
HAL Id: hal-03649286
https://hal.science/hal-03649286

Submitted on 22 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data-Aware and Simulation-Driven Planning of
Scientific Workflows on IaaS Clouds

Tchimou N’Takpé, Jean Edgard Gnimassoun, Souleymane Oumtanaga,
Frédéric Suter

To cite this version:
Tchimou N’Takpé, Jean Edgard Gnimassoun, Souleymane Oumtanaga, Frédéric Suter. Data-Aware
and Simulation-Driven Planning of Scientific Workflows on IaaS Clouds. Concurrency and Computa-
tion: Practice and Experience, 2022, 34 (14), pp.e6719. �10.1002/cpe.6719�. �hal-03649286�

https://hal.science/hal-03649286
https://hal.archives-ouvertes.fr

Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE

Data-Aware and Simulation-Driven Planning of Scientific
Workflows on IaaS Clouds

Tchimou N’Takpé*1 | Jean Edgard Gnimassoun2 | Souleymane Oumtanaga2 | Frédéric Suter3

1Mathematics and computer science
laboratory, Nangui Abrogoua University,
Abidjan, Côte d’Ivoire

2Computer science and telecommunications
research laboratory (LARIT), National
polytechnic institute Houphouët-Boigny
(INP-HB), Abidjan, Côte d’Ivoire

3IN2P3 Computing Center, CNRS,
Lyon-Villeurbanne, France
Correspondence
*Corresponding author name. Email:
tchimou.ntakpe@gmail.com
Present Address
Université Nangui Abrogoua, autoroute
d’Abobo, 02 BP 801, Abidjan, Côte d’Ivoire

Summary

The promise of an easy access to a virtually unlimited number of resources makes
Infrastructure as a Service Clouds a good candidate for the execution of data-
intensive workflow applications composed of hundreds of computational tasks.
Thanks to a careful execution planning, Workflow Management Systems can build
a tailored compute infrastructure by combining a set of virtual machine instances.
However, these applications usually rely on files to handle dependencies between
tasks. A storage space shared by all virtual machines may become a bottleneck and
badly impact the application execution time.
In this paper, we propose an original data-aware planning algorithm that leverages
two characteristics of a family of virtual machines instances, i.e., a large num-
ber of cores and a dedicated storage space on fast SSD drives, to improve data
locality, hence reducing the amount of data transfers over the network during the
execution of a workflow. We also propose a simulation-driven approach to solve a
cost-performance optimization problem and correctly dimension the virtual infras-
tructure onto which execute a given workflow. Experiments conducted with real
application workflows show the benefits of the presented algorithms. The data-aware
planning leads to a clear reduction of both execution time and volume of data trans-
ferred over the network while the simulation-driven approach allows us to dimension
the infrastructure in a reasonable time.
KEYWORDS:
workflow scheduling; makespan reduction; data-intensive workflows; IaaS cloud.

1 INTRODUCTION

Scientific workflows constitute an appealing approach to express the complex orchestration of interdependent computations and
have become mainstream in many scientific domains1. They usually allow users to describe the different steps needed to go
from a typically vast amount of data generated by a scientific experiment to the production of an original scientific result. The
execution of such data-intensive applications made of hundreds of computational tasks on large scale distributed infrastructures
is usually handled by a Workflow Management System (WMS)2,3,4. Tasks such as resource selection, data management, or
computation scheduling are delegated to the WMS, hence hiding the complexity of these operations to the end user.
Commodity clusters and computing grids have long been the infrastructures of choice to execute scientific workflows. The

institution of the owner of the workflow generally hosts and manages the former, hence easing the access to resources, while the

2 TCHIMOU N’TAKPÉ ET AL

latter allowed scientists to run their workflows at an unprecedented scale by aggregating resources from multiple institutions.
With the support of major companies such as Amazon5, Google6, or Microsoft7, Infrastructure as a Service (IaaS) clouds have
become serious contenders to clusters and grids. Indeed, IaaS clouds combine their respective advantages by providing an easy
access to a virtually unlimited amount of resources. Thanks to a careful planning of a workflow execution, a WMS can thus
build a compute and storage infrastructure specifically adapted to this particular workflow on demand, by combining a specific
set of virtual machine instances.
The description of a scientific workflow is generally independent of the characteristics of the infrastructure onto which it

will be executed. This offers a greater flexibility to users who can, through the WMS, run the same workflow on different
infrastructures without any change in their application. A direct consequence of this flexibility is that dependencies between
computational tasks, i.e., a data produced by a task is consumed by another, are generally handled with files. The produced
intermediate data is written on disk, the file is then potentially transferred over the network to another storage device where the
consuming task will eventually read it.
In this paper, we propose to leverage two characteristics of a family of virtual machines instances provided by Amazon

Web Services5, i.e., a large number of cores and a dedicated storage space on fast SSD drives, to improve data locality, hence
reducing the amount of data transfers over the network during the execution of a workflow. This approach should have a direct
and beneficial impact on the execution time of the workflow. Then, we propose to rely on realistic simulations to dimension
a cloud infrastructure that leads to a good cost-performance tradeoff. To this end, we developed a simulator on top of the
WRENCH framework8. WRENCH can be used to build simulators of WMSs that are accurate, can run fast and scalably on a
single computer, and be implemented with minimal software development effort. The main contributions of this article thus are:

• An original data-aware planning algorithm that aims at minimizing the amount of data transfers over the network during
the execution of a workflow given a specific set of virtual machine instances.

• A simulation-driven approach to solve a cost-performance optimization problem and correctly dimension the virtual
infrastructure onto which execute a given workflow.

This paper is organized as follows. In Section 2, we describe the platform and application models used in this work. Then, in
Section 3, we detail the proposed data-aware planning algorithm while Section 4 explains how simulation is used to determine
the most efficient set of virtual machines to allocate. We evaluate the performance of the proposed algorithms in Section 5.
Section 6 reviews the related work on scheduling of scientific workflows on IaaS clouds. Finally, we conclude this paper and
present future work directions in Section 7.

2 PLATFORM AND APPLICATION MODELS

In this paper, we base our platformmodel on a typical IaaS cloud setup.Multiple virtual machine (VM) instances are deployed on
physical servers within a single datacenter. More precisely, we consider a set of VMs similar to the Amazon EC2M5 instances9.
More precisely, we consider M5d instances that come with a local storage space on NVMe SSD drives while the regular M5
instances have to rely on the Amazon Elastic Block Storage (EBS) service to store data. Table 1 details the characteristics of
the available M5d instances. The indicated costs in dollars per hour correspond to on-demand Linux instances in the US-East
region (Ohio) at the time of writing of this article.
The number of virtual cores (vCPUs) in this instance series ranges from 2 to 96, with a constant amount of memory per core

of 4GiB. These instances are typically deployed by Amazon on nodes featuring a Intel Xeon Platinum 8000 series processor.
The specific feature of the M5d instances is to attach a fast block-level storage on SSD drives that is coupled to the lifetime of
the instance. In this work, we aim at leveraging this fast storage that is shared by the vCPUs of an instance but dedicated to them
to store the intermediate files produced during the execution of a workflow, hence reducing the number of data transfers over
the network for tasks scheduled on the same virtual machine. Only the entry and exit files of the workflow will be stored on an
external storage node.
The network bandwidth with other instances or the EBS depends on the size of the instance. We assume that only the largest

instances that can exploit a full node, i.e.,with 48, 64 or 96 vCPUs, have a guaranteed network bandwidth of 10, 20, and 25Gbps
respectively. For smaller instances, i.e., from 2 to 32 cores, we consider the available bandwidth be proportional to the number
of cores and equal to 208.33 Mbps per core. All the virtual machine instances started for the execution of a given workflow are
connected through a single switch.

TCHIMOU N’TAKPÉ ET AL 3

TABLE 1 Characteristics of the AWS M5d instances.
Model vCPU Memory

(GiB)
Instance Storage
(GiB)

Network Band-
width (Gbps)

EBS
Bandwidth (Mbps)

Cost
($ per Hour)

m5d.large 2 8 1 x 75 NVMe SSD Up to 10 Up to 3,500 0.113
m5d.xlarge 4 16 1 x 150 NVMe SSD Up to 10 Up to 3,500 0.226
m5d.2xlarge 8 32 1 x 300 NVMe SSD Up to 10 Up to 3,500 0.452
m5d.4xlarge 16 64 2 x 300 NVMe SSD Up to 10 3,500 0.904
m5d.8xlarge 32 128 2 x 600 NVMe SSD 10 5,000 1.808
m5d.12xlarge 48 192 2 x 900 NVMe SSD 10 7,000 2.712
m5d.16xlarge 64 256 4 x 600 NVMe SSD 20 10,000 3.616
m5d.24xlarge 96 384 4 x 900 NVMe SSD 25 14,000 5.424
According to the description of the M5d instances, the connection from a VM to the EBS goes through a dedicated network

link, which is taken into account in our simulated infrastructure. As for the network connections between VMs, we assume the
bandwidth of the dedicated connection between a VM and the EBS be proportional to the number of cores for small VMs with
up to 32 cores (i.e., 218.75 Mbps per core).
In10, the authors showed that the bandwidth depends on the file sizes, number of files, instance types, etc. But our simulations

assume a good QoS and the respect of the performance characteristics for the resources allocated by the cloud provider.
The scientific workflows to schedule are represented by Directed Acyclic Graphs (DAGs) = { , }, where = {vi|i =

1,… , V } is a set of vertices representing the computational tasks of the workflow and = {ei,j|(i, j) ∈ {1,… , V }×{1,… , V }}
is a set of edges between vertices, representing either a data dependency, i.e., a file transfer, or a flow dependency between
two tasks. We focus on worklfows that comprise a large number of sequential tasks, i.e., running on a single core, which are
representative of real scientific applications11. Each of the task composing the workflow has a predefined (estimated) duration,
requires a set of input files to start its execution, and will produce a set of output files upon completion. We thus denote as Inputki(resp.Outputki), the ktℎ input (resp. output) file of a given task vi. When an output file produced by a task vi is consumed as input
by another task vj , this creates a data dependency between vi and vj , represented by the edge ei,j . The input files that are not
produced by any of the tasks in the workflow are called the entry files of the workflow. Conversely, the output files that are not
consumed by any task are called the exit files of the workflow. Finally, we define two quantities associated to each task composing
the workflow that will be used during the scheduling process. We define the Local Input Volume of task vi on machine Mj , or
LIVi,j , as the sum of the sizes of the files that vi takes as input that are locally stored onMj . Respectively, we define the Local
Output Volume, or LOVi,j as the sum of the sizes of the files produced by vi that are used by successors of vi also scheduled on
Mj . Note that if a file is used by more than one successor, its size is accounted for as many times as successors. The LIV (resp.
LOV) of an entry (resp. exit) task is by definition set to zero.
During the execution of the workflow, all the intermediate files, i.e., those that are produced by a task and consumed by

another, will be stored locally on the SSD storage of one or several machines. Only the entry and exit files of the workflow will
be stored on the EBS service accessible by all the machines. The time to transfer a file from one machine to another includes the
time to read the file on the disk of the source machine, the duration of the data transfer over the network and the time to write
the file on disk at destination.
The execution time of a workflow, also named makespan, is the difference between the actual finish time of the last executed

task and the actual start time of the first executed task. The actual start time of a task vi (or AST (vi)) is the time when vi starts
the transfer of its input files. The actual finish time of a task vi (orAFT (vi)) is the time when vi finishes the transfer of its output
files. So the makespan of a workflow is defined as:

makespan = max
vi∈

{AFT (vi)} − min
vi∈

{AST (vi)}

We assume that each used VM is billed per second. The cost assiacted to the execution of the workflow is thus defined as:

cost = cost_per_core × total_cores × makespan
where cost_per_core is the unit cost and total_cores is the total number of cores used to execute the workflow.

4 TCHIMOU N’TAKPÉ ET AL

3 DATA-AWARE PLANNING OFWORKFLOW TASKS

In this section, we assume that the provisioning of m virtual machine instances has already been done. How , this set of
instances, is defined will be explained in Section 4. The objective of the proposed planning algorithm is to schedule the set
 of V tasks composing the workflow on while leveraging two main characteristics of the target IaaS cloud platform, i.e.,
multi-core instances and a fast local storage space, to minimize the impact of data transfers on the execution of data-intensive
scientific workflows.
Algorithm 1 starts by building a sorted scheduling list that contains all the tasks in the workflow (lines 1-2). The tasks are

sorted by decreasing bottom level value12. The bottom level of a task vi, or bli, is the length of the longest path from vi to the
end of the workflow. It sums the estimated duration of all the tasks on this path, including vi. As in13 we include an estimate
the data transfers cost in the computation of the bottom level values of the tasks. This ordering gives the highest priorities to the
most critical tasks and ensures the respect of the dependencies between tasks. Then, the algorithm determines a first mapping
for each task vi in (lines 3-8). The selected machine Mj in is the one that: (i) minimizes the start time of vi; and (ii)
maximizes the volume of the locally stored input files for vi. The rationale is that between two virtual machines able to start vi
at the same time, we favor the one that minimizes the amount of data transfers over the network.

Algorithm 1Mapping workflow tasks
1: Compute bli of each task vi
2: Sort by decreasing bli values
3: for all vi ∈ do
4: M ← {Mj ∈ | stj(vi) is minimal and LIVi,j is maximal}
5: Map vi onM
6: Update the usage profile ofM
7: end for
8: for l = L to 0 do
9: Vl ← tasks in level l sorted by decreasing bl values
10: rearrange(Vl) ⊳ see Algorithm 2
11: end for

As all the considered virtual machine instances have multiple cores, scheduling a task vi on a machineM implies to maintain
a local schedule inside the virtual machine. In order to maximize the utilization of the cores within a virtual machine, we manage
each machine as a job and resource manager will do. In particular, we leverage the available information on the (estimated)
duration of each task to implement a conservative backfilling mechanism14 when building the local schedule. Keeping such a
usage profile of a virtual machine up to date is mandatory to determine the time when a new task can start on this particular
machine (i.e., stj(vi)). Then, after selecting M for the execution of vi, we update the usage profile of M (line 7). The usage
profiles of the virtual machines are also used in the second step of Algorithm 1 in which we rearrange the tasks in this initial
schedule to further reduce the amount of data transferred over the network.
This rearrangement step (lines 9-12) browses the workflow level by level from bottom to top. The rationale is that during the

initial placement that proceeds from top to bottom, only the volume of data coming from the direct predecessors of a task is
taken into account. It is indeed impossible to account for the locality of the data needed by a direct descendant of a task when
scheduling it at its placement is not determined yet. This may lead to avoidable data movements.
We define as level 0 the topmost level of the DAG that comprises all the entry tasks of the workflow. For each of the others

tasks, we recursively compute its level as the maximum level of its predecessors plus one. Finally, we denote as L the number
of levels in the workflow. The principle of the rearrangement step is described in Algorithm 2.
We start by saving the current start time (stc(vi)) and mapping (M i) for each task vi in Vl (lines 2-3). Then, we determine the

local volume LVi,j for task vi on machine Mj (lines 4-6). We also save the local volume for the current mapping of vi (line 7)
before canceling this mapping (line 8).
Canceling the mapping of all the tasks in a given level creates some idle slots in the usage profiles of different machines that

can be used to improve data locality by "migrating" some tasks from one machine to another. The conditions to migrate a task

TCHIMOU N’TAKPÉ ET AL 5

Algorithm 2 Rearrangement of tasks at level l
1: for all vi ∈ Vl do
2: stc(vi) ← current start time of vi
3: M i ← current mapping of vi
4: for allMj ∈ do
5: LVi,j ← LIVi,j + LOV i, j
6: end for
7: LV c

i ← current local volume of vi
8: Cancel the current mapping of vi
9: end for
10: level_is_rearranged← FALSE
11: while ¬ level_is_rearranged do
12: level_is_rearranged← TRUE
13: for all vi ∈ Vl do
14: sort by decreasing LVi,j values
15: while LVi,j ≥ LV c

i do
16: if stj(vi) ≤ stc(vi) then
17: Map vi onMj
18: Update the usage profile ofMj
19: break
20: end if
21: end while
22: if vi is mapped onM i or
23: stM i(vi) > stc(vi) then ⊳ No better mapping
24: Vl ← Vl ⧵ {vi} ⊳Mapping is definitive
25: level_is_rearranged← FALSE
26: end if
27: end for
28: if ¬ level_is_rearranged then
29: for all vi ∈ Vl do
30: Cancel the current mapping of vi
31: end for
32: end if
33: end while

vi from its former mapping to a new mapping on Mk are that it would improve the data locality, i.e., LVi,k ≥ LV c
i , and reduce

the starting time of the task, i.e., stk(vi) ≤ stc(vi).
The main loop in Algorithm 2 (lines 11-33) aims at iteratively improving the mappings for tasks in Vl. At each step, we first

try to find a better mapping (lines 15-21) for each task by considering the machine that leads to the greatest increase of the local
volume first. If the task can also start earlier on this machine, it is selected for a new tentative mapping. There are three exit
cases to this while loop: (i) there exists a better mapping for vi on another machine Mj ; (ii) vi has been remapped on the same
machineMi with a better or equal start time; or (iii) no better mapping was found. This last case means that a task with a higher
priority has been mapped on Mi and stc(vi) can no longer be guaranteed. In both cases, vi is set back to its original mapping,
which becomes definitive (lines 22-26). However, this decision may invalidate some of the migrations (e.g., the task with higher
priority mapped on Mi). Then, we cancel all the tentative mappings determined in this step (lines 28-32) and look for another
rearrangement of the remaining tasks.
Algorithm 2 ends when only migration decisions are taken during the current step. The level is then considered as fully

rearranged and the decided mappings become definitive.
The most significant operation in Algorithm 1 is the computation of the respective start times of the tasks. Then, given a

workflow composed of V tasks and a platform made of m VMs, the average complexity of our algorithm is O(V .m). In the first

6 TCHIMOU N’TAKPÉ ET AL

step (lines 1-7), the loop (lines 3-7) performs V iterations. At each iteration, we computem start times for the current task vi. The
complexity of this step is thus O(V .m). In the rearrangement step (lines 8-11), at each iteration, we compute in average V .m∕L
start times, where L is the number of levels in the workflow. Then the complexity of the rearrangement step is also O(V .m).

4 SIMULATION-DRIVEN SEARCHOFACOST-PERFORMANCEEFFICIENT SETOFVMS

The data-aware planning produced by Algorithms 1 and 2 minimizes the amount of data transferred over the network during
the execution of the workflow. However, the quality of that planning strongly depends on the set of multi-core virtual machines
given as input.
In this section, we present how to determine a set of virtual machines that achieves a good tradeoff between the execution

time of the workflow and the number of resources to rent to an IaaS cloud provider. To this end, we wrote a simulator based on
the the WRENCH project8,15, a CyberInfrastructure simulation framework that provides high-level simulation abstractions for
building accurate and scalable full-fledged simulators with minimal software development efforts. WRENCH is an open-source
C++ library composed of two layers: the core simulation models and base abstractions (computing, communicating, storing)
are provided by SimGrid16 on top of which services to simulate the execution of computational workloads (compute services,
storage services, network proximity services, data location services, etc.) are defined. By leveraging SimGrid’s accurate models
and their scalable implementations,WRENCH simulators can yield nearly identical behaviors when compared to actual systems.
Thanks to WRENCH, the time needed to build a data-aware planning and simulate its execution on a given set of virtual

machine instances is very low. The experiments detailed in the next section show that the simulation time ranges from 2.28 to
50.88 seconds, with an average of about 13.4 seconds. As the size of the workflow is fixed, the simulation time directly depends
on the number of cores in the virtual infrastructure. For a given total number of cores in the simulated infrastructure, we treat
the selection of the set of instances as a variation of the Change-making problem, and use a simple greedy algorithm for that.
Consequently, running an exhaustive set of simulations spanning all the possible numbers of cores from a minimal of two

(i.e., the smallest VM size) to one thousand (i.e., the number of tasks) and extracting the set of configurations on the Pareto
front could be done in an affordable time (less than an hour in our experiments), but that may also be greater then the actual
makespan of the workflow. Then, we propose a strategy to reduce the number of simulations needed to return a narrow set of
Pareto solutions to help the user to dimension the infrastructure.
We start by simulating the execution of the workflow on a configuration with as much cores as there are tasks composing

it. This run on an obviously oversubscribed configuration allows us to determine cmax, the maximal number of cores that can
be concurrently exploited. Then, we determine two important lower bounds. First, we simulate the execution of the workflow
on cmax cores in order to get an approximation of the minimum achievable execution time, Ecmax . Second, we simulate the
execution of the workflow on only two cores to get an approximation of the minimum cost, C2 (i.e., the price to pay for a 2-core
instance for the duration of the execution of the workflow). We use these two values to determine what could be good candidate
configurations for the execution of the workflow. Indeed, we arbitrarily assume that a good configuration should not degrade
Ecmax and C2 by more than a factor two or, more formally:

Ei ≤ 2 × Ecmax and Ci ≤ 2 × C2,
where Ei and Ci respectively are the execution time and cost of an execution on a configuration with i cores.
To identify the candidate configurations, we perform a binary search that stops either when there are no more configurations

to test or when we found two consecutive solutions that respect the condition above. During this binary search we also save the
number of cores that correspond to the first candidate solution found. It forms a second search space with the number of cores
for which the binary search stopped. Then we exhaustively simulate the execution of the workflow for all the number of cores
in this second search space.
Finally, we select the set of configurations to return to the user by determining the non-dominated solutions that compose

the Pareto front among the results of the exhaustive search. The two extreme configurations with two and cmax cores are also
returned to the user.

TCHIMOU N’TAKPÉ ET AL 7

5 EXPERIMENTAL EVALUATION

To evaluate our different contributions, we consider three workflow applications that are part of the PegasusWorkflowGallery17.
More precisely we use synthetic workflows, resembling those used by real world scientific applications but with a larger task
count, that are generated by theWorkflowGenerator Toolkit18. Themain characteristics of these applications are given in Table 2
and their structure depicted in Figure 1.

• Epigenomics: is a data processing pipeline to automate the execution of various genome sequencing operations;
• Cybershake: is an application of the Southern California Earthquake Center to characterize earthquake hazards;
• Montage: is an astronomy application that creates custom mosaics of the sky from multiple images.

TABLE 2 Some characteristics of used workflows.
Workflow #tasks input files size (GB) total files size (GB)

CyberShake 1000 150.76 400.39
Epigenomics 997 1217.72 1230.93
Montage 1000 0.65 17.32

(a) Epigenomics (b) CyberShake (c) Montage

FIGURE 1 Structure of the used workflows (http://pegasus.isi.edu).

The developed simulator relies on WRENCH 1.5-83d60eb which in turn depends on SimGrid 3.23.3-f2ae928. In our simula-
tions, we did not introduce stochastic parameters and we did not consider evolutionary algorithms which require multiple runs.
Thus, we did not repeat any simulation with the same input.

5.1 Impact of Virtual Machine Instance Sizes
We start this evaluation by assessing the impact of the size of virtual machine instances on execution time. For each workflow,
we consider infrastructures made of different numbers of physical hosts, each having 96 cores. For each number of physical
hosts, we then enforce the use of a given size of instance among those described in Table 1. We also consider an additional
setting in which only one core is used per VM and all the files are stored on the default Elastic Block Storage. This configuration
serves as a baseline and corresponds to simply scheduling the workflows with a classical list scheduling heuristic.
Figure 2 shows the evolution of the execution time of the studied workflows when we increase the number of physical hosts

in the computing infrastructure and make the size of the deployed instances vary. Here, we do not apply the rearrangement step
of the offline planning made with Algorithm 2 to measure the performance of the initial offline planning only.

8 TCHIMOU N’TAKPÉ ET AL

●
● ● ●

●

●

● ●

●

●
●

● ● ●
● ●

Montage

Epigenomics

CyberShake

2 4 6 8

1 2 3 4

1 2 3 4

1000

2000

3000

4000

5000

40000

50000

60000

70000

80000

400

450

500

550

Number of Physical Hosts

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

VM instance size ● 1 2 4 8 16 32 48 64 96

FIGURE 2 Evolution of workflow execution time with the size of VM instances and number of physical hosts. The offline
planning has not been rearranged.

We observe different behaviors for each of the three considered workflows. First, the number of physical hosts used has almost
no influence on the execution time for the CyberShake application while for Epigenomics, we observe a plateau from three
physical hosts. For Montage, the execution time decreases up to seven physical hosts. This evolution of the execution time is
directly related to the level of parallelism a workflow can exploit, i.e., how many tasks can be executed concurrently.
Second, we see that the execution time decreases when the size of the virtual machine instances grows, but that the improve-

ment becomes very limited for sizes above 32. More interestingly, we observe that for the CyberShake application, which
produces much more intermediate data than the two other workflows, relying on the local storage of small instances (i.e.,with up
to eight cores) leads to execution times worse than the solution with one core per VM where all the intermediate data are stored
on the EBS service. This is because using too many small VMs on a single host (i.e., up to 48 instances with two cores) increases
the number of data transfers between instances and cause contention on the network. Conversely, in the baseline configuration,
each VM benefits of a dedicated network connection to the shared storage service.

5.2 Impact of the Rearrangement Step and Comparison with HEFT
Figure 3 shows the impact of the rearrangement step on the execution time. For the Montage application, the structure of the
workflow is such that rearrangement has no influence on the offline planning hence neither on the execution time. For the two
other workflows, we can see that rearranging the offline planning to further reduce the amount of transfers over the network can
only improve the execution time. For the Epigenomics worflow , when the size of all the VM instances is 2, we can see a sudden
makespan reduction of 38%. Looking in detail at the results (i.e., to the total amount of file transfers), this important gain can
be explained by the fact that the rearrangement step avoid more files transfers for this platform configuration.
The observed improvement is more significant for small instances sizes. Changing the mapping of some tasks to favor local

storage effectively reduces the number of transfers over the network and thus the contention effects seen in Figure 2. For larger
instance sizes the impact of rearrangement is less important but still significant (above 5%) for CyberShake.

TCHIMOU N’TAKPÉ ET AL 9

●

●

●●

●

● ●

●

Epigenomics

CyberShake

1 2 3 4

1 2 3 4
−60.0%

−40.0%

−20.0%

0.0%

−40.0%

−30.0%

−20.0%

−10.0%

0.0%

Number of Physical Hosts

M
ak

es
pa

n
re

du
ct

io
n

fr
om

 r
ea

rr
an

ge
m

en
t

VM instance size ● 2 4 8 16 32 48 64 96

FIGURE 3 Impact of the rearrangement step on the execution time for different VM instance sizes.

Figure 4 shows a comparison of our algorithm including the rearrangement step (Algorithm 1) with the popular algorithm
HEFT13 which also aims to minimize the execution times of workflows. The results are similar to those of the comparison of
our algorithm with the version without the rearrangement step. It should be noted that HEFT and the first step of our algorithm
are quite similar. The difference is that in our algorithm, we do not take into account the communication costs when we compute
start times. Thus these results lead to the same conclusions as the previous ones. HEFT is outperformed when communication
times are not negligible because in13, the authors assumed that the target platform consists of a set q heterogeneous processors
connected in a fully connected topology in which all communications are performed without contention. HEFT is therefore not
suitable for all topologies of platforms.

●
●

●

●

● ● ●
●

Epigenomics

CyberShake

1 2 3 4

1 2 3 4

−60%

−40%

−20%

0%

−30%

−20%

−10%

0%

Number of Physical Hosts

M
ak

es
pa

n
re

du
ct

io
n

fr
om

 H
E

F
T

VM instance size ● 2 4 8 16 32 48 64 96

FIGURE 4 Comparison with HEFT for different VM instance sizes.

10 TCHIMOU N’TAKPÉ ET AL

5.3 Evaluation of the Pareto Front Solutions
The main objective of our algorithm is to help IaaS cloud users to find a good compromise between the execution time and the
execution cost of their workflow by selecting sets of VM instances on a Pareto front. In this section, we evaluate the quality of
the Pareto front solutions produced by our algorithm. In the previous sections, we showed that to minimize the execution time
for a fixed number of cores, the priority should be given to large VM instances. To get the Pareto front given by our algorithm,
we thus only have to run one simulation for each total number of cores and discard all the dominated solutions.
We compare this Pareto fronts to that obtained by a modified version of theMOHEFT algorithm proposed in19. The authors of

MOHEFT showed that their algorithm gave better results compared to competing algorithms. However, MOHEFT is originally
designed such that each task in the workflow uses all the cores of the VM on which it is scheduled. We modified MOHEFT so
that a VM instance can be shared by multiple sequential tasks.
MOHEFT starts by sorting all the tasks in the workflow by decreasing bottom level values. At each iteration i, MOHEFT

builds Pi solutions as extensions of the Pi−1 non-dominated solutions obtained at the previous iteration, by taking the itℎ task
into account. Among these Pi combinations, the algorithm keeps at most K solutions (K ≤ Pi). This prevents a combinatorial
explosion of the number of intermediate solutions found at the end of each iteration. If more than K solutions were produced,
MOHEFT sorts the remaining solutions by decreasing crowding distances20 and selects only the K first solutions.
In ourmodification ofMOHEFTwhere VMs are shared bymultiple tasks, wemay produce equivalent solutions. Two solutions

Si and Sj are equivalent if the same tasks are mapped together in differents but equivalent VMs with the same start times. At
each iteration, only one represent of such equivalent solutions is kept. Moreover, in all but last iterations, we only eliminate the
strictly dominated solutions. A solution Si is strictly dominated by a solution Sj if both the execution time and cost of Si are
strictly higher than those of Sj . This prevents us to eliminating intermediate solutions which can lead to good schedules. In the
last iteration we eliminate all the simply dominated solutions (i.e., only onemetric needs to be higher for the dominated solution).
Figures 5, 6, and 7 show the Pareto fronts produced by our algorithm compared to those produced by MOHEFT, after simula-

tions. Despite a highK value (We takeK = 2000) and a offline planning computation time of about ten hours for each workflow,
MOHEFT’s Pareto fronts are often dominated by those of our algorithm. Moreover, MOHEFT leads to less diversified solutions
despite the use of crowding distances to select the best candidates. Note that the offline planning of MOHEFT takes as input, in
addition to the workflow, a set of diverse VMs (i.e., a big platform) from which we can extract various platforms, and at most
(and very often) K solutions are produced in output to be simulated. In19, the authors showed that the complexity of MOHEFT
isO(K.V .m), wherem is the number of VMs in the big platforms and V is the number of tasks in the workflow.While MOHEFT
leads to about K simulations, our algorithm leads to cmax∕2 simulations.

●

●

●●
●

●●

●●
●

●
● ● ●

0.6

0.8

1.0

1.2

0 5000 10000 15000
Execution time (in seconds)

C
os

t (
in

 d
ol

la
rs

)

Algorithms ●● MOHEFT Our Approach

FIGURE 5 Pareto fronts for CyberShake.

TCHIMOU N’TAKPÉ ET AL 11

●

●

●

●

●
●●

●●●●● ● ● ● ●60

90

120

150

0 500000 1000000 1500000 2000000
Execution time (in seconds)

C
os

t (
in

 d
ol

la
rs

)

Algorithms ●● MOHEFT Our Approach

FIGURE 6 Pareto fronts for Epigenomics.

●
●●●●

●
●● ● ● ●

0

1

2

3

4

2000 4000 6000
Execution time (in seconds)

C
os

t (
in

 d
ol

la
rs

)

Algorithms ●● MOHEFT Our Approach

FIGURE 7 Pareto fronts for Montage.

5.4 Determination of a cost-performance efficient set of virtual machine instances
In what follows, we illustrate the functioning of the proposed simulation-driven determination of a cost-performance efficient set
of virtual machine instances. Table 3 shows the outcomes, for each of the considered workflows, of the first three simulations that
aim at determining the maximum degree of parallelism (Cmax), the execution time achieved when using this particular number
of cores (Ecmax), and the minimum cost a user would have to pay to execute the workflow on a single 2-core instance (C2).

TABLE 3 Outcomes of the first three simulations used to set up the simulation driven determination of a a cost-performance
efficient set of instances.

Workflow cmax Ecmax
C2

CyberShake 374 310.266s $0.463
Epigenomics 246 9h 31m 54s $61.17
Montage 662 375.45s $0.185

12 TCHIMOU N’TAKPÉ ET AL

The CyberShake and Montage applications can complete in about 5-6 minutes for a budget under one dollar. However, these
two applications requires multiple runs on different data sets to produce scientific results. Then, despite these short execution
time and low cost, optimizing one or both metrics is still interesting. Epigenomics has a much longer execution time of several
hours which implies a greater budget for a single execution, but also more room for optimization.
Figures 8, 9, and 10 show all the configurations that meet the condition of not degrading the best execution time and the

best cost by more than a factor of two respectively for the CyberShake, Epigenomics, and Montage applications. These figures
distinguish the configurations that are actually simulated during the binary and exhaustive searches (depicted by triangles) from
those that were ignored by our algorithm (depicted by circles). The larger (red) triangles and circles identify configurations
on the Pareto front, while the smaller (black) triangles and circles are the dominated solutions. Finally, the labels indicate the
respective number of cores of each configuration on the Pareto front. For the sake of readability, we only display the labels for
the simulated dominating solutions for the Epigenomics workflow.
For the CyberShake application (Fig. 8), the binary search starts at Cmax = 374 and stops at 128 after eight iterations. The first

encountered configuration that meets the required conditions has 94 cores. Then, we exhaustively simulate all the configurations
between 96 and 126 cores. Among these configurations, only three are on the Pareto front with respectively 96, 112, and 128
cores. We also see that our algorithm ignores three dominating configurations with 64, 144, and 160 cores. The one with 64
cores is clearly not a good candidate, as it leads to a much larger execution time. The two other ignored configurations are better
contenders and could have been returned to the user as well. With 160 cores, the execution time is reduced by 73 seconds for a
cost increase of $0.019 with regard to the best configuration returned by our algorithm with 128 cores.

●

●

160
128

112

96

64

●
●

● ●
●

●

●

●

●

●

●

0.6

0.7

0.8

0.9

400 500 600
Execution time (in seconds)

C
os

t (
in

 d
ol

la
rs

)

● Ignored
Tested

FIGURE 8 List of candidate configurations for the CyberShake workflow

For the Epigenomics application (Fig. 9), cmax = 246. The binary search only needs two iterations to find two consecutive
candidate configurations with 124 and 186 cores respectively. Then, 30 configurations have to be simulated in the exhaustive
search for candidates. Among these configurations, seven are on the Pareto front with respectively 166, 168, 170, 172, 174, 178
and 180 cores. Our algorithm ignores about 21 dominating configurations, all but one having less than 124 cores. However,
they cannot be considered as interesting for the user. Indeed, there is an important gain on the execution time when going from
124 to 170 cores (≈ 4.25 hours) for a cost increase of only $3. The last ignored configuration with 190 cores increases the cost
by almost $6 but reduces the execution time by less than 5 seconds with regard to the configuration with 180 cores that our
algorithm selects.
For the Montage application (Fig. 10), the selection is entirely done by the binary search. Starting from cmax = 662, it ends

by finding two consecutive candidate configurations with 32 and 34 cores. Then, there is no need for the exhaustive search part.
We can see in Figure 10 that only three configurations meet our initial requirements. Among them, our algorithm clearly favors
the reduction of the execution time. The selected configuration with 34 cores reduces the execution time by 55 seconds for an
extra cost of $0.02 compared to using 30 cores.

TCHIMOU N’TAKPÉ ET AL 13

●

●

●
●
●
●
●●●

●●
●●

●●
●

●
● ● ●

●

180

178
174 172

170

168
166

●

●

●

●
●
●
●
●

●
●

●
●
●
●
●
●

●
●

●

●

●

●
● ●

●
●

●

70

80

90

100

110

120

30000 40000 50000 60000
Execution time (in seconds)

C
os

t (
in

 d
ol

la
rs

)

● Ignored
Tested

FIGURE 9 List of candidate configurations for the Epigenomics workflow

●

34

32

30
0.345

0.350

0.355

0.360

0.365

700 720 740
Execution time (in seconds)

C
os

t (
in

 d
ol

la
rs

)

● Ignored
Tested

FIGURE 10 List of candidate configurations for the Montage workflow

Table 4 summarizes the number of simulations and the time needed to return a set of configurations to the user. We decompose
this time in three parts: (i) Init corresponds to the determination of cmax, Ecmax , and C2; (ii) Binary is the time spent in the binary
search; and (iii) Exhaustive sums up the duration of the runs in the exhaustive search.

TABLE 4 Number of simulations and time needed to return a set of VM instance configurations to the user.
Workflow # runs Init Binary Exhaustive Total

CyberShake 24 18.4s 74.3s 121s 213.7s
Epigenomics 35 35.1s 8.5s 142s 185.6s
Montage 12 106s 143.2s 0s 249.2s

The decomposition of this time to solution differs from one workflow to another but we are able to determine a suitable set
of configurations for all workflows in less than five minutes. The binary search for the Montage application ends by finding
two candidates that have respectively 32 and 34 cores. There is thus no need for an exhaustive search. The binary search for
Epigenomics stops after two iterations but let a large search space to cover (from 124 to 186 cores) making the exhaustive search
the most time-consuming part of our algorithm. However, it is composed of independent simulations that can be launched in
parallel to reduce the time to solution.

14 TCHIMOU N’TAKPÉ ET AL

TABLE 5 Reduction of volume of transferred data and execution time w.r.t. using the shared EBS service.
Reduction

Workflow # cores Data transfers Execution time

CyberShake
96 62.35% 10.79%
112 53.31% 7.45%
128 45.99% 8.68%

Epigenomics

166 0.91% 0%
168 0.91% 0%
170 0.91% 0%
172 0.91% 0%
174 0.91% 0%
178 0.91% 0%
180 0.91% 0%

Montage 32 96.22% 0.60%
34 89.02% 0.04%

We conclude this evaluation by measuring, for each of the configurations selected by the algorithm presented in Section 4,
the gain in terms of execution time and volume of data transferred over the network with regard to configurations made of the
same set of virtual machine instances but where all the files are stored on the EBS service. The results of this comparison are
given in Table 5.
The proposed data-aware planning allows for a significant reduction of the volume of data transferred over the network by

leveraging the fast storage offered by M5d instances for the CyberShake and Montage applications. Data movement is divided
by almost a factor two for CyberShake and four for Montage. The gain is, however, very limited for Epigenomics as most of the
data involved corresponds to the input files of the workflow. Part of this reduction of data transfers has an impact on execution
time for CyberShake which produces more intermediate files while Montage’s execution time is dominated by computation.

6 RELATEDWORK

While some studies on workflow scheduling algorithms aim at minimizing dynamic energy consumption21, scientific workflow
planning or scheduling algorithms that target IaaS clouds usually aim at finding the best compromise between the execution time
of the workflow and the number and type of virtual machine instances used for execution. Following the pay-as-you-go model of
the IaaS clouds, this amount of resources usually corresponds to a certain cost. A typical approach is to fix one of the objective
and thus consider it as a constraint, i.e., a delay22,23,24 or a budget25,26, and to optimize the other objective. Some articles directly
solve this bi-objective optimization problem by selecting a solution among those composing the Pareto front27,19,28. These
heuristics usually consist in variations of classical list scheduling and aim at finding a single solution with good properties. The
principles behind the Multi-Objective Heterogeneous Earliest FinishTime (MOHEFT) algorithm proposed in19 are very close
to those of the present work. MOHEFT is an extension of the seminal HEFT list heuristic13 that solves a bi-criteria optimization
problem. MOHEFT19 builds several intermediate workflow schedules in parallel in each step instead of a single schedule and
uses dominance relationships and crowding distance20 to ensure the diversity of tradeoff solutions. In their article, the authors
of MOHEFT obtain better results compared to competing algorithms from the literature. However, they consider that each
workflow that can use all the cores of the VM on which it is scheduled, while we keep the initial sequential nature of the tasks
composing the studied workflow. Moreover, we rely in this work on realistic simulations to assess the performance of multiple
solutions and provide the user with a limited set of candidates on the Pareto front.
Clustering several computational tasks together to execute them within a single virtual machine is another classical approach

in workflow planning. However, it is usually done to reduce the overhead associated to the execution of fine grain tasks with
short execution times29 or improve fault tolerance30. In this work, task clustering aims at improving data locality and reducing
the amount of data transfers.

TCHIMOU N’TAKPÉ ET AL 15

The optimization of data transfers during the scheduling of a data-intensive workflow has also been studied. The authors in31
propose an evolutionary algorithm minimizing the data transfer among tasks and the total execution time of the workflow. To
this end, output files are duplicated on a shared storage space and on the machine where it was produced. Tasks assigned on
a machine where some of their input files are located will thus spare a data transfer. In our work, we favor transfers between
VM instances rather than from the share storage space. In32, workflows are modeled as hypergraphs. The authors propose a
partitioning algorithms of these hypergraphs that minimizes the number of file transfers. Each partition is then assigned to a
VM instance. However, the authors do not consider any environment characteristics such as processing and storage capacity or
and transfer rates. Only the total size of all transferred files is used to evaluate the quality of a solution.
Leveraging the performance of fast SSD storage to handle the large amount of intermediate data produced by data-intensive

scientific workflows has been investigated for HPC infrastructures. Burst-buffers33 allow to reduce the stress on the parallel file
system of a supercomputer by positioning a non-volatile storage between the processor’s memory and the file system. Taking
advantage of this extra storage layer improves I/O performance34. A characterization of the I/O pattern that a workflow should
exhibit to benefit of burst buffers is given in35. In this work, we propose to see fast storage as an extra storage layer between
cores in a virtual machine and the shared block storage of an IaaS cloud.

7 CONCLUSION AND FUTUREWORK

Infrastructure as a Service Clouds now allows scientists to execute their data intensive workflows on tailored infrastructures that
match the computing and storage requirements of these applications. Determining the set of virtual machine instances that have
to compose these infrastructures is a complex tasks, usually delegated toWorkflowManagement Systems. A key to performance
is to be able to leverage the characteristics of virtual machines instances.
In this paper, we proposed an original data-aware planning algorithm that map tasks in a way that increases local storage

on fast SSD drives. We also proposed a simulation-driven approach to select a set of virtual machines instances by solving a
cost-performance optimization problem. We assessed the performance of the proposed algorithms on three popular scientific
workflows with different characteristics. The presented experimental results showed that our algorithm is capable to return
a narrow set of configurations to a user in a reasonable time. We also shown that for these configurations we were able to
significantly reduce the volume of data transferred over the network, which, for one of the considered workflows, translates into
a reduction of the execution time by 7 to 10% when compared to relying only on the shared Elastic Block Storage service to
store intermediate data.
As part of our future work, we plan to further improve the realism and speed of the simulator underlying this work by

leveraging the new features provided by the latest stable release ofWRENCH.Moreover, we would like to compare the simulated
executions with actual runs on the AWS computing cloud with M5d instances in order to confirm the impact of the proposed
algorithms. An interesting extension to this work would be to make the stopping conditions of the binary search configurable
parameters so that users can favor either a shorter execution time or a lowest cost. We also plan to investigate a complementary
approach where one of the objective is fixed, i.e., either a given budget or a fixed deadline.

ACKNOWLEDGMENTS

The authors would like to thank Rafael Ferreira da Silva, Henri Casanova, and all the WRENCH development team for their
valuable help in the design of the proposed WRENCH-based simulator.

References

1. Taylor I, Deelman E, Gannon D, Shields M. Workflows for e-Science: Scientific Workflows for Grids. Springer Publishing
Company, Incorporated . 2014.

2. Albrecht M, Donnelly P, Bui P, Thain D. Makeflow: a Portable Abstraction for Data Intensive Computing on Clusters,
Clouds, and Grids. Proc. of the 1st ACM SIGMODWorkshop on Scalable Workflow Execution Engines and Technologies
(SWEET@SIGMOD): Scottsdale, AZ. 2012.

16 TCHIMOU N’TAKPÉ ET AL

3. Deelman E, Vahi K, Juve G, et al. Pegasus, a Workflow Management System for Science Automation. Future Generation
Computing Systems 2015; 46: 17–35.

4. Fahringer T, Prodan R, Duan R, et al. ASKALON: A Development and Grid Computing Environment for Scientific
Workflows. Workflows for e-Science: 2007.

5. Amazon Elastic Compute Cloud (EC2) . https://aws.amazon.com/ec2/; . [Last Accessed in January 2020].
6. Google Compute Engine . https://cloud.google.com/compute; . [Last Accessed in July 2019].
7. Microsoft Azure . https://azure.microsoft.com/; . [Last Accessed in July 2019].
8. Ferreira da Silva R, Casanova H, Tanaka R, et al. Developing Accurate and Scalable Simulators of Production

Workflow Management Systems with WRENCH. Future Generation Computer Systems 2020; 112: 162–175. doi:
10.1016/j.future.2020.05.030

9. AWS M5 Instances . https://aws.amazon.com/ec2/instance-types/m5/; . [Last Accessed in January 2020].
10. Mathá R, Ristov S, Fahringer T, Prodan R. Simplified Workflow Simulation on Clouds based on Computation and

Communication Noisiness. IEEE Transactions on Parallel and Distributed Systems 2020; 31(7): 1559-1574. doi:
10.1109/TPDS.2020.2967662

11. Juve G, Chervenak A, Deelman E, Bharathi S, Mehta G, Vahi K. Characterizing and Profiling Scientific Workflows. Future
Generation Computer Systems 2013; 29(3): 682–692.

12. Gerasoulis A, Yang T. A Comparison of Clustering Heuristics for Scheduling Directed Acyclic Graphs on Multiprocessors.
Journal of Parallel and Distributed Computing 1992; 16(4): 276–291. doi: 10.1016/0743-7315(92)90012-C

13. Topcuoglu H, Hariri S, WuMY. Performance-Effective and Low-Complexity Task Scheduling for Heterogeneous Comput-
ing. IEEE Transactions on Parallel and Distributed Systems 2002; 13(3): 260–274. doi: 10.1109/71.993206

14. Mu’alem A, Feitelson D. Utilization, Predictability, Workloads, and User Runtime Estimates in Scheduling the IBM SP2
with Backfilling. IEEE Transactions on Parallel and Distributed Systems 2001; 12(6): 529–543.

15. The WRENCH Project. https://wrench-project.org; 2019.
16. Casanova H, Giersch A, Legrand A, Quinson M, Suter F. Versatile, Scalable, and Accurate Simulation of Distributed

Applications and Platforms. Journal of Parallel and Distributed Computing 2014; 74(10): 2899–2917.
17. Pegasus Workflow Gallery . http://pegasus.isi.edu; . [Last Accessed in July 2019].
18. Bharathi S, Chervenak A, Deelman E, Mehta G, Su MH, Vahi K. Characterization of Scientific Workflows. Proc. of the

Third Workshop on Workflows in Support of Large-Scale Science (WORKS): Austin, TX. 2008.
19. Durillo JJ, Prodan R. Multi-Objective Workflow Scheduling in Amazon EC2. Cluster computing 2014; 17(2): 169–189.
20. Deb K, Agrawal S, Pratap A, Meyarivan T. A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective

Optimization: NSGA-II. Proc. of the Intl. Conference on Parallel Problem Solving from Nature: Paris, France. 2000.
21. Shu T, Wu CQ. Energy-Efficient Mapping of Large-Scale Workflows Under Deadline Constraints in Big Data Computing

Systems. Future Generation Computer Systems 2020; 110: 515-530. doi: 10.1016/j.future.2017.07.050
22. Abrishami S, Naghibzadeh M, Epema DH. Deadline-Constrained Workflow Scheduling Algorithms for Infrastructure as a

Service Clouds. Future Generation Computer Systems 2013; 29(1): 158–169.
23. Arabnejad V, Bubendorfer K, Ng B, Chard K. A Deadline Constrained Critical Path Heuristic for Cost-Effectively

Scheduling Workflows. Proc. of the 8th IEEE/ACM Intl. Conf. on Utility and Cloud Computing: Limassol, Cyprus. 2015.
24. Wang ZJ, Zhan ZH, Yu WJ, et al. Dynamic Group Learning Distributed Particle Swarm Optimization for Large-Scale

Optimization and Its Application in Cloud Workflow Scheduling. IEEE Transactions on Cybernetics 2020; 50(6): 2715-
2729. doi: 10.1109/TCYB.2019.2933499

http://dx.doi.org/10.1016/j.future.2020.05.030
http://dx.doi.org/10.1016/j.future.2020.05.030
http://dx.doi.org/10.1109/TPDS.2020.2967662
http://dx.doi.org/10.1109/TPDS.2020.2967662
http://dx.doi.org/10.1016/0743-7315(92)90012-C
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1016/j.future.2017.07.050
http://dx.doi.org/10.1109/TCYB.2019.2933499

TCHIMOU N’TAKPÉ ET AL 17

25. Rezaeian A, Abrishami H, Abrishami S, Naghibzadeh M. A Budget Constrained Scheduling Algorithm for Hybrid Cloud
Computing Systems Under Data Privacy. Proc. of the 2016 IEEE Intl. Conference on Cloud Engineering (IC2E): Berlin,
Germany. 2016.

26. Shu T, Wu CQ. Performance Optimization of Hadoop Workflows in Public Clouds Through Adaptive Task Partitioning.
Proc. of the IEEE Conference on Computer Communications (INFOCOM): Atlanta, GA. 2017

27. Zhou X, Zhang G, Sun J, Zhou J, Wei T, Hu S. Minimizing Cost and Makespan for Workflow Scheduling in Cloud Using
Fuzzy Dominance Sort Based HEFT. Future Generation Computer Systems 2019; 93: 278–289.

28. Chen ZG, Zhan ZH, Lin Y, et al. Multiobjective Cloud Workflow Scheduling: A Multiple Populations Ant Colony System
Approach. IEEE Transactions on Cybernetics 2019; 49(8): 2912-2926. doi: 10.1109/TCYB.2018.2832640

29. ChenW, Ferreira da Silva R, Deelman E, Sakellariou R. Using Imbalance Metrics to Optimize Task Clustering in Scientific
Workflow Executions. Future Generation Computer Systems 2015; 46: 69–84. Funding Acknowledgements: NSF IIS-
0905032 and NSF FutureGrid 0910812doi: 10.1016/j.future.2014.09.014

30. Chen W, Ferreira da Silva R, Deelman E, Fahringer T. Dynamic and Fault-Tolerant Clustering for Scientific Workflows.
IEEE Transactions on Cloud Computing 2016; 4(1): 49–62. Funding Acknowledgements: NSF IIS-0905032, NSF ACI
SI2-SSI 1148515, and NSF FutureGrid 0910812doi: 10.1109/TCC.2015.2427200

31. Szabo C, Sheng QZ, Kroeger T, Zhang Y, Yu J. Science in the Cloud: Allocation and Execution of Data-Intensive Scientific
Workflows. Journal of Grid Computing 2014; 12(2): 245–264.

32. Çatalyürek Ü, Kaya K, Uçar B. Integrated Data Placement and Task Assignment for Scientific Workflows in Clouds. Proc.
of the fourth international workshop on Data-intensive distributed computing: San Jose, CA. 2011.

33. Wang T, Mohror K, Moody A, Sato K, Yu W. An Ephemeral Burst-Buffer File System for Scientific Applications. Proc. of
the Intl. Conference for High Performance Computing, Networking, Storage and Analysis, (SC): Salt Lake City, UT. 2016.

34. Ferreira da Silva R, Callaghan S, Deelman E. On the Use of Burst Buffers for Accelerating Data-Intensive Scientific
Workflows. Proc. of the 12th Workshop on Workflows in Support of Large-Scale Science (WORKS): Denver, Co. 2017

35. Daley C, Ghoshal D, Lockwood G, Dosanjh S, Ramakrishnan L, Wright N. Performance Characterization of Scientific
Workflows for the Optimal Use of Burst Buffers. Proc. of the 11th Workshop on Workflows in Support of Large-Scale
Science (WORKS): Salt Lake City, UT. 2016.

http://dx.doi.org/10.1109/TCYB.2018.2832640
http://dx.doi.org/10.1016/j.future.2014.09.014
http://dx.doi.org/10.1109/TCC.2015.2427200

	Data-Aware and Simulation-Driven Planning of Scientific Workflows on IaaS Clouds
	Abstract
	Introduction
	Platform and Application Models
	Data-Aware Planning of Workflow Tasks
	Simulation-driven Search of a Cost-Performance Efficient Set of VMs
	Experimental Evaluation
	Impact of Virtual Machine Instance Sizes
	Impact of the Rearrangement Step and Comparison with HEFT
	Evaluation of the Pareto Front Solutions
	Determination of a cost-performance efficient set of virtual machine instances

	Related Work
	Conclusion and Future Work
	Acknowledgments
	References

