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Abstract

Cluster-level inference procedures are widely used for brain mapping. These methods compare the size of clusters obtained by
thresholding brain maps to an upper bound under the global null hypothesis, computed using Random Field Theory or permutations.
However, the guarantees obtained by this type of inference - i.e. at least one voxel is truly activated in the cluster - are not informative
with regards to the strength of the signal therein. There is thus a need for methods to assess the amount of signal within clusters; yet
such methods have to take into account that clusters are defined based on the data, which creates circularity in the inference scheme.
This has motivated the use of post hoc estimates that allow statistically valid estimation of the proportion of activated voxels in
clusters. In the context of fMRI data, the All-Resolutions Inference framework introduced in [25] provides post hoc estimates of
the proportion of activated voxels. However, this method relies on parametric threshold families, which results in conservative
inference. In this paper, we leverage randomization methods to adapt to data characteristics and obtain tighter false discovery
control. We obtain Notip, for Non-parametric True Discovery Proportion control: a powerful, non-parametric method that yields
statistically valid guarantees on the proportion of activated voxels in data-derived clusters. Numerical experiments demonstrate
substantial gains in number of detections compared with state-of-the-art methods on 36 fMRI datasets. The conditions under which
the proposed method brings benefits are also discussed.
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1. Introduction

The mapping of the human brain consists of associating
regions of the brain with cognitive functions or disorders. This
is important both for basic neuroscience, e.g. the understand-
ing of brain function, and medical applications, as it allows
to identify regions that carry disease-related signal. The most
popular modality to map brain function is functional Magnetic
Resonance Imaging (fMRI), as it is non-invasive and offers
decent spatial resolution (about 2mm isotropic) and full brain
coverage.

FMRI data are sampled on a discrete 3D lattice and subject
to various preprocessing steps [11], resulting in a set of voxels

that contain a signal that reflects brain activity. After suitable
statistical analysis, relevant brain territories can be reported.
More precisely, practitioners define a contrast, that is, a lin-
ear combination of a set of images, typically corresponding
to the comparison between two or more conditions or groups
of participants, and seek to test hypotheses H0,i: "Voxel i is
inactive for this contrast", meaning that it does not show any

effect for the selected contrast, versus H1,i: "Voxel i is active

for this contrast". This statistical problem entails a dire multi-
ple testing issue as described in [12], as standard fMRI images
comprise between 50k and 400k voxels (growing to millions
with the development of high-resolution imaging).

In this context, if multiplicity is not accounted for, the
number of false discoveries is unacceptably high. In other
words, mere voxel-wise type 1 error control is not appropri-
ate in the context of multiplicity. Family-Wise Error Rate
(FWER) control can be used in this setting [12] but it is con-
servative, resulting in false negatives, which hurts reproducibil-
ity (see e.g. [28, 8]). A more powerful and commonly used
approach is to control the False Discovery Rate (FDR) [14],
which is systematically done using Benjamini-Hochberg pro-
cedure [3]. A caveat to this approach is that the FDR actu-
ally corresponds to the expected False Discovery Proportion
(FDP). The FDP is the proportion of false discoveries among
all discoveries. As noted by several authors [13, 17, 21], FDR
control does not guarantee FDP control.
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An alternative type of inference to increase statistical power
is to perform inference at cluster-level, rather than voxel-level
[23], because brain activation is organised in compact regions
(clusters) in the brain volume. This type of inference tests
whether regions above a given threshold are larger than ex-
pected under the null hypothesis, or whether the total amount
of signal in these regions [27] exceeds its expected value un-
der a null distribution. However, this approach suffers from
several problems [9], such as the arbitrary choice of cluster-
forming threshold [31], or the difficulty to establish a null dis-
tribution for cluster size and aggregated signal. To address this
last issue, reliable non-parametric solutions have been pro-
posed [30, 9]. However, the arbitrariness regarding cluster-
forming threshold is hard to deal with. To overcome it, one
may define such clusters or regions, and then assess the pro-
portion of active voxels in each region, i.e the True Discovery
Proportion, TDP = 1 - FDP. Such a region of interest could
be defined a priori, using an anatomical atlas, or a posteriori,
based on the fMRI data. For instance, one might wonder what
is the proportion of active regions in a blob, i.e. a contiguous
set of statistical values that are higher than the image back-
ground. Yet, such a definition of the clusters after seeing the
data raises a double-dipping issue, which can lead to massive
false positive inflation [18].

To illustrate this statistical bias, let us consider a classical
example of invalid post-selection inference. Users often per-
form a first round of tests to identify potentially interesting re-
gions (i.e., regions comprising significant signal). If inference
is performed only on smallest p-values obtained at this first
round, then the FDP is not controlled, as shown in [7]. To by-
pass this double-dipping issue, one can use post hoc estimates
that control the FDP. Note that an upper bound on the FDP is
equivalent to a lower bound on the TDP. The first method of
that kind is a parametric method called All-resolutions infer-
ence (ARI) [25].

In this paper, we introduce the Notip procedure, that adapts
non-parametrically to data correlation . The use of non-parametric
procedures also renders the inference robust to mis-specification
of the statistics distribution. We study whether such a pro-
cedure can yield less conservative inference while offering
the same statistical guarantees. We perform extensive exper-
iments on dozens of fMRI datasets to compare the number

of detections obtained by this approach with that of existing
methods.

The paper is organized as follows. In Section 2, existing
methods for the post hoc control of FDP are introduced via
the notion of Joint Error Rate (JER) proposed by [7]. Our
main contribution is the Notip method presented in Section 3:
a nonparametric data-driven approach that relies on the JER
framework to obtain sharper post hoc FDP control. Numerical
experiments and results on fMRI data reported in Sections 4
and 5 show that substantial gains in the number of detections
are obtained from the proposed method, while controlling the
FDP of the detected regions at a fixed level. Finally, we dis-
cuss the benefits of our proposed methodology, and outline
some possible limitations.

2. False Discovery Proportion control by Joint Error Rate
control

The point of this article is to build an inference method
that takes into account multiplicity and circularity by achiev-
ing post hoc FDP control, while maintaining satisfactory sta-
tistical power.

2.1. Notation

We denote by m the number of hypotheses, i.e. the num-
ber of voxels under consideration (typically spanning a given
brain template). In the context of fMRI, m generally ranges
from 50,000 to 400,000. We denote the set of true null hy-
potheses (voxels with no effect) by H0, and by m0 = |H0| its
cardinal. Given a set of m p-values associated to each hypoth-
esis, we denote by p(k:m) the kth one in ascending order. For a
set S of hypotheses of interest (i.e. the set of voxels in a region
of interest), the aim is to control the number of false positives
in S, that is |S∩H0|, or equivalently, the corresponding pro-
portion of false positives: FDP(S) = |S∩H0|/ |S|.

2.2. Post hoc FDP control

The most common approach to address large-scale multi-
plicity problems is to control the False Discovery Rate (FDR)
[3]. This is generally done by the Benjamini-Hochberg (BH)
procedure [3], which uses different significance thresholds de-
pending on the ranks of the p-values: the kth p-value is com-
pared to tSimes

k = αk/m. The BH procedure controls the FDR
under the PRDS (Positive Regression Dependency on a Sub-
set) assumption [4]. However, since the FDR is the expected
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FDP, FDR control is a weak statistical guarantee on the actual
FDP [17]. This can be problematic when the FDP distribution
has heavy tails, which can happen when the tested hypotheses
are dependent. In such cases, the FDR might be controlled
while FDP quantiles diverge (see Figure 2.1 in [22]). We thus
choose to focus on the control of the actual number (or pro-
portion) of false positives.

A post hoc upper bound V on the number of false positives
is an integer-valued function of subsets S of hypotheses that
satisfies:

P(∀S, |S∩H0| ≤V (S))≥ 1−α . (1)

Since FDP(S) = |S∩H0|/ |S|, obtaining a bound V satisfying
(1) is strictly equivalent to obtaining a post hoc upper bound
on the FDP. This equivalence will be used implicitly through-
out the paper.

As described in [15], the comparison between ordered p-
values and

(
tSimes
k

)
k=1..m can also provide post hoc FDP con-

trol. This can be done using closed testing [19] combined with
the following inequality:

P
(
∃k ∈ {1, . . . ,m0} : p(k:m0) < tSimes

k
)
≤ α . (2)

Equation (2) is an immediate consequence of the Simes in-
equality [26], and also holds under the PRDS assumption. The
All-resolutions inference (ARI) method [25] provides a tighter
post hoc bound that uses the thresholds αk/h(α) instead of
tSimes
k = αk/m in (2), where h(α) ≤ m is the so-called Hom-

mel value [16]. h(α) represents an 1−α-level upper confi-
dence bound on the number m0 of true null hypotheses.

2.3. Joint Error Rate

An alternative construction of post hoc bounds has been
introduced by [7]. Letting RSimes

k =
{

i : pi ≤ tSimes
k

}
, Equation

(2) can be written as:

P
(
∀k,

∣∣RSimes
k ∩H0

∣∣≤ k−1
)
≥ 1−α . (3)

Equation (3) can be interpreted as the simultaneous control of
all k−Family-Wise Error Rate (FWER), where the k−FWER
is the probability of obtaining at least k false positives. Each
set RSimes

k yields a valid FDP upper bound over any subset S:

|S∩H0|=
∣∣∣S∩RSimes

k ∩H0

∣∣∣+ ∣∣S∩RSimes
k ∩H0

∣∣
≤
∣∣∣S∩RSimes

k

∣∣∣+ ∣∣RSimes
k ∩H0

∣∣
= ∑

i∈S
1
{

pi(X)≥ tSimes
k

}
+
∣∣RSimes

k ∩H0
∣∣

≤∑
i∈S

1
{

pi(X)≥ tSimes
k

}
+ k−1

=: V Simes
k (S) ,

where the last inequality holds with probability at least 1−α

by (3).

The computation of V Simes
k (S) is illustrated in the top pan-

els of Figure 1 for k∈{1,3,6}. Since (3) holds simultaneously
for all k, the minimum over k of all V Simes

k (S) is a valid upper
bound on the false positives in S [7]. Therefore, as illustrated
in the bottom panel of Figure1, the final post hoc FDP upper
bound is V Simes(S)/|S|, where

V Simes(S) = min
1≤k≤|S|

{
∑
i∈S

1
{

pi(X)≥ tSimes
k

}
+ k−1

}
. (4)

As noted by [7], the bound (4) coincides with the bound
originally proposed by [15]. This can be generalized as fol-
lows by replacing tSimes := (tSimes

k )1≤k≤m with any threshold
family t := (tk)1≤k≤kmax corresponding to Rk = {i : pi ≤ tk}.
While setting kmax = m is natural in (4), setting kmax < m can
be useful when tk is calibrated from the data, as discussed in
the next sections. The Joint Error Rate (JER) of the threshold
family t is defined by [7] as:

JER(t) = P
(
∃k ∈ {1, . . . ,kmax∧m0} : p(k:m0) < tk

)
. (5)

With this notation, both Equations 2 and 3 are equivalent
to JER(tSimes) ≤ α . By the interpolation argument outlined
above, the bound

V t(S) = min
1≤k≤|S|∧kmax

{
∑
i∈S

1{pi(X)≥ tk}+ k−1

}
(6)

provides a valid FDP upper bound for any threshold family
t such that JER(t) ≤ α [7]. This bound can be calculated in
O(|S|) for a given set S using Algorithm 1 in [10].
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Figure 1: Computation of the post hoc bound (6) on the number of false positives, given a set S of 10 p-values, using a JER controlling threshold family. Top
panels: computation of k-th bound Vk(S) = ∑i∈S 1{pi(X)≥ tk}+ k− 1 for 3 values of k, with horizontal colored lines representing the associated thresholds tk .
Bottom panel: The post hoc upper bound(6) corresponds to the minimum of all Vk(S). In this example, the bound guarantees that the number of false positives in
the S is at most 5 with probability > 90%.

2.4. Tighter FDP upper bounds via randomization

The Simes inequality (2) ensures JER control at level at
most α for the threshold family (αk/m)k. While this control is
sharp for independent p-values, it can be conservative for pos-
itively dependent p-values [7], leading to conservative FDP
bounds. The first degree of freedom that can be leveraged to
obtain tighter bounds for a given α is to choose the least con-
servative threshold family among a pre-defined set of families.
In the case of the Simes family, this is done by choosing the
threshold family (λk/m)k associated to the largest λ such that
the following inequality (that is, JER control) holds:

P
(
∃k ∈ {1, . . . ,m0} : p(k:m0) <

λk
m

)
≤ α . (7)

In order to reach this goal more generally, we consider
collections of threshold families called templates since their
introduction in [7]. Formally, a template is set of functions
λ 7→ (tk(λ ))k such that any fixed value of λ corresponds to
a threshold family. For example, the Simes template corre-
sponds to the choice: tk(λ ) = λk/m for all k = 1 . . .m and
λ > 0.

The calibration procedure introduced in [6, 7] uses ran-
domization (see [2]) to obtain samples from the joint distri-
bution of p-values under the null hypothesis. As the JER (5)
is a function of this distribution, these so-called randomized
p-values allow us to select the largest possible λ such that the
JER is controlled. Algorithm 1 describes how to compute such
randomized p-values in the case of one-sample tests, using
sign-flipping [24, 2]. Randomized p-values can be obtained
similarly for two-sample tests, using class label permutations
instead of sign-flipping.
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Figure 2: Addressing the conservativeness of the Simes inequality by cal-
ibration. A set of 20 randomized p-value curves are computed on real data
(black curves). Two JER controlling families at level 10% are shown as col-
ored lines. Both of them cross 2 curves (= 10% of all curves) which indeed
corresponds to controlling the JER at level 10%. The uncalibrated Simes fam-
ily (in red) is conservative since it is possible to choose higher threshold fam-
ilies that cross the same number of black curves. The calibrated Simes family
(in orange) is the least possible conservative threshold family that crosses at
most 2 curves.

Algorithm 1 Computing randomized p-values using sign-
flipping. For a number B of sign-flips, compute p-values us-
ing a one-sample t-test on the flipped data X f lipped .

1: function GET_RANDOMIZED_P_VALUES(X ,B)
2: n, p← shape(X)
3: ▷ n subjects, p voxels
4: pval0← zeros(B, p)
5: for b ∈ [1,B] do
6: flip← diag(draw_random_vector({−1,1}n))
7: ▷ matrix of shape (n, n)
8: X f lipped = flip.X
9: pval0[b]← one_sample_t_test(X f lipped , 0)

10: ▷ 0 = null hypothesis
11: end for
12:
13: pval0← sort_lines(pval0)
14: ▷ Sort each vector of randomized p-values
15: return pval0
16: end function

Figure 2 illustrates the conservativeness of the parametric
Simes template on real data and the benefit yielded by cali-
bration using randomized p-values curves. Choosing λ > α

in (4) leads to a less conservative bound. Note that, the more
dependent the data, the more the parametric Simes bound is
expected to be conservative, see e.g. [7]. Thus, calibration
should be particularly useful for smooth data. While the ARI

procedure corresponds to using Simes inequality without cali-
bration1 for JER control, calibration using the Simes template
can be considered the state-of-the-art method for this problem
[6, 7]. The bound obtained from this calibration procedure is
equivalent to the bound considered in [1].

3. Main contribution: data-driven templates and Notip
procedure

(see [6, 1, 10])
The calibrated Simes family can lead to tighter post hoc

bounds, yet it still relies on the Simes template, which is lin-
ear in k, as illustrated in Figure 2. Instead of only optimising
λ for a given template shape (e.g. a linear shape for the Simes
template), the second degree of freedom that can be exploited
to achieve better statistical power while still controlling the
JER is to learn the template function, or, equivalently, its
shape when displayed as a graph Figure 2 illustrates that for
small k, permuted p-value curves are not exactly linear. This
suggests that using a non-linear template shape could be rel-
evant for fMRI data. Several other parametric templates are
considered in [1], but the authors report that none of these at-
tempts outperformed the Simes template. An ideal template
should approximately reproduce the shape of randomized p-
values curves computed from real data. Therefore, we propose
to learn a template directly from the data.

A related idea has been explored in [20]. However, since
the method proposed in that paper does not distinguish be-
tween the learning and calibration steps, it suffers from circu-
larity biases, as noted by [7, Remark 5.3]. Indeed, in the JER
framework, the template has to be fixed a priori.
In order to address this issue, we propose to learn a template
from an fMRI dataset that is independent from the datasets on
which inference is performed. First, we compute B random-
ized p-value curves on training data using Algorithm 1 and
extract quantile curves tb = (tb

k )k for b = 1 . . .B, as shown in
the left panel of Fig. 3. These quantile curves are then viewed
as a set of B sorted threshold families (middle panel), which
is called a learned template. Note that it is indeed a template
in the sense of [7], that has been discretized over a set of B

values.

1Rigorously, the ARI bound corresponds to using Simes inequality with
the Hommel value h instead of m.
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Figure 3: Learning a template from training data and using this template for calibration on inference data. Left panel: quantiles of randomized p-value
curves are computed on training data. Middle panel: the resulting quantile curves are used as a template (the so-called learned template). Right panel: calibration
is performed on inference data using the learned template. Notice that learned templates do not have a parametric shape (contrary e.g. to the Simes template), but
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After obtaining a learned template, calibration is performed
on the inference data (i.e. any inference contrast) as would be
done with a parametric template. This is shown in the right
panel of Figure 3 and in Section 2. To perform calibration,
we evaluate the empirical JER of all threshold families of the
learned template. Then, we select the largest b ∈ {1, . . .B}
such that JER control holds on inference data for the thresh-
old family tb. To avoid evaluating the JER of all threshold
families, this search is done by dichotomy in practice. The
resulting method is called “Notip” for Non-parametric true
discovery proportion. As described above, Notip requires a
training dataset in order to learn the template. An example of
a template learned from a training data set is displayed in Fig-
ure 14. Note that learned templates do not have a parametric
shape, but follow the shape of randomized p-value curves.

The calibration process depends on the parameter kmax,
whose choice induces the following trade-off. On the one
hand, since JER((tb

k )1≤k≤K) ≤ JER((tb
k )1≤k≤K′) for all K ≤

K′, choosing a smaller kmax allows calibration to choose a
largest value of b in the dichotomy, leading to a less conserva-
tive family. On the other hand, a larger value for kmax leads to
more thresholds considered in the min in the bound written in
Equation 6, and hence to a possibly tighter bound. Guidelines
to choose kmax as well as an informed default choice for fMRI
data are given in Section 8.2.

The complete procedure is summarized in Algorithm 2,
with lines 1-7 corresponding to the training step and lines 8-
20 corresponding to the inference step. The latter step requires

the computation of the empirical JER for a given family, which
is described in Algorithm 3.

Algorithm 2 Learning template on training data and cali-
brating on inference data. A template is learnt by computing
permuted p-values and extracting quantile curves. Then, this
template is used to perform calibration on inference data by
choosing the least conservative family of the learned template
that empirically controls the JER.

Require: Xtrain,Xin f er,Btrain,Bin f er,α,kmax
1: pvalstrain ← get_randomized_p_values(Xtrain, Btrain)
2: ▷ array of shape (Btrain,nvoxels)
3: ▷ lines of pvalstrain are sorted
4: for b ∈ [1,Btrain] do:
5: learned_templates[b]← quantiles(pvalstrain, b/Btrain)
6: end for
7: pvalsin f er← get_randomized_p_values(Xin f er, Bin f er)
8: ▷ vector of shape (Bin f er,nvoxels)
9: for b ∈ [1,Btrain] do :

10: ĴERb← estimate_jer(pvalsin f er,
learned_templates[b],kmax)

11: end for
12: bcalibrated ← max{b ∈ [1,Btrain] s.t. ĴERb ≤ α}
13: ▷ Choose largest b such that JER control holds
14: if bcalibrated = 0 then
15: return Calibrated_Simes
16: ▷ No suitable learned template found
17: end if
18: chosen_template← learned_templates[bcalibrated]
19: return chosen_template

6



Algorithm 3 JER estimation on randomized p-values. The
empirical JER is computed for a given template and a matrix
of permuted p-values. This computation is directly based on
Equation 5.

1: function ESTIMATE_JER(pvals, thr, kmax)
2: (Bin f er, p)← shape(pvals)
3: ĴER← 0
4: for b′ ∈ [1,Bin f er] do:
5: for i ∈ [1, ...,kmax] do:
6: diff[i]← pvals[b′][i] - thr[i]
7: ▷ Check JER control at rank i
8: end for
9: if min(diff) < 0 then:

10: ĴER← ĴER+1/Bin f er
11: ▷ Increment risk if JER control event is violated
12: end if
13: end for
14: return ĴER
15: end function

Once Algorithm 2 has been run, according to [7, 6], the
bound defined in Equation 6 is a valid FDP upper bound.
This bound can be computed on any subset of interest S in
linear time in |S| using Algorithm 1 in [10].

4. Experiments

4.1. Data

4.1.1. FMRI data

To investigate the potential gain in number of detections
yielded by using data-driven templates, we performed exper-
iments on an fMRI dataset, collection 1952 [29] of the Neu-
rovault database (http://neurovault.org/collections/
1952). This dataset is an aggregation of 20 different fMRI
studies, consisting of statistical maps obtained at the individ-
ual level for a large set of contrasts. These images have been
preprocessed using the procedure described in [29]. In par-
ticular, they have been spatially normalized to MNI space us-
ing SPM12 software, and resampled to 3mm isotropic reso-
lution. In the present case, the inference question concerns
one-sample tests in group analyses, i.e. identifying what brain
regions show a significant increase of activity for the con-
trast of interest, as opposed to the baseline, across participants.
The group-level statistic and associated p-value are obtained
through a one-sample t-test on the individual z-maps.

Collection 1952 only contains elementary ’versus base-

line’ contrasts, with a massive amount of non-specific signal.
In order to obtain meaningful inference examples, we paired

them with control contrasts. A typical interesting contrast pair
is "words vs baseline" vs "face vs baseline"; by subtracting
these two contrasts, we obtain the more relevant "words vs
face" contrast, which aims at uncovering brain regions with
significantly higher or lower signal for word images than for
face images stimuli.

To obtain consistent results, we excluded contrasts with
too few subjects and/or trivial signal. The resulting list of 36
contrast pairs is given in Table 6.

In order to use data-driven templates on fMRI data, we
have to choose a training set beforehand, on which we learn a
template once and for all. The variability of the Notip method
with regards to the choice of the training set is studied in Sec-
tion 4.3. For the rest of the experiments, we use a single train-
ing set. Although learning a different template for each con-
trast pair would produce statistically valid inference, the com-
putational cost would be high and this would lead to a loss in
generality (i.e. the user would have to learn a template per
inference contrast pair, instead of doing it once). For these ex-
periments, we choose for training data a pair of contrasts with
113 subjects and 51199 voxels smoothed using FWHM (full
width at half-maximum) = 4mm and at least 2% of active vox-
els (with probability≥ 95% according to ARI). This is the pair
of contrasts with the lowest proportion of active voxels that
we could find among contrast pairs with at least 100 subjects.
This choice is referred to as the optimal template in the rest
of the paper. It is explained in the Discussion. This template
is learnt using Btrain = 10,000 permutations and we choose
kmax = 1,000 ≃ ⌊m/50⌋ for reasons detailed in Section 8.2.
Note that we also apply the same choice of kmax when using
the Simes template, so that both templates are compared on a
fair basis.

4.1.2. Synthetic data

For some of the experiments described below, we have
generated simulated data using the pyrft package: https:

//github.com/sjdavenport/pyrft. This package allows
generates smooth noisy random fields that resemble fMRI data.
In this controlled setup, the ground truth is known. An ex-
ample of such simulated data can be found in Section 8.7.
The simulation setting is the following, with π0 the proportion
of null voxels: α = 0.05, π0 = 0.9, FWHM = 4mm, ntrain =

100, nin f er = 50, q = 0.1, Btrain = Bin f er = 1000.
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4.1.3. Code to reproduce the experiments

Data manipulation is mostly performed through Nilearn
v0.9.0, nibabel v.3.1.1. The proposed statistical methods are
implemented in the sanssouci package: https://github.

com/pneuvial/sanssouci.python. The experiments pre-
sented in this section can be reproduced using the code at:
https://github.com/alexblnn/Notip. This repository
contains a script per experiment.

The analysis we performed on this data can be divided
into 6 main experiments that are detailed in the rest of this
section.

4.2. Variation of the number of detections for all three meth-

ods

To compare different choices of templates and investigate
whether data-driven templates yield a gain in number of de-
tections over existing methods, we compute the size of the
largest possible region that satisfies a target error control for
each choice of template on the 36 chosen contrast pairs. This
is typically the type of inference that users aim for when
applying FDR controlling procedures such as the Benjamini-
Hochberg procedure. We denote by St the largest region (i.e.
subset of voxels) such that its FDP upper bound is smaller
than some user-defined value q ∈ [0,1], called the FDP bud-
get. It corresponds to the maximum FDP that one is willing
to tolerate in a given region. Formally, we solve the following
optimisation problem for any template t:

|St |= max
S
|S| s.t.

V t
α(S)
|S|

≤ q , (8)

where V t
α(S)/|S| is the upper bound on the FDP at risk level

α computed on S using the template t. By construction of the
bound (6), the solution of (8) is a p-value level set, of the form
{i/pi ≤ τ} for some τ [7, Section 7.4]. As such, |St | can be
obtained in linear time in m using Algorithm 1 in [10].

Then, we compute the relative size difference of St for all
possible pairs of methods. Formally, the variation of the
number of detections between the learned template (i.e., the
Notip procedure) and the calibrated Simes template is defined
as:

|SLearned |− |SSimes|
|SSimes|

The calibration procedure on any a priori fixed template

controls the JER [7, 6]. Therefore, it makes sense to com-
pare the number of detections obtained by different template
choices (i.e. ARI, calibrated Simes and learned template) for
a given error control 1−α . We compare the number of detec-
tions for several values of q, the FDP budget, for a given risk
α = 5%.

We also perform the same experiment on the simulated
data described in Section 4.1.2. In this case, since the ground
truth is known, we can compare the empirical True Positive
Rate (TPR) of all three methods. This quantity represents the
proportion of true signal recovered by the template t for the
region St defined in (8). Formally, we defined the TPR in St as
the ratio of the lower bound on the true positives in St to the
number of truly activated voxels in St :

TPR(St) =
|St |−V t

α(St)

|H1|
.

Where |H1| corresponds to the number of truly activated vox-
els. As such, TPR(St) is an empirical measure of power for
the template t.

4.3. Comparison with FDR control

The above experiment on the number of detections leads
to a natural comparison based on the “BH region”, that is the
region obtained using the BH procedure that controls the FDR
( = expected FDP). More precisely, we compare the size of the
BH region to the size of FDP controlling regions. Conversely,
we also compute FDP upper bounds on the BH region. This
illustrates the difference between FDR control and FDP con-
trol with a concrete example.

4.4. Variation of the number of detections for low sample

sizes

Because of the high cost of acquisition, many fMRI datasets
comprise few subjects. This may lead to unstable behavior
and limited statistical power. To study the impact of sample
size on the inference procedure both at training and inference
step, we perform two dual experiments. First, we compute the
number of detections for the three possible methods as in
Section 4.2 , with the difference that the template is learned
using ntrain = 10 subjects instead of ntrain = 113. Second, we
use the standard template with 113 subjects but this time in-
fer on 25 pairs of fMRI contrasts with any number of subjects
nin f er, varying from nin f er = 8 to nin f er = 200.
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4.5. Sensitivity to the choice of training data

Since Notip requires learning a template on training data
before performing inference, the choice of such data and its
impact on the performance of the method is an important ques-
tion. To assess this sensitivity quantitatively, we fix an fMRI
contrast pair for inference. Then, we compare the number of
detections for each template choice -as described in Section
4.2- using the 36 different fMRI contrast pairs as 36 different
training sets for the Notip method. It should be noted that ARI
and calibrated Simes do not depend on the chosen training set;
their number of detections is computed once and for all. These
36 fMRI contrast pairs differ in several ways such as the num-
ber of subjects, the nature of the contrasts, the fMRI study or
quantity of signal. This allows us to evaluate the robustness of
Notip to poorly matched training and inference data. In this
experiment, we also include the optimal template choice we
used for all other experiments (i.e. least amount of signal and
maximum number of subjects).

4.6. Influence of data smoothness

Another potential source of mismatch is the smoothing
done in preprocessing of fMRI data. To assess the conse-
quences on performance of a potential smoothing mismatch
between training and inference data, we consider the case where
the smoothing parameter FWHM is different in the training
and inference data, using FHWM = 4mm for the training data
and FWHM = 8mm for the inference data.

4.7. Using Notip on a single dataset

When learning a template on separate data is inconvenient,
or to avoid the computational cost of learning the template, a
natural idea is to use Notip on a single dataset. In such a set-
ting, circularity biases may appear as in [20]. The workaround
that we propose to retain valid FDP control is to perform two
independent rounds of randomization - one for training and
one for inference. While this approach is formally not cov-
ered by the theoretical framework of [7], we have performed
experiments to assess its FDP control and power on the simu-
lated data described in Section 4.1.2.

5. Results

5.1. Variation of the number of detections for different tem-

plate types

A comparison of the number of detections obtained for
the three possible methods at hand, i.e. ARI, calibrated Simes

and Notip is displayed in Figure 4. To obtain this figure, we
used 36 pairs of fMRI contrasts. The number ninfer of subjects
ranged from 25 to 120 across inference contrast pairs.
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Figure 4: Comparison of the number of detections between ARI, cali-
brated Simes and learned templates across 36 pairs of fMRI contrasts
from Neurovault collection 1952. After learning the template on a single
contrast pair (see section 4), we perform inference on all 36 pairs. For each
contrast pair, we compute the largest possible region that satisfies FDP≤ q for
q ∈ {0.05,0.1,0.2} with risk level α = 0.05.

In Figure 4, we notice that learned templates yield a sub-
stantial gain in detections compared to both other template
choices for all target FDPs. On average, learned templates
offer a ∼ 40% increase in detections compared to the ARI
method and a ∼ 20% increase compared to calibrated Simes.
Gains in number of detections can vary largely across contrast
pairs. This is essentially due to variance contained in the data,
as all three methods exhibit similar TPR variability on simu-
lated data (see Section 8.4). A concrete example of inference
on fMRI data is shown in Figure 5.
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Figure 5: Comparison of the number of detections between ARI, cal-
ibrated Simes and learned template on fMRI data. For a pair of fMRI
contrasts "look negative cue" vs "look negative rating" we compute the largest
possible region such that FDP≤ 0.1 with risk level α = 0.05 for the three pos-
sible templates: ARI, calibrated Simes template and learned template. Notice
that the number of detections is markedly higher (+ 77 %) using the learned
template compared to the calibrated Simes template.

We have also performed the same experiment on simulated
data. In this setting, we can report the actual TPR of the meth-
ods instead of region sizes. The empirical FDP for these sim-
ulations are reported in Figure 16.
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Figure 6: TPR comparison for a FDP budget q= 0.1 at risk level α = 0.05.
We run 100 simulations and report the TPR. Notice that Notip offers substan-
tial gains in TPR compared to both ARI (100 % on average) and calibrated
Simes (50 % on average).

Figure 6 illustrates the TPR gains achieved using Notip
on simulated data compared to both ARI to both ARI (100 %
on average) and calibrated Simes (50 % on average). Overall,

simulations support the fact that Notip offers substantial per-
formance gains compared to both ARI and calibrated Simes.

5.2. Comparison with FDR control
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Figure 7: Comparison of the number of detections between learned tem-
plate and the BH procedure on fMRI data. For a pair of fMRI contrasts
"look negative cue" vs "look negative rating" we compute the largest possible
region such that FDP≤ 0.1 at risk level α = 0.05 for the learned template and
the largest possible region such that FDR ≤ 0.1 using the BH procedure. BH
region size: 13814 voxels. Learned template region size: 5762 voxels.

Since FDR control is a much weaker guarantee than FDP
control, it is expected that the BH procedure yields substan-
tially more detections compared to FDP controlling proce-
dures, as seen in Figure 7. However, FDP being the targeted
guarantee, it is interesting to compute FDP upper bounds on
the FDR controlling region yielded by BH. Concretely, we are
trying to obtain a bound on the FDP of a region that only has
a guarantee on its FDR. Table 1 shows the FDP upper bounds
computed on the FDR controlling region using all three possi-
ble methods.

ARI Calibrated Simes Notip
FDP Upper bound 61% 45% 25%

Table 1: FDP upper bounds on the FDR controlling region obtained using
the BH procedure (at level q = 10%). Notice that Notip yields smaller FDP
bounds than ARI and calibrated Simes . This upper bound remains higher
than the FDR guarantee (10%), which is more permissive by design.

Notip leads to a less conservative FDP upper bound than
ARI and calibrated Simes. However, at risk level α = 5%,
Notip is only able to guarantee that the FDP is less than 25%
while the FDR is controlled at level 10%. This illustrates the
difference between FDR control and FDP control, the latter
being less permissive by design. While the BH procedure
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guarantees that the expected FDP is below 10%, Notip guar-
antees explicitly that the actual FDP is below 25% with high
probability (≥ 95%). It should be noted that on a single in-
ference run, a guarantee on the expected FDP has no clear
interpretation, whereas the guarantee on the actual FDP is di-
rectly interpretable.

5.3. Variation of the number of detections for low sample

sizes

The above results demonstrate that data-driven templates
yield consistent gains in number of detections over existing
methods that offer the same guarantees. In this section we
investigate whether these gains subsist in sub-optimal condi-
tions. Namely, when the template is learned on very few sub-
jects or if inference is done on experiments with few subjects.
The first point is illustrated in Figure 8.
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Figure 8: Comparison of the number of detections between ARI, cali-
brated Simes and a learned template using a subsampled training set.
Here, the template is learned using ntrain = 10 subjects instead of ntrain = 113
subjects. Learned templates still perform better than the calibrated Simes
template on average, but subsampling the training set leads to a sub-optimal
number of detections , compared with Figure 4.

Unstable performance may occur when inferring on data
with few subjects, even if the template is learned on a large
number of subjects (ntrain = 113 here). This is illustrated in
Figure 9: gains in number of detections remain consistent- yet
more variable for smaller sample sizes - across datasets with
different number of subjects. As noted in [8], high variance
is unavoidable when inferring on small datasets (e.g. nin f er ≤
25). For a single dataset comprising 17 subjects, the learned
template performs substantially worse than calibrated Simes.
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Figure 9: Comparison of the number of detections between learned tem-
plate and calibrated Simes for many contrast pairs with a different num-
bers of subjects. The gains in number of detections remain consistent across
datasets with different number of subjects. However, for a single dataset com-
prising 17 subjects, the learned template performs substantially worse than
calibrated Simes.

5.4. Sensitivity to the choice of training data

Figure 10 displays the variation of the number of detec-
tions made by Notip compared to ARI and calibrated Simes
using 36 different training sets. All training contrast pairs ex-
cept one yield more detections than calibrated Simes, with
gains ranging from 10% to 80%. This shows that the Notip
procedure is robust to poorly matched training and inference
data, since contrast pairs considered for training vary along
many dimensions: number of subjects, nature of contrasts,
fMRI study, quantity of signal... In the worst possible case,
Notip performs marginally worse than calibrated Simes. Also
note that the optimal template used in all other experiments
(corresponding to the template learned from the training data
with minimal signal and maximum number of subjects as de-
scribed in Section 4.1.1) outperforms all other choices.
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Figure 10: Variation of the number of detections using many training
sets. For a fixed contrast pair "look negative cue" vs "look negative rating"
and 36 different training contrast pairs, we compute the largest possible re-
gions that ensure FDP ≤ 0.1 at risk level α = 0.05. Note that for all training
contrast pairs except one, Notip performs better than calibrated Simes, with
gains ranging from 10 % to 80 % for the optimal template choice described in
Section 4.1. In the worst case, Notip performs slightly worse than calibrated
Simes.

5.5. Influence of data smoothness

We have seen in Figure 10 that Notip is robust to mis-
matches of training and inference data across different dimen-
sions (number of subjects, quantity of signal...). We now ex-
amine the robustness of Notip with regards to a mismatch of
the smoothing parameter between training and inference data.
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Figure 11: An example of mismatch between the smoothing factors of
training and inference data. After learning the template on a single contrast
pair (see Section 4) with smoothing full width at half maximum (FWHM)
4mm, we perform inference on all 36 pairs smoothed with FWHM 8mm.
For each contrast pair, we compute the largest possible region that satisfies
FDP control at level 0.1 with risk level α = 0.05. The learned template still
performs marginally better than calibrated Simes in this case, but gains are
substantially lower in this regime.

Figure 11 shows that the smoothing parameter of the train-
ing data and the inference data should be matched for optimal
performance. Otherwise performance gains relative to the cal-
ibrated Simes method are reduced, albeit still positive.

5.6. Using Notip on a single dataset

To assess whether using Notip with the same dataset for
training and inference controls the FDP, and whether it yields
performance gains compared to ARI and calibrated Simes, we
performed 1000 simulations. For each of these runs, we report
the empirical FDP and TPR of all three methods.
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Figure 12: False Discovery Proportion achieved for a FDP budget q = 0.1
with risk level α = 0.05 using Notip on a single dataset. We run 1000 sim-
ulations and report the empirical FDP for each one. Notice that Notip (single
dataset) controls the FDP at level α = 0.05 since FDP control is violated for
5 runs, i.e. 0.5% < 5% of all simuations. As expected, ARI and calibrated
Simes also control the FDP.

Notice that as seen in Figure 12, Notip (single dataset) in-
deed controls the FDP, as only 5 points are above the red line
- i.e. the FDP was above the budget q = 0.1 in 0.5% of exper-
iments (< α = 5%). As expected, ARI and calibrated Simes
control the FDP more conservatively.

Calibrated Simes 
vs ARI

Notip (single dataset) 
vs ARI

Notip (single dataset) 
vs Calibrated Simes

0

50

100

150

200

250

T
P
R

 v
a
ri

a
ti

o
n
 (

%
)

for requested FDP control q = 0.1 at level =0.05Empirical TPR

Figure 13: TPR comparison for an FDP budget q = 0.1 with risk level α =
0.05 using Notip on a single dataset. We run 1000 simulations and report
the empirical TPR for each one. Notice that Notip (single dataset) offers
substantial performance gains compared to both ARI (100 % on average) and
calibrated Simes (50 % on average).

As seen in Figure 13, Notip (single dataset) yields sub-

stantial performance gains compared to ARI and calibrated
Simes: 50% on average compared to calibrated Simes, and
100% on average compared to ARI. These gains are compa-
rable to those obtained using the classical Notip method on
simulated data (see Figure 6).

6. Discussion

In this paper, we have proposed the Notip procedure, that
allows users to obtain statistical guarantees on the proportion
of truly activated voxels in any given cluster. There are at least
two ways to perform inference on fMRI data using this proce-
dure. First, one can threshold a statistical map to obtain the
largest possible region that satisfies a requested FDP control.
Second, users can also obtain an upper bound on the FDP, or,
equivalently, a lower bound on the TDP in any cluster of in-
terest (see an example in Section 8.5).

This type of analysis is meant to mitigate the arbitrariness
of cluster-forming thresholds in cluster-level inference, which
remains a popular framework. The underlying observation is
that estimates computed on these clusters may be plagued by
circularity.

We have introduced a data-driven approach to obtain valid
post hoc FDP control, thus achieving this goal. Moreover,
controlling the FDP is a substantially more informative guar-
antee than controlling the FDR, its expected value. We show
that our procedure yields a higher number of detections than
existing methods that offer the same statistical guarantees, namely
ARI and calibrated Simes. We could go further by applying
a step-down procedure as described in [7], but the gains are
expected to be marginal [10].

The gains in detections are maintained across practically
all possible training sets, even in cases of poor matching be-
tween the training and inference datasets, as seen in Figure 10.
Figure 11 also illustrates the robustness of Notip, this time in
the case of a poor match of smoothing parameters between the
training and inference data. In this case, the gain in detections
obtained by using the learned template is reduced, albeit still
non-negligible (30% compared to ARI and 9% compared to
calibrated Simes). We found that choosing training contrast
pairs that contain a large number of subjects and low signal is
optimal for performance.
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This is coherent with intuition since a large number of sub-
jects and minimal signal allow a more stable and accurate es-
timation of the distribution of p-values under the null. There-
fore, when selecting a template, it is useful to rely on a large-
sample dataset with small signal magnitude.

Notip comes with an additional computational cost com-
pared to classical calibration using the Simes template, since
we have to learn the template before inference. Generally, this
additional cost is acceptable in practice since learning a tem-
plate on a contrast and inferring on a contrast have the same
time complexity. If learning a template ex ante is inconve-
nient or simply impossible, for instance when users only have
a single dataset at hand, we have shown numerically that it is
possible (though not formally supported by the theory) to use
Notip on a single dataset.

We have used 10,000 permutations for better resolution
when learning the template instead of the typical 1,000 per-
mutations used at the inference step. Learning a template us-
ing Btrain = 10,000 permutations with a standard laptop (on
a single thread) takes around 7 minutes, while inferring on a
contrast pair (using Bin f er = 1,000 takes around 45 seconds).
This can be trivially parallelized, as natively done in the im-
plementation we propose.

A current limitation of the proposed method is that it only
handles one-sample or two-sample designs. This method could
be extended to multivariate linear models in future work.

The idea of learning templates is not specific to fMRI data
and could also be used on other types of data on which the
calibration procedure is useful such as genomics [10].

We have achieved the goal of obtaining valid post hoc FDP
control - rather than FDR control, or even weaker guarantees
on clusters - while maintaining a satisfactory number of de-
tections. This allows users in the brain imaging community to
use more reliable inference methods that provide robust guar-
antees, avoiding circularity biases. The efforts to build such
methods appear to us as important goal for the brain imag-
ing field. The Python code used in this paper is available
at https://github.com/alexblnn/Notip. This code re-
lies on the sanssouci package available at https://github.
com/pneuvial/sanssouci.python.
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8. Appendix

8.1. Visualising learned templates

Figure 14 shows an example of a learned template com-
puted on the contrast pair used as a training set in all the ex-
periments of the paper, using B = 1000. We retain a set of 20
quantile curves for clarity - as 1,000 or 10,000 curves would
not be suitable for visualization. Notice that all threshold fam-
ilies of the learned template are non-linear for small values of
k, i.e. k ≤ 1000. By definition, these curves are similar to the
randomized p-values curves displayed in Figure 2.
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Figure 14: Visualising a learned template in log-log scale. This learned
template was computed using B = 1000 on the same contrast pair used as
training data for the experiments described in Sections 4 and 5. A set of 20
curves are retained for clarity. The curves are increasingly lighter for higher
order quantiles.

8.2. Choice of kmax

The post hoc bound (6) is valid for any value of the param-
eter kmax, provided that this parameter is chosen a priori and
not after data analysis [7]. While some guidelines are given
in the Discussion of [7], the choice of kmax remains an open
question. Equation 6 may be written as follows:

V (S) = min
1≤k≤|S|∧kmax

Vk(S) , (9)

where Vk(S) = ∑i∈S 1{pi(X)≥ tk}+ k− 1. Each Vk(S) is it-
self an upper bound on the number of false positives in S. The
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choice of kmax implies a tradeoff. On the one hand, large val-
ues of kmax can seem advantageous because the minimum in
(9) is taken on a larger set of values of k. On the other hand,
when the thresholds tk are obtained by calibration — as in [7]
or in the present paper, a smaller kmax leads to larger values
of (tk) for a given k, and thus to a tighter bound Vk. Noting
that Vk(S)≥ k−1, the values of k such that k > q|S| will yield
Vk(S)/|S| ≥ q for any S. Therefore, these values of k are use-
less for obtaining a FDP bound less than q. This motivates a
choice of kmax of the form

kmax = qmax|Smax| , (10)

where qmax is the maximum proportion of false positives that
can be tolerated by users and |Smax| is the size of the largest
set of voxels of interest.

In practice, the regions of interest are those in which a
high proportion of activated voxels can be guaranteed. To
be conservative, we set qmax = 0.5, which simply means that
we are not interested in guaranteeing that the FDP is less than
q for q ≥ 0.5. In the case of fMRI, one is generally inter-
ested in sparse activation extent, as widespread effects are by
definition not informative on the specific involvement of brain
regions in the contrast of interest. As a default choice, we ob-
serve that most fMRI contrasts studied in the literature lead to
less of 5% of the image domain to be declared activate, which
amounts to setting |Smax|= 0.05m.

Finally, a reasonable choice seems to be kmax = 0.5∗0.05m=

0.025m. In the context of the experiments we described where
m≃ 50,000, we settle for simplicity on using kmax = 0.02m =

1,000. This is the default value of kmax in the implementation
we propose. To illustrate the effect of the choice of kmax we
display the variation of the number of detections of all three
methods on 36 fMRI datasets across 9 different inference set-
tings for varying kmax in Figure 15. Except for extremely small
or large values of kmax Notip is at worst slightly sub-optimal
and kmax = 1,000 is a safe default.

As noted in [7], no choice of kmax uniformly outperforms
others. For example, the above choice, which is motivated by
the prior: "|Smax| = 0.05m", may be poorly adapted in situa-
tions where very large regions are considered.

8.3. FDP control on simulated data

In section 4.2 we report the empirical TPR for experiments
on simulated data, for which the ground truth is known. We
also compute the FDP for each simulation run to verify that,
as expected, Notip indeed controls the FDP.
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Figure 16: False Discovery Proportion achieved for a FDP budget q = 0.1
with risk level α = 0.05. We run 100 simulations and report the empirical
FDP for each one. All three methods control the FDP, but Notip is less con-
servative than ARI and Calibrated Simes.

8.4. Variability of Notip

We have observed relatively high variability in number of
detections when comparing Notip to ARI and calibrated Simes
in Figure 4. One may wonder whether this variability is inher-
ent to the Notip procedure or stems from the data. To assess
this, we report the empirical TPR of each method (rather than
the 3 pairwise comparisons) on simulated data, in the same
setup as in Figure 6.
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Figure 15: Comparison of the number of detections between learned template and calibrated Simes for various kmax values with 5% error bands in log-log
scale. Notice that the chosen kmax largely influences the maximum size of the FDP controlling region for the learned template.
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Figure 17: TPR comparison for an FDP budget q = 0.1 with risk level
α = 0.05. We run 100 simulations and report the empirical TPR for each one.
Notice that the variability of performance is similar for all three methods.

Figure 17 indicates that all three methods exhibit similar
performance variability on simulated data. This suggests that
the variability observed in Figure 4 is due to the data itself
rather than to the Notip method.

8.5. TDP lower bounds on clusters

Throughout the paper, we chose to focus on FDP upper
bounds - and thus on FDP controlling regions - to make Notip
comparable with other methods that control the FDR or the
FWER. Since Notip is a post hoc method, it can also be used
for inference on data-driven clusters. In this setting, it is natu-
ral to formulate the results in terms of TDP lower bounds (ob-
tained as 1 - FDP upper bounds), since users generally want
a positive guarantee when inferring on clusters. This is il-
lustrated in Table 2. Notice that Notip is able to offer less
conservative guarantees on the TDP in all clusters than both
ARI and calibrated Simes. In Table 3 we retain 3 clusters
among the 9 found in Table 2 for further study, i.e. chang-
ing the cluster-forming threshold to assess its impact on per-
formances of all three methods. In Tables 4 (z > 2.5) and 5
(z > 3.5), notice that the same clusters are detected with vary-
ing sizes. The TDP guarantees remain less conservative using
Notip than both ARI and calibrated Simes when the cluster-
forming threshold is either lowered to 2.5 or upped to 3.5.

8.6. Additional details on [7]

For self-containedness, this subsection contains additional
details on FDP control via the control of the Joint Error Rate,

as described in [7], as well as precise references to the paper’s
Theorems.

JER control and FDP upper bound

JER control as defined in 5 corresponds to Equation 2 of
[7], and the post-hoc bound defined in 6 corresponds to Equa-
tion 3 of [7]:

JER(t) = P
(
∃k ∈ {1, . . . ,kmax∧m0} : p(k:m0) < tk

)
. (5)

V t(S) = min
1≤k≤|S|∧kmax

{
∑
i∈S

1{pi(X)≥ tk}+ k−1

}
(6)

Randomization

Since the distribution p(k:m0) is unknown in practice, we
use randomization to sample from it, as described in Section
2.4. This is detailed in Section 3 of [7]. In one-sample designs,
which is the setting considered throughout experiments, we
perform random sign-flipping of samples. Let us denote G =

{−1,1}n the group of all possible sign-flippings s of size n.
This group acts on X of shape (n,m) in the following way:

(s.X)i, j = siXi, j, i ∈ Nn, j ∈ Nm.

In words, for each sample index i ∈ J1,nK, we either sign-flip
the sample Xi or leave it untouched. Notice that under the null
hypothesis, the distribution of pi(X) and of pi(s.X) are equal.
Therefore, we are able to approximate the joint distribution
of (pi(X))i∈H0(P) conditionally on X by (pi(s.X))i∈H0(P) (see
[2]).

Calibration

The final step of the procedure is to perform calibration
using the randomized p-values that we previously computed.
Once calibration has been performed, a valid post-hoc FDP
upper bound is obtained via 6. Calibration is described in
Section 3 and written explicitly in Algorithms 2 and 3. In
[7], calibration is described more formally, in order to obtain
a proof that this procedure indeed yields JER control. For a
given template tk(·) with 1 ≤ k ≤ kmax and a risk level α , the
goal is to find the largest λ such that JER(tk(λ )) ≤ α . For-
mally, we want to compute:

λ (α) = max
{

λ ≥ 0 : ĴER(t)≤ α

}
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With:

ĴER(t) =
1
B

B

∑
b=1

1
{
∃k ∈ {1, . . . ,kmax} : pb

(k:m0)
< tk(λ )

}
This corresponds to Equation 20 of [7]. Note that the em-

pirical JER is computed using Algorithm 3 in practice. In the
case of Notip, λ takes discrete values; the maximum is com-
puted using dichotomy as described in Section 2. Theorem
4.8 of [7] shows that the calibration procedure indeed controls
the JER, thus leading to a valid post-hoc FDP upper bound.
The proof of Theorem 4.8 can be found in Section 7 of the
supplementary material of [5].

8.7. An example of simulated data

Here is an example of simulated data computed in 2D for
clarity. We use 3D images in the experiments to mimick fMRI
data. Here, we use a 10×10 2D grid and generate the ground
truth, a binary mask that defines the signal. Then, we gener-
ate nin f er null images and nin f er images that comprise signal.
Substracting these two sets of images results in a list of nin f er

one-sample images, as in fMRI experiments. In Figure 18 an
example of simulated ground truth is displayed, while Figure
19 shows an example of simulated one-sample image. Figure
19 is a noisy version of the ground truth shown in Figure 18.
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Figure 18: Simulated ground truth. This binary mask locates the simulated
signal on a 2D 10×10 grid. Signal locations have been drawn randomly and
account for (1−π0)% of the image, the rest of the image being null data.
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Figure 19: A simulation draw. This 2D 10×10 grid represents a draw of one-
sample image comprising signal at locations determined by the binary mask
shown in Figure 18. This is a typical example of input data in experiments
on simulated data; the goal is then to recover the binary mask using inference
methods such as Notip, ARI or calibrated Simes.
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True Discovery Proportion
Cluster ID X Y Z Peak Stat Cluster Size (mm3) ARI Calibrated Simes Notip
1 -33.0 -94.0 -17.0 5.63 7695 0.17 0.24 0.26
1a -45.0 -79.0 -26.0 4.56
1b -48.0 -61.0 -26.0 4.13
1c -51.0 -64.0 -35.0 4.08
2 66.0 2.0 16.0 5.47 14877 0.20 0.33 0.45
2a 69.0 -22.0 10.0 4.67
2b 69.0 -10.0 13.0 4.59
2c 69.0 -28.0 13.0 4.43
3 -12.0 -82.0 -8.0 5.40 14445 0.27 0.38 0.50
3a 30.0 -73.0 -8.0 4.96
3b -24.0 -61.0 -11.0 4.91
3c 30.0 -46.0 -11.0 4.64
4 -6.0 11.0 52.0 5.30 5238 0.14 0.25 0.29
4a 6.0 8.0 55.0 4.19
5 45.0 14.0 25.0 5.27 4563 0.24 0.30 0.30
5a 48.0 29.0 13.0 3.36
6 12.0 -43.0 -26.0 5.08 12555 0.05 0.17 0.35
6a 0.0 -64.0 -14.0 4.43
6b 3.0 -55.0 -11.0 4.26
6c 3.0 -16.0 -32.0 4.23
7 39.0 -73.0 4.0 5.00 6075 0.04 0.09 0.17
7a 39.0 -64.0 16.0 4.44
7b 30.0 -82.0 10.0 4.42
7c 27.0 -67.0 34.0 3.63
8 -63.0 -34.0 16.0 4.95 25812 0.30 0.48 0.66
8a -63.0 -10.0 13.0 4.90
8b -27.0 -19.0 4.0 4.85
8c -57.0 -19.0 7.0 4.68
9 36.0 -94.0 -8.0 4.75 6507 0.08 0.15 0.17
9a 48.0 -70.0 -32.0 3.96
9b 45.0 -70.0 -23.0 3.92
9c 33.0 -82.0 -29.0 3.77

Table 2: Cluster localization (z > 3), size, peak statistic and TDP lower bound at risk level α = 5% using the three possible templates (ARI, Calibrated Simes
and Notip) on contrast pair ’look negative cue vs look negative rating’. Cluster subpeaks are also reported when relevant. This table can be generated using script
https://github.com/alexblnn/Notip/blob/master/scripts/table_2.py.

True Discovery Proportion
Cluster ID X Y Z Peak Stat Cluster Size (mm3) ARI Calibrated Simes Notip
1 66.0 2.0 16.0 5.47 14877 0.20 0.33 0.45
1a 69.0 -22.0 10.0 4.67
1b 69.0 -10.0 13.0 4.59
1c 69.0 -28.0 13.0 4.43
2 -12.0 -82.0 -8.0 5.40 14445 0.27 0.38 0.50
2a 30.0 -73.0 -8.0 4.96
2b -24.0 -61.0 -11.0 4.91
2c 30.0 -46.0 -11.0 4.64
3 -63.0 -34.0 16.0 4.95 25812 0.30 0.48 0.66
3a -63.0 -10.0 13.0 4.90
3b -27.0 -19.0 4.0 4.85
3c -57.0 -19.0 7.0 4.68

Table 3: Cluster localization (z > 3), size, peak statistic and TDP lower bound at risk level α = 5% using the three possible templates (ARI, Calibrated Simes and
Notip) on contrast pair ’look negative cue vs look negative rating’. Cluster subpeaks are also reported when relevant. Notice that we retained 3 clusters (originally
of indices 2, 3 and 8 of Table 8.5).
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True Discovery Proportion
Cluster ID X Y Z Peak Stat Cluster Size (mm3) ARI Calibrated Simes Notip
1 66.0 2.0 16.0 5.47 28593 0.13 0.18 0.29
1a 69.0 -22.0 10.0 4.67
1b 69.0 -10.0 13.0 4.59
1c 69.0 -28.0 13.0 4.43
2 -12.0 -82.0 -8.0 5.40 23355 0.19 0.23 0.35
2a 30.0 -73.0 -8.0 4.96
2b -24.0 -61.0 -11.0 4.91
2c 30.0 -46.0 -11.0 4.64
3 -63.0 -34.0 16.0 4.95 43092 0.19 0.25 0.42
3a -63.0 -10.0 13.0 4.90
3b -27.0 -19.0 4.0 4.85
3c -57.0 -19.0 7.0 4.68

Table 4: Cluster localization (z > 2.5), size, peak statistic and TDP lower bound at risk level α = 5% using the three possible templates (ARI, Calibrated Simes
and Notip) on contrast pair ’look negative cue vs look negative rating’. Cluster subpeaks are also reported when relevant.

True Discovery Proportion
Cluster ID X Y Z Peak Stat Cluster Size (mm3) ARI Calibrated Simes Notip
1 66.0 2.0 16.0 5.47 7425 0.38 0.48 0.69
1a 69.0 -22.0 10.0 4.67
1b 69.0 -10.0 13.0 4.59
1c 69.0 -28.0 13.0 4.43
2 -12.0 -82.0 -8.0 5.40 8397 0.46 0.53 0.73
2a 30.0 -73.0 -8.0 4.96
2b -24.0 -61.0 -11.0 4.91
2c 30.0 -46.0 -11.0 4.64
3 -63.0 -34.0 16.0 4.95 9585 0.46 0.55 0.76
3a -63.0 -10.0 13.0 4.90
3b -57.0 -19.0 7.0 4.68
3c -60.0 -49.0 25.0 4.59

Table 5: Cluster localization (z > 3.5), size, peak statistic and TDP lower bound at risk level α = 5% using the three possible templates (ARI, Calibrated Simes
and Notip) on contrast pair ’look negative cue vs look negative rating’. Cluster subpeaks are also reported when relevant.
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Study Contrast 1 Contrast 2 nsub jects
HCP shapes vs baseline faces vs baseline 66
HCP right hand vs baseline right foot vs baseline 67
HCP right foot vs baseline left foot vs baseline 66
HCP left hand vs baseline right foot vs baseline 67
HCP left hand vs baseline left foot vs baseline 66
HCP tool vs baseline face vs baseline 68
HCP face vs baseline body vs baseline 68
HCP tool vs baseline body vs baseline 68
HCP body vs baseline place vs baseline 68
amalric2012mathematicians equation vs baseline number vs baseline 29
amalric2012mathematicians house vs baseline word vs baseline 37
amalric2012mathematicians house vs baseline body vs baseline 27
amalric2012mathematicians equation vs baseline word vs baseline 29
amalric2012mathematicians visual calculation vs baseline auditory sentences vs baseline 27
amalric2012mathematicians auditory right motor vs baseline visual calculation vs baseline 25
cauvet2009muslang c16 music vs baseline c02 music vs baseline 35
cauvet2009muslang c16 language vs baseline c01 language vs baseline 35
cauvet2009muslang c02 language vs baseline c16 language vs baseline 35
cauvet2009muslang c04 language vs baseline c16 language vs baseline 35
amalric2012mathematicians face vs baseline scramble vs baseline 85
ds107 scramble vs baseline objects vs baseline 44
ds107 consonant vs baseline scramble vs baseline 47
ds107 consonant vs baseline objects vs baseline 44
ds108 reapp negative rating vs baseline reapp negative cue vs baseline 32
ds108 look negative stim vs baseline look negative rating vs baseline 34
ds108 reapp negative stim vs baseline reapp negative rating vs baseline 34
ds109 false photo story vs baseline false photo question vs baseline 36
ds109 false belief story vs baseline false photo story vs baseline 36
ds109 false belief question vs baseline false photo question vs baseline 36
ds109 false belief story vs baseline false belief question vs baseline 36
ds109 false belief question vs baseline false photo story vs baseline 36
pinel2007fast visual right motor vs baseline vertical checkerboard vs baseline 113
pinel2007fast auditory right motor vs baseline visual right motor vs baseline 121
ds107 scramble vs baseline face vs baseline 85
amalric2012mathematicians house vs baseline scramble vs baseline 85
ds107 words vs baseline face vs baseline 100

Table 6: 36 pairs of fMRI contrasts used for experiments. These contrasts images have been downloaded from Neurovault 1952 collection.
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