problems. To

test our implementation and confirm their convergence to one another, comparison between

these methods are presented for shock tube and vacuum problems in Appendix A and B,

and consider the collapse of a spherical air bubble in water next.

Simulation results for nominal low- and high-pressure ratios are shown in Figure 4 for

both the 5-equation with K∇ ·u and 6-equation models, following the previous subsections.

Both methods agree closely for both cases with the semi-analytic solution of the Keller–Miksis

equations [67], which are initialized at equilibrium with Ṙ0 = 0. The high-pressure-ratio case

of Figure 4 (b) also shows the spatial convergence of the models.

Since the 6-equation model has closely matched the 5-equation model with K∇ ·u for

all three of our challenging test cases, we consider it a potential surrogate to the 5-equation

model that does not inherit its stability issue. Next, we investigate the behavior of the

6-equation model when solved by numerical schemes of different character and accuracy.
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Figure 5: Radial bubble-wall evolution for initial interface equilibrium and p∞/pb = 10. (a) Results for all

schemes and flux limiters as labeled (fixed resolution NR0 = 25) and (b) spatial convergence of the numerical

methods.

5.3. Numerical schemes for the 6-equation model

The 6-equation model can be solved via many different interface-capturing numerical

methods. We compute its solution using the methods described in section 3 for a collapsing

spherical bubble of varying initial pressure ratio and interface states as a critical assessment

of the viability of the numerical schemes for cavitating flows.

5.3.1. Spherical bubble collapse with initial interface equilibrium

We first consider the case of initial interface equilibrium, Ṙ0 = 0. Figure 5 (a) shows the

interface evolution for p∞/pb = 10, spatial resolution NR0 = 25 and for the FV1, MUSCL2,

WENO3 and WENO5 schemes. In addition to the MC [68] slope limiter, the Minmod [43, 69]

limiter is implemented for the MUSCL2 scheme (note that the MC limiter is used when not

specified for the MUSCL2 scheme). Here, the slope limiters attempt to reduce numerical

dissipation of the scheme. As mentioned in section 4, the interface is initially smeared for

the WENO5 cases to guarantee numerical stability. However, the MUSCL2 and WENO3 schemes

do not require this procedure to remain stable, and thus all interfaces are kept sharp at

the grid level in these cases. In Figure 5 (a) we see that the MC slope limiter performs

significantly better than the Minmod limiter and similarly for the WENO3 scheme, although
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the corresponding results are still less accurate than those of the WENO5 scheme.

To confirm that numerical dissipation is the cause of the discrepancy between the results

of the MUSCL2, WENO3 and WENO5 schemes, we consider the spatial convergence of the numer-

ical methods. In Figure 5 (b), this convergence is presented in terms of the discrete L2 error

ε as

ε =
1

Nt

Nt∑
i=0

‖R(ti)−RKM(ti)‖
RKM(ti)

, (31)

where Nt is the number of time steps in the temporal window t ∈ [0, 2tc], and R(ti) and

RKM(ti) are the bubble radius at time ti of our simulations and the Keller–Miksis solution,

respectively. We see that all methods converge at first order, matching the expected rate

for the numerical solution of flows with discontinuities [42, 43, 70]. The WENO5 method

has the smallest ε, and so we conclude that for small initial pressure ratios higher-order

reconstructions have smaller errors as they suppress numerical diffusion. In this case, the

interface smearing procedure we employ for the WENO5 scheme has no apparent consequence

on simulation accuracy.

For the flow configurations we consider, the spherical bubble interface is known to be

physically stable [59, 71], and so non-spherical interfaces are an artifact of the numerical

method; we use this property to assess the performance of the numerical methods. The

bubble sphericity is computed as [72]

Ψ =
π

1
3 (6V ′b )

2
3

Ab
, (32)

which is the ratio of the surface area of a sphere with the same volume as the bubble V ′b ,

to the surface area of the bubble Ab. By this definition, a spherical shape has Ψ = 1 and

distorted shapes have Ψ < 1. We define the bubble as the region with αg ≥ 0.5 and its

surface is the isosurface of αg = 0.5. We compute V ′b and Ab using high-order interpolation

of the data.

Sphericity and bubble shape evolution for the small pressure ratio case are shown in

Figure 6. We see that the WENO5 scheme maintains sphericity during the entire collapse–

rebound process, similar to that observed by Tiwari et al. [29], Whereas the MUSCL2 and

17



Figure 6: Evolution of the bubble sphericity for p∞/pb = 10 and NR0 = 25. Nominal bubble shapes as

represented by α = 0.5 isosurfaces are also shown for times t = 0.7tc, t (R = Rmin), and 2tc.
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Figure 7: Radial bubble-wall evolution for initial interface equilibrium and p∞/pb = 1427. (a) Results (fixed

resolution NR0
= 50) and (b) spatial convergence of the MUSCL2, WENO3 and WENO5 schemes.

WENO3 schemes develop grid-specific artifacts, which are visible beginning at t = 0.7tc; these

are presumably due to anisotropic dispersion on the grid with faster propagation of the

interface along the Cartesian coordinate directions. By the time of minimum radius t(R =

Rmin), the bubble shape is significantly distorted, and at t = 2tc distortions are still visible.

The radial bubble-wall evolution and convergence results for the larger pressure ratio

p∞/pb = 1427 are shown in Figure 7. In Figure 7 (a), we only show the Keller–Miksis solution

until t = 1.05tc, just after the minimum bubble radius is achieved, since the subsequent

rebounds for large pressure ratios are well-known to be physically inaccurate [73]. We see

that MUSCL2 is marginally more accurate at predicting the minimum bubble radius and

collapse time than the WENO5 method. This seems to be a result of two factors; first, the

interface moves more quickly for larger pressure ratios and thus, the MUSCL2 results are less

polluted by numerical diffusion over the significantly fewer time steps to reach collapse than

were required for the low-pressure-ratio case; second, the initial smearing introduced for

the WENO5 method results in an initial diffusion greater than that what ultimately develops

during MUSCL2 and WENO3 simulations.

In Figure 7 (b) we plot the observed spatial convergence of the numerical schemes. Here,

we only compute ε over the temporal window t ∈ [0, 1.05tc], commensurate with the physical
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Figure 8: Bubble sphericity evolution for p∞/pb = 1427 and NR0
= 50. Nominal bubble shapes (α = 0.5)

are also shown for times t = 0.5tc, 1.02tc, and 1.35tc.

accuracy of the Keller–Miksis solution over this interval. We again observe approximately

first-order convergence for all numerical methods we consider. However, in this case, MUSCL2

has the smallest error ε and WENO5 the largest. Again, this appears to be a result of the

dissipation introduced by the initial smearing procedure used for the WENO5 simulations.

The bubble sphericity and illustrations of the bubble surface are shown in Figure 8.

Almost no grid-based artifacts on the bubble surface are visible until t ≈ tc for all numerical

methods, at which point Ψ decreases significantly. Compared to the low-pressure-ratio case,

the interface evolves more quickly and all methods conserve sphericity for t . tc. However,

after the collapse, significant distortions are visible and Ψ does not reach unity for any of the

methods. Furthermore, we see that the WENO5 method results in stronger distortions than

the MUSCL2 or WENO3 schemes immediately after the collapse. For larger t, the WENO3 scheme
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Figure 9: Bubble sphericity and associated bubble interface for varying mesh resolution NR0
at time t =

1.35tc for the p∞/pb = 1427 case and MUSCL2 method. For NR0
= 100 and 150 the adaptive-mesh-refinement

technique of Schmidmayer et al. [38] is used to minimize computational expense.

develops further distortions, eventually reaching similar Ψ values as WENO5 result, whereas

the MUSCL2 scheme maintains sphericity after the initial collapse.

For NR0 = 50, the minimum radius is about 0.09R0, which corresponds to about 4.5 cells

per bubble radius in each direction and seemingly leads to a significant amount of anisotropy.

Thus, we investigate the effect of mesh resolution on the bubble shape in Figure 9. We see

that sphericity indeed improves with increasing the mesh resolution, Note that we only shows

results for MUSCL2, but similar behavior is expected for the WENO schemes.

For initial interface equilibrium, we conclude that the WENO5 scheme converges more

quickly and can better maintain sphericity when the pressure ratio is relatively small, and

thus the maximum interface velocity is much smaller than the Mach number. However, when

the pressure ratio is much larger, and so the interface velocity exceeds the Mach number,

all the schemes show similar performance, with MUSCL2 only modestly outperforming the

others.

21



cwater
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

cair
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 10: Wood speed of sound for water-air mixture. Here, cwater = 1625 m/s and cair = 350 m/s.

5.3.2. Spherical bubble collapse with initial interface disequilibrium

Lastly, we consider the case of initial interface disequilibrium, and thus Ṙ0(t = 0) 6= 0.

We enforce this by setting the internal and external interface pressures to different values as

p =

pb for 0 ≤ R ≤ R0,

p∞ otherwise.

(33)

This condition represents the discontinuities present, for example, during bubble wall impact.

The other initial conditions are identical to previous test cases and thus of section 4.

With the initial interface smearing employed for the WENO5 scheme (or indeed after a

sufficient number of time steps for any scheme due to numerical diffusion) the interface has

non-negligible thickness, giving rise to a mixture region (α 6= 0 or 1). As shown in Figure 10,

the Wood speed of sound (12), which is also the speed of sound of the 5-equation model

with K∇ ·u, varies in this region and is much less than that of either of the pure phases

(α = 0 and 1). After the pressure relaxation procedure, the effective speed of sound of the

6-equation model also converges to the Wood speed of sound (see Appendix B).

Figure 11 shows that the smearing procedure employed to keep the WENO5 scheme stable

results in an inaccurate solution for the collapse of a bubble in initial pressure disequilibrium.

We also see that the MUSCL2 and WENO3 schemes behave similarly when the interface is initially
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Figure 11: Radial bubble-wall evolution for initial interface disequilibrium, p∞/pb = 1427 and NR0 = 50.

Solutions are computed using the 6-equation model, and the Keller–Miksis result is shown as surrogate truth.

smeared, though this procedure is not required for numerical stability in these cases; for both

schemes, the non-smeared cases agree closely with the Keller–Miksis dynamics.

The poor performance associated with the initial interface smearing procedure appears

to be due to a wave-trapping phenomenon that results from a lower mixture sound speed,

reducing the initial interface velocity. This is illustrated in Figure 12 for the MUSCL2 method.

Pressure contours are shown in the t–R space for three degrees of initial smearing (a)–(c).

When the interface is not smeared, the pressure waves travel at the pure-phase speed of

sound. However, when either the volume fraction or both the volume fraction and mixture

pressure are spatially smeared, these waves evolve in a more complex manner due to the

reduced sound speeds within the interface mixture region. Pressure waves that escape the

mixture region again travel at the liquid speed of sound. The difference between Figure 12 (b)

and (c) shows that smearing of the volume fraction α and pressure p both modify the

pressure-wave behaviors uniquely, though both ultimately pollute the bubble dynamics.

5.4. Interface-sharpening techniques for collapsing spherical bubbles

The numerical dissipation inherent in any interface capturing scheme will eventually

smear even initially sharp interfaces. Thus, problems involving multiple interface pressure-

disequilibrium events, such as a collapsing ellipsoidal bubble near a wall [74, 75], would
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Figure 12: Pressure in the time and radial-direction space for initial interface disequilibrium, p∞/pb = 1427

and NR0
= 50. Solutions are computed using the 6-equation model with the MUSCL2 scheme for three initial

configurations: (a) no initial smearing, (b) smearing on only the volume fraction α, and (c) smearing on

both α and pressure p.

benefit from keeping interfaces as sharp as possible. As an attempt to accomplish this, we

buttress the 6-equation model and the MUSCL2 and WENO3 schemes with the THINC interface-

sharpening method [76] implemented via directional splitting. We note that we observed

numerical instabilities when coupling this THINC method to the WENO5 scheme; this seems

to be a result of significant interface sharpening when compared to the numerical diffusion

of the scheme, which was previously shown to trigger instabilities for this method, and so

we do not consider WENO5 herein. Further, we use THINC, rather than anti-diffusion [77] or

regularization methods [29], as its conservative property matches the conservative methods

we already employ and the others displayed significant numerical instabilities for our methods

(particularly for high-pressure-ratio cases). We confirm that our implementation of this

method faithfully represents the solutions of the 1D shock tube problem of appendix A and

2D shock–bubble gas–gas interaction problems (such as that of Shyue and Xiao [76] and Deng

et al. [78]), and so we can proceed with a faithful comparison for collapsing spherical bubbles.
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Figure 13: Radial bubble-wall evolution for initial interface equilibrium and numerical methods as labeled;

(a) p∞/pb = 10 and NR0
= 25, (b) p∞/pb = 1427 and NR0

= 50.

Case MUSCL2 MUSCL2 + THINC WENO3 WENO3 + THINC

1: p∞/pb = 10 0.32 0.16 0.44 0.16

2: p∞/pb = 1427 0.36 0.1 0.5 0.08

Table 2: Interface thickness T/R0 at specific times and for the cases as labeled. Case 1: NR0
= 25 and t = 2tc;

case 2: NR0 = 50 and t = 1.35tc Here, T is computed via the number of cells satisfying 0.01 6 α 6 0.99.

Figure 13 shows the radial bubble-wall evolution for the low- and high-pressure-ratio

interface-pressure equilibrium cases we considered in section 5.3.1. When compared to non-

THINC-equipped methods, the THINC results have about 44% larger error ε for the low-

pressure-ratio case and 59% smaller ε for the high-pressure-ratio case; however, in all cases

the error is already relatively small. Despite having an inconsistent effect on the error, the

THINC scheme does keep the bubble interface sharper, as shown in Table 2.

Figure 14 compares bubble shape results for methods with and without THINC. We see

that the THINC-coupled method results in significantly less spherical shapes for the low-

pressure-ratio cases, though for the high-pressure-ratio cases the shapes are nearly the same.

We note that the directional splitting we use could be the source of this discrepancy, though

it is unclear if intrinsically multi-dimensional THINC methods will improve this [79]. In

25



MUSCL2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

MUSCL2 + THINC
<latexit sha1_base64="bQMERyG0cAYoo4w5toBalU9/NT4=">AAACCXicbVDLSgNBEJyNrxhfqx69DAZBEMJuFPQYzCWCSsRsDCRLmJ1MkiGzD2Z6xbDs1Yu/4sWDIl79A2/+jZPHQRMLGoqqbrq7vEhwBZb1bWQWFpeWV7KrubX1jc0tc3unrsJYUubQUISy4RHFBA+YAxwEa0SSEd8T7M4blEf+3T2TiodBDYYRc33SC3iXUwJaapu4BewBAJIr57Z8WUzx0USRflKrXFyX07aZtwrWGHie2FOSR1NU2+ZXqxPS2GcBUEGUatpWBG5CJHAqWJprxYpFhA5IjzU1DYjPlJuMP0nxgVY6uBtKXQHgsfp7IiG+UkPf050+gb6a9Ubif14zhu6Zm/AgioEFdLKoGwsMIR7FgjtcMgpiqAmhkutbMe0TSSjo8HI6BHv25XlSLxbs44J9c5IvnU/jyKI9tI8OkY1OUQlVUBU5iKJH9Ixe0ZvxZLwY78bHpDVjTGd20R8Ynz9lPZl+</latexit>

p1/pb = 10
<latexit sha1_base64="BqhuKZ6yAz5jZSpxT9qO38dt7Uk=">AAAB/HicbVBNS8NAEJ3Ur1q/oj16WSyCp5qooBeh6MVjBfsBbQib7aZdutmE3Y0QQv0rXjwo4tUf4s1/47bNQVsfDDzem2FmXpBwprTjfFulldW19Y3yZmVre2d3z94/aKs4lYS2SMxj2Q2wopwJ2tJMc9pNJMVRwGknGN9O/c4jlYrF4kFnCfUiPBQsZARrI/l2NfH7TIQ6Q6co8QN0jVzHt2tO3ZkBLRO3IDUo0PTtr/4gJmlEhSYcK9VznUR7OZaaEU4nlX6qaILJGA9pz1CBI6q8fHb8BB0bZYDCWJoSGs3U3xM5jpTKosB0RliP1KI3Ff/zeqkOr7yciSTVVJD5ojDlSMdomgQaMEmJ5pkhmEhmbkVkhCUm2uRVMSG4iy8vk/ZZ3T2vO/cXtcZNEUcZDuEITsCFS2jAHTShBQQyeIZXeLOerBfr3fqYt5asYqYKf2B9/gBTnJM+</latexit>

t = 0.7tc
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

t(R = Rmin)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

t = 2tc
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

WENO3
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

WENO3 + THINC
<latexit sha1_base64="Eg522MC0PIc4f5BnN9I2g8TeiD4=">AAACCHicbVDLSgNBEJyNrxhfqx49OBgEQQi7RtBjMAjxEiPkBckSZieTZMjsg5leMSw5evFXvHhQxKuf4M2/cZLsQRMLGoqqbrq73FBwBZb1baSWlldW19LrmY3Nre0dc3evroJIUlajgQhk0yWKCe6zGnAQrBlKRjxXsIY7LE78xj2Tigd+FUYhczzS93mPUwJa6piHbWAPABA3rsu3+TE+xVNBenG1dFMujjtm1spZU+BFYickixJUOuZXuxvQyGM+UEGUatlWCE5MJHAq2DjTjhQLCR2SPmtp6hOPKSeePjLGx1rp4l4gdfmAp+rviZh4So08V3d6BAZq3puI/3mtCHqXTsz9MALm09miXiQwBHiSCu5yySiIkSaESq5vxXRAJKGgs8voEOz5lxdJ/Sxn53PW3Xm2cJXEkUYH6AidIBtdoAIqoQqqIYoe0TN6RW/Gk/FivBsfs9aUkczsoz8wPn8AxTOZKQ==</latexit>

a)
<latexit sha1_base64="ktZVecukBmVAzfBnjKCb9/s/3Kk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyVRQY9FLx6r2A9oQ5lsN+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUUdagsYhVO0DNBJesYbgRrJ0ohlEgWCsY3U791hNTmsfy0YwT5kc4kDzkFI2VHvCsV664VXcGsky8nFQgR71X/ur2Y5pGTBoqUOuO5ybGz1AZTgWblLqpZgnSEQ5Yx1KJEdN+Nrt0Qk6s0idhrGxJQ2bq74kMI63HUWA7IzRDvehNxf+8TmrCaz/jMkkNk3S+KEwFMTGZvk36XDFqxNgSpIrbWwkdokJqbDglG4K3+PIyaZ5XvYuqd39Zqd3kcRThCI7hFDy4ghrcQR0aQCGEZ3iFN2fkvDjvzse8teDkM4fwB87nDyfRjRs=</latexit>

t = 0.5tc
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

t = 1.35tc
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

WENO3
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

t = 1.02tc
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

WENO3 + THINC
<latexit sha1_base64="Eg522MC0PIc4f5BnN9I2g8TeiD4=">AAACCHicbVDLSgNBEJyNrxhfqx49OBgEQQi7RtBjMAjxEiPkBckSZieTZMjsg5leMSw5evFXvHhQxKuf4M2/cZLsQRMLGoqqbrq73FBwBZb1baSWlldW19LrmY3Nre0dc3evroJIUlajgQhk0yWKCe6zGnAQrBlKRjxXsIY7LE78xj2Tigd+FUYhczzS93mPUwJa6piHbWAPABA3rsu3+TE+xVNBenG1dFMujjtm1spZU+BFYickixJUOuZXuxvQyGM+UEGUatlWCE5MJHAq2DjTjhQLCR2SPmtp6hOPKSeePjLGx1rp4l4gdfmAp+rviZh4So08V3d6BAZq3puI/3mtCHqXTsz9MALm09miXiQwBHiSCu5yySiIkSaESq5vxXRAJKGgs8voEOz5lxdJ/Sxn53PW3Xm2cJXEkUYH6AidIBtdoAIqoQqqIYoe0TN6RW/Gk/FivBsfs9aUkczsoz8wPn8AxTOZKQ==</latexit>

p1/pb = 1427
<latexit sha1_base64="An7Tx09WPBHMcALdbh9ZnfEZScw=">AAAB/nicbVBNS8NAEN34WetXVDx5WSyCp5rUQr0IRS8eK9gPaEPYbDft0s0m7E6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9IBNfgON/Wyura+sZmYau4vbO7t28fHLZ0nCrKmjQWseoERDPBJWsCB8E6iWIkCgRrB6Pbqd9+ZErzWD7AOGFeRAaSh5wSMJJvHyd+j8sQxvgCJ36Ar7FbrdR8u+SUnRnwMnFzUkI5Gr791evHNI2YBCqI1l3XScDLiAJOBZsUe6lmCaEjMmBdQyWJmPay2fkTfGaUPg5jZUoCnqm/JzISaT2OAtMZERjqRW8q/ud1UwivvIzLJAUm6XxRmAoMMZ5mgftcMQpibAihiptbMR0SRSiYxIomBHfx5WXSqpTdy7JzXy3Vb/I4CugEnaJz5KIaqqM71EBNRFGGntErerOerBfr3fqYt65Y+cwR+gPr8wdPD5O/</latexit>

MUSCL2 + THINC
<latexit sha1_base64="bQMERyG0cAYoo4w5toBalU9/NT4=">AAACCXicbVDLSgNBEJyNrxhfqx69DAZBEMJuFPQYzCWCSsRsDCRLmJ1MkiGzD2Z6xbDs1Yu/4sWDIl79A2/+jZPHQRMLGoqqbrq7vEhwBZb1bWQWFpeWV7KrubX1jc0tc3unrsJYUubQUISy4RHFBA+YAxwEa0SSEd8T7M4blEf+3T2TiodBDYYRc33SC3iXUwJaapu4BewBAJIr57Z8WUzx0USRflKrXFyX07aZtwrWGHie2FOSR1NU2+ZXqxPS2GcBUEGUatpWBG5CJHAqWJprxYpFhA5IjzU1DYjPlJuMP0nxgVY6uBtKXQHgsfp7IiG+UkPf050+gb6a9Ubif14zhu6Zm/AgioEFdLKoGwsMIR7FgjtcMgpiqAmhkutbMe0TSSjo8HI6BHv25XlSLxbs44J9c5IvnU/jyKI9tI8OkY1OUQlVUBU5iKJH9Ixe0ZvxZLwY78bHpDVjTGd20R8Ynz9lPZl+</latexit>

MUSCL2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

b)
<latexit sha1_base64="KCHZqBA+5dkPnr4F+0fJeja0ZnY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBLyVRQY9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpITjrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzS6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCaz/jMkkNSjZfFKaCmJhM3yZ9rpAZMbaEMsXtrYQNqaLM2HBKNgRv8eVl0jyvehdV7/6yUrvJ4yjCERzDKXhwBTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hD5zPHylWjRw=</latexit>

Figure 14: Nominal bubble shapes (α = 0.5) for times and methods as labeled: (a) p∞/pb = 10 and

NR0
= 25, (b) p∞/pb = 1427 and NR0

= 50.
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general, we see that the THINC method is better behaved when coupled to the MUSCL2,

rather than the WENO3, scheme.

Thus, we conclude that the directionally-split THINC method did not reliably improve

the accuracy of our results, and in most cases disturbed the interface sphericity. As such,

it only offers a partial solution when considering collapsing bubbles with multiple pressure-

disequilibrium events.

6. Discussion and conclusion

We analyzed the ability of diffuse-interface models and their associated numerical meth-

ods to represent the collapse and rebound of spherical gas bubbles in a liquid. We confirmed

that the 5-equation model of Allaire et al. [1] and Massoni et al. [2] is unable to accurately

represent a spherical bubble collapse and demonstrated how the additional K∇ ·u term nat-

urally present in the model of Kapila et al. [3] is required to ensure good agreement with the

Keller–Miksis solution [65]. Since the 5-equation model with K∇ ·u is known to produce

instabilities in some numerical experiments [4, 32], we investigated the 6-equation pressure-

disequilibrium model as a potential surrogate. We observed good agreement between these

models for challenging test problems, including a 1D water-air shock tube, a 1D vacuum

developing in a water-air mixture, and the collapse of a 3D spherical bubble. Thus, the

6-equation model is a good candidate to remedy the stability issues of the 5-equation model

with the K∇ ·u source term.

We also considered the behavior and pathologies of the 6-equation model when coupled to

MUSCL and WENO numerical methods for a collapsing spherical bubble. We first analyzed

bubbles at initial interface pressure equilibrium. For this, the bubble interface evolution

of the WENO5-based solution more closely matched the associated Keller–Miksis surrogate-

truth solution than did the MUSCL2 and WENO3 schemes for relatively small pressure ratios.

This was due to the more substantial numerical diffusion intrinsic to the lower-order schemes,

even though the WENO5 scheme required an initially smeared interface to maintain simulation

stability. When the initial pressure ratio was larger, all three methods showed similar results,

quickly converging to the Keller–Miksis solution. Further, we noticed that the relatively
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small bubble size at the collapse time resulted in significantly distorted interface shapes.

However, these shapes were shown to be more spherical for finer spatial meshes. Thus, an

adaptive-mesh-refinement technique would help maintain bubble interface sphericity at the

same computational cost as a uniform mesh near the bubble.

When the bubble interface was in initial disequilibrium, we saw that the smearing pro-

cedure implemented for the WENO5 method precluded an accurate solution for large pressure

ratios. This was a result of the relatively large degree of initial diffusion, which produced

a mixture region with a much smaller speed of sound that polluted the dynamics. We also

noted that the numerical dissipation inherent in any interface capturing scheme will even-

tually smear even initially sharp interfaces and, therefore, these schemes would benefit from

keeping interfaces as sharp as possible. Interface-sharpening techniques are one way to mini-

mize this dissipation, and we surveyed the THINC method [76] for the same spherical bubble

collapse problems. While the THINC method did keep the interfaces sharper, in most cases

it further disturbed the interface sphericity. Additionally, we did not observe a consistent

increase in simulation accuracy. Thus, further investigation and possibly method improve-

ment is required to maintain surface sharpness while guaranteeing a conservative behavior

and numerical stability.

Ultimately, we saw that WENO-based schemes were preferable for bubble dynamics that

involve small pressure ratios, and thus slower interface dynamics, and the MUSCL and

WENO-based schemes performed similarly for large pressure ratios and thus fast interface

speeds. Thus, the WENO5 scheme is generally preferred, except in cases involving interface

pressure discontinuities, for which the interface smearing required to keep the scheme stable

pollutes the dynamics. As such, the instability of high-order WENO schemes for interface

problems warrants future attention.
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Figure 15: Shock tube problem setup and initial and boundary conditions.

Appendix A Water-air shock tube

We consider a water-air shock tube, whose initial configuration is shown in Figure 15 [4,

24, 38]. The domain has length L, the initial discontinuity is located at L∗ = L/7 and 103

nodes are used. Here, the water has stiffened-gas parameters γl = 4.4 and π∞ = 6× 108 Pa [4,

36, 80].

We simulate the flow in the shock tube using both the 5-equation with K∇ ·u and 6-

equation models and the WENO5 numerical scheme. A uniform and one-dimensional mesh of

103 nodes is used. Results for the primitive variables at t = 241 µs are shown in Figure 16. A

rightward shock wave propagates into the air, followed by a contact discontinuity, observable

in (a) and (b), that delimits the interface between the two phases; left-going expansion waves

propagate into the water. We observe good agreement between the numerical implementa-

tions of both models and the exact solution. Indeed, differences can only be seen at the

tail of the expansion waves and near the contact discontinuity. Note that these differences

diminish with increasing resolution.

Appendix B Vacuum generation into a water-air mixture

We consider a vacuum generation into a water-air mixture [4, 41]. The problem setup

is shown in Figure 17; there is a uniform initial pressure p = 105 Pa and densities ρl =

103 kg/m3 and ρg = 1 kg/m3, and a flow is generated by the initial discontinuity in velocity.

Again, 103 nodes are used and the water has stiffened-gas parameters γl = 4.4 and π∞ =

6× 108 Pa.

Figure 18 shows the results of the primitive variables at t = 1.85 ms for the vacuum
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Figure 16: Water-air shock-tube interaction problem at t = 241 µs. Numerical and exact solutions are as

labeled above.

LL/20

N
on

-r
efl

ec
ti

ve

N
on

-r
efl

ec
ti

ve Water-Air Mixture

↵l = 0.99

↵g = 0.01

u = �100 m/s

Water-Air Mixture

↵l = 0.99

↵g = 0.01

u = 100 m/s

Figure 17: Problem setup for a vacuum generation into a water-air mixture.
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Figure 18: Cavitating water-air mixture problem at t = 1.85 ms. Numerical and exact solutions are as

labeled above.
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problem using the same methods and computational parameterization as Appendix A. The

discontinuity in velocity generates left- and right-going expansion waves, and thus generates

a p = 0 vacuum in the center of the domain. Mixture compressibility ensures that the

water volume fraction, and thus the mixture density, decreases in the vacuum region. We

observe good agreement between the numerical simulations and exact solution. However,

the 6-equation model generally performs better, with no pressure oscillations at the head of

the expansion waves.
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