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Abstract
Our knowledge on species and function composition of the human gut microbiome is rapidly
increasing, but it is still based on very few cohorts and little is known about their variation across
the world. Combining 22 newly sequenced fecal metagenomes of individuals from 4 countries
with previously published datasets, we identified three robust clusters (enterotypes hereafter) that
are not nation or continent-specific. We confirmed the enterotypes also in two published, larger
cohorts suggesting that intestinal microbiota variation is generally stratified, not continuous. This
further indicates the existence of a limited number of well-balanced host-microbial symbiotic
states that might respond differently to diet and drug intake. The enterotypes are mostly driven by
species composition, but abundant molecular functions are not necessarily provided by abundant
species, highlighting the importance of a functional analysis for a community understanding.
While individual host properties such as body mass index, age, or gender cannot explain the
observed enterotypes, data-driven marker genes or functional modules can be identified for each
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of these host properties. For example, twelve genes significantly correlate with age and three
functional modules with the body mass index, hinting at a diagnostic potential of microbial
markers.

Introduction
Various studies of the human intestinal tract microbiome. based on the 16S ribosomal RNA-
encoding gene, reported species diversity within and between individuals1-3 and first
metagenomics studies characterized the functional repertoire of the microbiomes of several
American4-5 and Japanese6 individuals. Although a general consensus about the phylum
level composition in the human gut is emerging1,3,7, the variation in species composition1-2

and gene pools5,8 within the human population is less clear. Furthermore, it is unknown
whether inter-individual variation manifests itself as a continuum of different community
compositions or whether individual gut microbiota congregate around some preferred,
balanced and stable community compositions that can be classified. Studying such questions
is complicated by the complexity of sampling, DNA preparation, processing, sequencing
and analysis protocols9 as well as by varying physiological, nutritional and environmental
conditions. To analyze the feasibility of comparative metagenomics of the human gut across
cohorts and protocols and to obtain first insights in commonalities and differences between
gut microbiomes across different populations, we Sanger-sequenced 22 European
metagenomes from Danish, French, Italian and Spanish individuals that were selected for
diversity (Supplementary Notes Section 1), and combined them with existing Sanger (13
Japanese6, 2 American4) and 454 (2 American5) gut datasets – totaling 39 individuals.

Global phylogenetic and functional variation of intestinal metagenomes
The vast majority of sequences in the newly sequenced 22 European samples belong to
bacteria – only 0.14% of the reads could be classified as human contamination, all other
eukaryotes together only comprised 0.5%, archaea 0.8% and viruses up to 5.8% (see
Supplementary Notes Section 2.1 for details).

To investigate the phylogenetic composition of the 39 samples from 6 nationalities, we
mapped metagenomic reads, using DNA sequence homology, to 1511 reference genomes
(Supplementary Table 3) including 379 publicly available human microbiome genomes
generated through the NIH Human Microbiome Project10 and the European MetaHIT
consortium11 (Supplementary Methods Section 4.1). To consistently estimate the functional
composition of the samples, we annotated the predicted genes from the metagenomes using
eggNOG12 orthologous groups (Supplementary Methods Section 6.2). We ensured that
comparative analysis using these procedures was not biased by dataset origin, sample
preparation, sequencing technology and quality filtering (see Supplementary Notes Section
1). We also investigated whether the relatively low and somewhat arbitrary amounts of
sequence per sample (between 53-295 Mb) bias our results: we assigned habitat information
to 1368 out of the 1511 reference genomes, distinguished between orthologous groups from
gut and non-gut species and conclude that our dataset captures most of the functions from
gut species even though functions from ‘non-gut’ species still accumulated with each
additional sample (Fig. 1a; see Supplementary Notes Section 1.3).

We then characterized the phylogenetic variation across samples at the genus and phylum
levels, and functional variation at gene and functional class levels. As infants are known to
have very heterogeneous, unstable and distinctive microbiota6,13, we excluded the four
respective Japanese samples from the analysis. Using calibrated similarity cutoffs
(Supplementary Figure 1), on average, 52.8% of the fragments in each sample could be
robustly assigned to a genus in our reference genome set (ranging from 22% to 80.5%), and
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80% could be assigned to a phylum (ranging from 64.9% to 91%) implying that the trends
observed (Fig. 1b) represent a large fraction of the metagenome.

The phylogenetic composition of the newly sequenced samples confirms that the Firmicutes
and Bacteroidetes phyla constitute the vast majority of the dominant human gut microbiota7

(Fig. 1b, inset). Bacteroides was the most abundant but also most variable genus across
samples (Fig. 1b; Supplementary Notes Section 2.2), agreeing with previous
observations6,14. Our function identification protocol led to a high functional assignment
rate: 63.5% of all predicted genes in the Sanger-sequenced samples analyzed (41% of all
predicted genes in two samples obtained by pyrosequencing; Supplementary Table 5) can be
assigned to orthologous groups (OGs), and OG abundance patterns again agree with
previous observations6,15 (e.g. histidine kinases make up the largest group; Fig 1c;
Supplementary Notes Section 2.3).

Highly abundant functions from low-abundance microbes
Microbes in the human gut undergo selective pressure from the host as well as from
microbial competitors. This typically leads to a homeostasis of the ecosystem in which some
species occur in high and many in low abundance16 (the “long-tail” effect, as seen in Fig.
1b), with some low-abundance species, like methanogens17, performing specialized
functions beneficial to the host. Metagenomics enables us to study the presence of abundant
functions shared by several low-abundance species, which could shed light on their survival
strategies in the human gut. In the samples analyzed here, the most abundant molecular
functions generally trace back to the most dominant species. However, we identified some
abundant orthologous groups that are contributed primarily by low abundance genera (see
Supplementary Figure 2, Supplementary Table 6 and Supplementary Notes Section 3). For
example, low abundance Escherichia contribute over 90% of two abundant proteins
associated with bacterial pilus assembly, FimA (COG3539) and PapC (COG3188), found in
one individual (IT-AD-5). Pili enable the microbes to colonize the epithelium of specific
host organs; they help microbes to stay longer in the human intestinal tract by binding to the
human mucus or mannose sugars present on intestinal surface structures18. They are also
key components in the transfer of plasmids between bacteria through conjugation, often
leading to exchange of protective functions such as antibiotic resistance18. Pili can thus
provide multiple benefits to these low-abundance microbes in their efforts to survive and
persist in the human gut. This example illustrates that abundant species or genera cannot
reveal the entire functional complexity of the gut microbiota. More reference genomes will
facilitate better taxonomic assignments from samples and thus the detection of more low
abundance species. However, there is not much room for as yet undetected, abundant
genera. Even with our limited genus assignment rate of 52.8% of all reads, we estimate that
we miss another 30.7% of the already classified genera due to our strict assignment criteria
(Supplementary Figure 1), i.e. only 16.5% of all reads are likely to belong to hitherto
unknown genera.

Robust clustering of samples across nations: Identification of enterotypes
To get an overview of the species variation we used phylogenetic profile similarities
obtained by mapping metagenomic reads to the 1511 reference genomes (Fig. 2a, see
Supplementary Methods Section 4.1). We excluded the two American Sanger-sequenced
samples4 from further analysis because of an unusual, very low fraction of Bacteroidetes,
and suspected technical artifacts19. Multidimensional cluster analysis and Principal
Component Analysis (PCA) revealed that the remaining 33 samples formed three distinct
clusters which we designate enterotypes (see Supplementary Notes Section 4.1,
Supplementary Figure 3a and Supplementary Table 8). Each of these three enterotypes are
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identifiable by the variation in the levels of one of three genera: Bacteroides (enterotype 1),
Prevotella (enterotype 2) and Ruminococcus (enterotype 3; Fig. 2a and 2d), which was
reproduced using independent array-based HITChip20 data in a subset of 22 European
samples (Supplementary Figure 4 and Supplementary Notes Section 4.5). The same analysis
on two larger published gut microbiome datasets of different origins (16S pyrosequencing
data from 154 American individuals5 and Illumina-based metagenomics data from 85
Danish individuals8, Supplementary Methods Section 5) shows that these datasets could also
be represented best by three clusters (Supplementary Figure 3b and c, Supplementary Table
9 and Supplementary Table 10). Two of these are also driven by Bacteroides and Prevotella,
while the third cluster is mostly driven by related groups of the order Clostridiales, Blautia
and unclassified Lachnospiraceae in the 16S rDNA and Illumina data, respectively (Fig. 2b
and 2c). This can be explained by a different reference data set in case of 16S rDNA data,
different mapping behavior of short reads in case of the Illumina data or current taxonomic
uncertainties in the Lachnospiraceae and Ruminococcaceae clades (see Supplementary
Notes Section 4.2). The differences might also hint at community subpopulations within this
enterotype, which might only be detectable with substantially more samples. Correlation
analysis of the Sanger data revealed that abundances of each of the three discriminating
genera strongly correlate (that is they co-occur or avoid each other) with those of other
genera (Fig. 2d; see Supplementary Methods Section 11), suggesting that the enterotypes are
in fact driven by groups of species that together contribute to the preferred community
compositions.

We further demonstrate the robustness of the enterotypes using two distinct statistical
concepts. First we used the silhouette coefficient21 to validate that the three clusters are
superior to clusterings obtained from various randomizations of the genus profile data,
suggesting a potential role for the interactions between co-occurring genera (see
Supplementary Figure 5 and Supplementary Notes Section 4.3). Second we used supervised
learning and cross validation to establish that these clusters have non-random characteristics
that can be modeled and subsequently used to classify new samples (learning on clusters
from randomized genus profiles led to considerably worse classification performance; see
Supplementary Figure 6 and Supplementary Notes Section 4.4). These consistent results
suggest that enterotypes will be identifiable in human gut metagenomes also from larger
cohorts.

We then clustered the 33 samples using a purely functional metric: the abundance of the
assigned orthologous groups (Fig. 3a). Remarkably, this clustering also showed a similar
grouping of the samples with only minor differences (5 samples placed in different clusters
compared to Fig. 2a) indicating that function and species composition roughly coincide with
some exceptions such as Spanish sample ES-AD-3 whose genus composition belongs to
enterotype 2 while its functional composition is similar to members of enterotype 1. This
individual has high levels of phage-related genes compared to the other samples (see
Supplementary Figure 7), hinting at partial temporal variability and dynamics of the
microbiota, and perhaps indicating phage or virus bursts.

The robustness and predictability of the enterotypes in different cohorts and at multiple
phylogenetic and functional levels suggests that they are the result of well-balanced, defined
microbial community compositions of which only a limited number exist across individuals.
These enterotypes are not as sharply delimited as, for example, human blood groups; they
are rather densely populated areas in a multidimensional space of community composition.
They are nevertheless likely to characterize individuals, in line with previous reports that gut
microbiota is rather stable in individuals and can even be restored after perturbation22-25.
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Phylogenetic and functional variation between enterotypes
To determine the phylogenetic and functional basis of the enterotypes, we investigated in
detail their differences in composition at the phylum, genus, gene and pathway level as well
as correlations in abundance of co-occurring genera (Figs. 2 and 3; also see Supplementary
Methods Sections 10, 11 and 12). Enterotype 1, containing 8 samples, is enriched in
Bacteroides (p<0.01; Supplementary Figure 8), which co-occurs, for example, with
Parabacteroides (see Supplementary Table 11 for enriched genera and Fig. 2e for correlation
networks of co-occurring genera in each enterotype). The drivers of this enterotype seem to
derive energy primarily from carbohydrates and proteins through fermentation, since these
closely related genera have a very broad saccharolytic potential26 and since genes encoding
enzymes involved in the degradation of these substrates (galactosidases, hexosaminidases,
proteases) along with glycolysis and pentose phosphate pathways are enriched in this
enterotype (see Supplementary Table 12 and Supplementary Table 13). Enterotype 2
contains 6 samples and is enriched in Prevotella (p<0.01; Supplementary Figure 9) and the
co-occurring Desulfovibrio, who can act in synergy to degrade mucin glycoproteins present
in the mucosal layer of the gut: Prevotella is a known mucin-degrader and Desulfovibrio
could enhance the rate-limiting mucin desulfation step by removing the sulfate27. Enterotype
3 is the most frequent one and is enriched in Ruminococcus (p<0.01; Supplementary Figure
10) as well as co-occurring Akkermansia, both known to comprise species able to degrade
mucins28. It is also enriched in membrane transporters, mostly of sugars, suggesting the
efficient binding of mucin and its subsequent hydrolysis as well as uptake of the resulting
simple sugars by these genera. The enriched genera suggest that enterotypes employ
different routes to generate energy from fermentable substrates available in the colon
reminiscent of a potential specialization in ecological niches or guilds. In addition to the
conversion of complex carbohydrates into absorbable substrates, the gut microbiota is also
beneficial to the human host by producing vitamins. Although all the vitamin metabolism
pathways are represented in all samples, enterotypes 1 and 2 were enriched in biosynthesis
of different vitamins: biotin (Fig. 3b), riboflavin, pantothenate and ascorbate in the former,
and thiamine (Fig. 3c) and folate in the latter. These phylogenetic and functional differences
among enterotypes thus reflect different combinations of microbial trophic chains with a
likely impact on the synergistic inter-relations with the human hosts.

Functional biomarkers for host properties
Enterotypes do not seem to differ in functional richness (Supplementary Figure 11), and
virtually none of several measured host properties, namely nationality, gender, age or body
mass index (BMI), significantly correlates with the enterotypes (with the exception of
enterotype 1 which is enriched in Japanese individuals). However, some strong correlations
do occur between host properties and particular functions, at the genes or module level (a
module is a part of a pathway that is functionally tightly interconnected, see Supplementary
Methods Sections 6.3, 13 and Supplementary Notes Section 6). The only significant
correlation between a host property and a taxonomic group is a negative one between age
and the abundance of an unknown Clostridiales genus (p<0.02) containing three obligate
anaerobes (Supplementary Figure 12a; see Supplementary Notes Section 6.2). It should be
noted that age is not constant across the nationalities (in our dataset, Italians are relatively
old and Japanese young), but that individuals did not stratify by nationality, suggesting that
this is not a confounding factor. Our data did not reveal any correlation between BMI and
the Firmicutes/Bacteroidetes ratio and we thus cannot contribute to the ongoing debate on
the relation between this ratio and obesity29-30.

In contrast to the little phylogenetic signal, we found several significant functional
correlations with each of the host properties studied (after correcting for multiple testing to
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avoid artifacts; see Supplementary Methods Section 13), suggesting that metagenomics-
derived functional biomarkers might be more robust than phylogenetic ones. For example,
the abundance of 10 orthologous groups (OGs) varies more between than within
nationalities (Supplementary Table 14) although overall, the functional composition in total
was remarkably similar among the nations (also with respect to the functional core; see
Supplementary Figure 13). For gender, we find five functional modules and one OG that
significantly correlate (p<0.05; e.g., enriched aspartate biosynthesis modules in males; see
Supplementary Table 16). In addition, twelve OGs significantly correlate with age
(Supplementary Table 17). For instance, starch degradation enzymes such as glycosidases
and glucan phosphorylases increase with age (which could be a reaction to decreased
efficiency of host breakdown of dietary carbohydrates with age31) and so does the secA
preprotein translocase (Supplementary Figure 14). Conversely, an OG coding for the
facultative sigma-24 subunit of RNA polymerase, which drives expression under various
stress responses and is linked to intestinal survival32, decreases with age (Fig. 4a). One
explanation for this could be the reduced need for stress response in the gut due to the age-
associated decline in host immune response33 (immunosenescence). Our analyses also
identified three marker modules that correlate strongly with the hosts’ BMI (Supplementary
Table 19, Supplementary Figure 14), two of which are ATPase complexes, supporting the
link found between the gut microbiota’s capacity for energy harvest and host’s obesity34.
Interestingly, functional markers found by a data-driven approach (derived from the
metagenomes without previous knowledge) gave much stronger correlations than genes for
which a link would be expected (e.g. SusC/SusD, involved in starch utilization26; Fig. 4b).
Linear models combining the abundance of only a few functional modules correlate even
better with host properties (Fig 4c,d). It should be noted that given the possibility of many
confounding variables due to the heterogeneity and size of our cohort, these observations
will need to be substantiated using larger, independent cohorts in the future. Furthermore,
patterns in metagenomics data can (partly) reflect indirect factors9 such as genome size35

(the smaller the average genome size of a sample, the higher would be the relative fraction
of single copy genes therein), which does not matter for diagnostics though.

While individual host properties don’t explain the enterotypes, the latter might be driven by
a complex mixture of functional properties, by host immune modulation or by hitherto
unexplored physiological conditions such as transit time or pH of luminal contents.
Furthermore, the three major enterotypes could be triggered by the three distinct pathways
for hydrogen disposal36 (Supplementary Notes Section 6.4). Indeed, despite their low
abundance, Methanobrevibacter (a methanogen) and Desulfovibrio (a known sulfate-
reducer) are enriched in enterotypes 3 and 1, respectively.

Taken together, we have demonstrated the existence of enterotypes in the human gut
microbiome and have identified three of them that vary in species and functional
composition using data that spans several nations and continents. As our current data do not
reveal which environmental or even genetic factors are causing the clustering, and as fecal
samples are not representative of the entire intestine, we anticipate that the enterotypes
introduced here will be refined with deeper and broader analysis of individuals’
microbiomes. Presumably, enterotypes are not limited to humans but also occur in animals.
Their future investigations might well reveal novel facets of the human and animal
symbiotic biology and lead to the discovery of the microbial properties correlated with the
health status of individuals. We anticipate that they might allow classification of human
groups that respond differently to diet or drug intake. The enterotypes appear complex, are
probably not driven by nutritional habits and cannot simply be explained by host properties
such as age or BMI, although there are functional markers such as genes or modules that
correlate remarkably well with individual features. The latter might be utilizable for
diagnostic and perhaps even prognostic tools for numerous human disorders, for instance
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colorectal cancer and obesity-linked co-morbidities such as metabolic syndrome, diabetes
and cardio-vascular pathologies.

Methods summary
Sample collection

Human fecal samples from European individuals were collected and frozen immediately,
and DNA was purified as described previously37.

Sequencing
Random shotgun DNA libraries of 3kb were Sanger-sequenced using standard protocols
established at Genoscope.

Sequence processing
Cloning vector, sequencing primers and low quality bases were end-trimmed from raw
Sanger reads, and possible human DNA sequences were removed. Reads were processed by
the SMASH comparative metagenomics pipeline38 for assembly and gene prediction.

Phylogenetic annotation
Phylogenetic annotation of samples was performed by (1) aligning reads (Sanger/Illumina)
against a database of 1511 reference genomes (listed in Supplementary Table 3) or (2)
classifying 16S rDNA reads using RDP classifier39. Genus and phylum abundance was
estimated after normalizing for genome size for the former, and for 16S gene copy number
for the latter.

Functional annotation
Genes were functionally annotated using BLASTP against eggNOG (v2) and KEGG (v50)
databases. Protein abundances were estimated after normalizing for protein length.
Functional abundance profiles at eggnog-, KEGG orthologous group-, functional module-
and pathway-level were created.

Clustering and classification
Samples were clustered using Jensen-Shannon distance and partitioning around medoid
(PAM) clustering. Optimal number of clusters was estimated using Calinski-Harabasz (CH)
index. We used the silhouette validation technique for assessing the robustness of clusters.
Additionally, within a cross-validation scheme, we trained predictive decision tree models
on clusters obtained using the same clustering method and evaluated the classification of
hold-out samples by accuracy, average precision and average precision gain.

Statistics
Correlations between metadata and feature abundances were computed as described
previously40, based on multiple-testing corrected pairwise Spearman correlation analysis
and stepwise regression for multi-feature model building. For categorical metadata and
enterotype comparisons, samples were pooled into bins (male/female, obese/lean, one
enterotype/rest, specific nationality/rest etc.) and significant features were identified using
Fisher’s exact test with multiple testing correction of p-values.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Functional and phylogenetic profiles of human gut microbiome
(a) Simulation of the detection of distinct orthologous groups (OGs) when increasing the
number of individuals (samples). Complete genomes were classified by habitat-information
and the OGs divided into those that occur in known gut-species (red) and those that have not
yet associated to gut (blue). The former are close to saturation when sampling 35 individuals
(excluding infants) whereas functions from non-gut (probably rare and transient) species are
not. (b) Genus abundance variation box plot for the 30 most abundant genera as determined
by read abundance. Genera are colored by their respective phylum (see inset for color key).
Inset: phylum abundance box plot. Genus and phylum level abundances were measured
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using reference genome based mapping with 85% and 65% sequence similarity cutoffs.
Unclassified genera under a higher rank are marked by asterisks. (c) Orthologous group
(OG) abundance variation box plot for the 30 most abundant OGs as determined by
assignment to eggNOG12. OGs are colored by their respective functional category (see inset
for color key). Inset: abundance box plot of 24 functional categories.
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Fig. 2. Phylogenetic differences between enterotypes
Between class analysis, which visualizes results from Principal Component Analysis and
clustering, of the genus compositions of (a) 33 Sanger metagenomes estimated by mapping
the metagenome reads to 1511 reference genome sequences using an 85% similarity
threshold, (b) Danish subset containing 85 metagenomes from a published Illumina dataset8

and (c) 154 pyrosequencing-based 16S sequences5 reveal three robust clusters that we call
enterotypes. Two principal components are plotted using the ade4 package in R with each
sample represented by a filled circle. The center of gravity for each cluster is marked by a
rectangle and the colored ellipse covers 67% of the samples belonging to the cluster. (d)
Abundances of the main contributors of each enterotype from the Sanger metagenomes. (e)
Co-occurrence networks of the three enterotypes from the Sanger metagenomes.
Unclassified genera under a higher rank are marked by asterisks in (b) and (e).
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Fig. 3. Functional differences between enterotypes
(a) Between class analysis (see Fig. 2) of orthologous group (OG) abundances showing only
minor disagreements with enterotypes (transparent circles indicate the differing samples).
The blue cloud represents the local density estimated from the coordinates of OGs; positions
of selected OGs are highlighted. (b) Four enzymes in the biotin biosynthesis pathway
(COG0132, COG0156, COG0161 and COG0502) are overrepresented in enterotype 1. (c)
Four enzymes in the thiamine biosynthesis pathway (COG0422, COG0351, COG0352 and
COG0611) are overrepresented in enterotype 2. (d) Six enzymes in the heme biosynthesis
pathway (COG0007, COG0276, COG407, COG0408, COG0716 and COG1648) are
overrepresented in enterotype 3.
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Fig. 4. Correlations with host properties
(a) Pairwise correlation of RNA polymerase facultative sigma24 subunit (COG1595) with
age (p=0.03, rho=−0.59). (b) Pairwise correlation of SusD, a family of proteins that bind
glycan molecules before they are transported into the cell, and body mass index (p=0.27,
rho=−0.29, weak correlation). (c) Multiple OGs (COG0085, COG0086, COG0438 and
COG0739; see Supplementary Table 18) significantly correlating with age when combined
into a linear model (see Supplementary Methods Section 13 and ref. 40 for details; p=
2.75e-05, adjusted R2=0.57). (d) Two modules, ATPase complex and ectoine biosynthesis
(M00051), significantly correlating with BMI when combined into a linear model (p=
6.786e-06, adjusted R2=0.82).
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