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Abstract

Cluster-level inference procedures are widely used for brain mapping. These methods compare the size of clusters obtained by
thresholding brain maps to an upper bound under the global null hypothesis, computed using Random Field Theory or permutations.
However, the guarantees obtained by this type of inference - i.e. at least one voxel is truly activated in the cluster - are not informative
with regards to the strength of the signal therein. There is thus a need for methods to assess the amount of signal within clusters; yet
such methods have to take into account that clusters are defined based on the data, which creates circularity in the inference scheme.
This has motivated the use of post hoc estimates that allow statistically valid estimation of the proportion of activated voxels in
clusters. In the context of fMRI data, the All-Resolutions Inference framework introduced in [24] provides post hoc estimates of
the proportion of activated voxels. However, this method relies on parametric threshold families, which results in conservative
inference. In this paper, we leverage randomization methods to adapt to data characteristics and obtain tighter false discovery
control. We obtain Notip: a powerful, non-parametric method that yields statistically valid estimation of the proportion of activated
voxels in data-derived clusters. Numerical experiments demonstrate substantial power gains compared with state-of-the-art methods
on 36 fMRI datasets. The conditions under which the proposed method brings benefits are also discussed.

1. Introduction

The mapping of the human brain consists in associating re-
gions of the brain with cognitive functions or disorders. This is
important both for basic neuroscience, e.g. the understanding
of brain function, and medical applications, as it allows to iden-
tify regions that carry disease-related signal. The most popular
modality to map brain function is functional Magnetic Reso-
nance Imaging (fMRI), as it is non-invasive and offers decent
spatial resolution (about 2mm isotropic) and full brain coverage.

FMRI data are sampled on a discrete 3D lattice and sub-
ject to various preprocessing steps [10], resulting in a set of
voxels that contain a signal that reflects brain activity. After
suitable statistical analysis, relevant brain territories can be re-
ported. More precisely, practitioners define a contrast, that is, a
linear combination of a set of images, typically corresponding
to the comparison between two or more conditions or groups of
participants, and seek to test hypotheses H0,i: "Voxel i is inac-

tive for this contrast", meaning that it does not show any effect
for the selected contrast, versus H1,i: "Voxel i is active for this
contrast". This statistical problem entails a dire multiple testing
issue as described in [11], as standard fMRI images comprise
between 50k and 400k voxels (growing to millions with the de-

velopment of high-resolution imaging).
In this context, if multiplicity is not accounted for, the num-

ber of false discoveries is unacceptably high. In other words,
mere voxel-wise type 1 error control is not appropriate in the
context of multiplicity. Family-Wise Error Rate (FWER) con-
trol can be used in this setting [11] but it is conservative, re-
sulting in false negatives, which hurts reproducibility (see e.g.
[27, 7]). A more powerful and commonly used approach is
to control the False Discovery Rate (FDR) [13], which is sys-
tematically done using Benjamini-Hochberg procedure [3]. A
caveat to this approach is that the FDR actually corresponds to
the expected False Discovery Proportion (FDP). As noted by
several authors [12, 16, 20], FDR control does not guarantee
FDP control.

An alternative type of inference to increase statistical power
is to perform inference at cluster-level, rather than voxel-level
[22], because brain activation is organised in compact regions
(clusters) in the brain volume. This type of inference tests
whether regions above a given threshold are larger than ex-
pected under the null hypothesis, or whether the total amount
of signal in these regions [26] exceeds its expected value under
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a null distribution. However, this approach suffers from several
problems [8], such as the arbitrary choice of cluster-forming
threshold [30], or the difficulty to establish a null distribution
for cluster size and aggregated signal. To address this last issue,
reliable non-parametric solutions have been proposed [29, 8].
However, the arbitrariness regarding cluster-forming threshold
is hard to deal with. To overcome it, one may define such clus-
ters or regions, and then assess the proportion of active voxels
in each region, i.e the True Discovery Proportion, TDP = 1 -
FDP. Such a region of interest could be defined a priori, using
an anatomical atlas, or a posteriori, based on the fMRI data.
For instance, one might wonder what is the proportion of active
regions in a blob, i.e. a contiguous set of statistical values that
are higher than the image background. Yet, such a definition of
the clusters after seeing the data raises a double-dipping issue,
which can lead to massive false positive inflation [17].

To illustrate this statistical bias, let us consider a classical
example of invalid post-selection inference. Users often per-
form a first round of tests to identify potentially interesting re-
gions (i.e., regions comprising significant signal). If inference
is performed only on smallest p-values obtained at this first
round, then the FDP is not controlled, as shown in [6]. To by-
pass this double-dipping issue, one can use post hoc estimates
that control the FDP. The first method of that kind is a paramet-
ric method called All-resolutions inference (ARI) [24].

In this paper, we introduce the Notip procedure, that adapts
non-parametrically to data correlation structure. We study whether
such a procedure can yield superior power while offering the
same statistical guarantees. We perform extensive experiments
on dozens of fMRI datasets to compare the number of detec-
tions obtained by this approach with that of existing methods.

The paper is organized as follows. In Section 2, existing
methods for the post hoc control of FDP are introduced via the
notion of Joint Error Rate (JER) proposed by [6]. Our main
contribution is the Notip method presented in Section 3: a non-
parametric data-driven approach that relies on the JER frame-
work to obtain sharper post hoc FDP control. Numerical ex-
periments and results on fMRI data reported in Sections 4 and
5 show that substantial power gains can be obtained from the
proposed method, while controlling the FDP of the detected re-
gions at a fixed level. Finally, we discuss the benefits of our
proposed methodology, and outline some possible limitations.

2. False Discovery Proportion control by Joint Error Rate
control

The point of this article is to build an inference method
that takes into account multiplicity and circularity by achieving
post hoc FDP control, while maintaining satisfactory statistical
power.

2.1. Notation

We denote by m the number of hypotheses, i.e. the number
of voxels under consideration (typically spanning a given brain
template). In the context of fMRI, m generally ranges from
50,000 to 400,000. We denote the set of true null hypotheses
(voxels with no effect) by H0, and by m0 = |H0| its cardinal.
Given a set of m p-values associated to each hypothesis, we
denote by p(k:m) the kth one in ascending order. For a set S

of hypotheses of interest (i.e. the set of voxels in a region of
interest), the aim is to control the number of false positives in
S, that is |S∩H0|, or equivalently, the corresponding proportion
of false positives: FDP(S) = |S∩H0|/ |S|.

2.2. Post hoc FDP control

The most common approach to address large-scale multi-
plicity problems is to control the False Discovery Rate (FDR)
[3]. This is generally done by the Benjamini-Hochberg (BH)
procedure [3], which uses different significance thresholds de-
pending on the ranks of the p-values: the kth p-value is com-
pared to tSimes

k = αk/m. The BH procedure controls the FDR
under the PRDS (Positive Regression Dependency on a Subset)
assumption [4]. However, since the FDR is the expected FDP,
FDR control is a weak statistical guarantee on the actual FDP
[16]. This can be problematic when the FDP distribution has
heavy tails, which can happen when the tested hypotheses are
dependent. In such cases, the FDR might be controlled while
FDP quantiles diverge (see Figure 2.1 in [21]). We thus choose
to focus on the control of the actual number (or proportion) of
false positives.

A post hoc upper bound V on the number of false positives
is an integer-valued function of subsets S of hypotheses that
satisfies:

P(∀S, |S∩H0| ≤V (S))≥ 1−α . (1)

Since FDP(S) = |S∩H0|/ |S|, obtaining a bound V satisfying
(1) is strictly equivalent to obtaining a post hoc upper bound on
the FDP. This equivalence will be used implicitly throughout
the paper.
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As described in [14], the comparison between ordered p-
values and

(
tSimes
k

)
k=1..m can also provide post hoc FDP control.

This can be done using closed testing [18] combined with the
following inequality:

P
(
∃k ∈ {1, . . . ,m0} : p(k:m0) < tSimes

k
)
≤ α . (2)

Equation (2) is an immediate consequence of the Simes in-
equality [25], and also holds under the PRDS assumption. The
All-resolutions inference (ARI) method [24] provides a tighter
post hoc bound that uses the thresholds αk/h(α) instead of
αk/m = tSimes

k in (2), where h(α)≤m is the so-called Hommel
value [15]. h(α) represents an 1−α-level upper confidence
bound on the number m0 of true null hypotheses.

2.3. Joint Error Rate

An alternative construction of post hoc bounds has been in-
troduced by [6]. Letting RSimes

k =
{

i : pi ≤ tSimes
k

}
, Equation (2)

can be written as:

P
(
∀k,

∣∣RSimes
k ∩H0

∣∣≤ k−1
)
≥ 1−α . (3)

Equation (3) can be interpreted as the simultaneous control of
all k−Family-Wise Error Rate (FWER), where the k−FWER is
the probability of obtaining at least k false positives. Each set
RSimes

k yields a valid FDP upper bound over any subset S:

|S∩H0|=
∣∣∣S∩RSimes

k ∩H0

∣∣∣+ ∣∣S∩RSimes
k ∩H0

∣∣
≤
∣∣∣S∩RSimes

k

∣∣∣+ ∣∣RSimes
k ∩H0

∣∣
= ∑

i∈S
1
{

pi(X)≥ tSimes
k

}
+
∣∣RSimes

k ∩H0
∣∣

≤∑
i∈S

1
{

pi(X)≥ tSimes
k

}
+ k−1

=: V Simes
k (S) ,

where the last inequality holds with probability at least 1−α

by (3).

The computation of V Simes
k (S) is illustrated in the top panels

of Figure 1 for k ∈ {1,3,6}. Since (3) holds simultaneously
for all k, the minimum over k of all V Simes

k (S) is a valid upper
bound on the false positives in S [6]. Therefore, as illustrated
in the bottom panel of Figure1, the final post hoc FDP upper

bound is V Simes(S)/|S|, where

V Simes(S) = min
1≤k≤|S|

{
∑
i∈S

1
{

pi(X)≥ tSimes
k

}
+ k−1

}
. (4)

The bound V Simes(S) is called an interpolation bound, as it gen-
eralizes statistical control from a given family (Rk)k to any sub-
set S of hypotheses.

As noted by [6], the bound (4) coincides with the bound
originally proposed by [14]. This can be generalized as follows
by replacing tSimes := (tSimes

k )1≤k≤m with any threshold family
t := (tk)1≤k≤kmax corresponding to Rk = {i : pi ≤ tk}. Here, the
kmax parameter controls the length of threshold families. This
can be exploited when the signal is a priori parsimonious, as
discussed in Section 8.1. The Joint Error Rate (JER) of the
threshold family t is defined by [6] as:

JER(t) = P
(
∃k ∈ {1, . . . ,kmax∧m0} : p(k:m0) < tk

)
. (5)

With this notation, both Equations 2 and 3 are equivalent to
JER(tSimes)≤ α . By the interpolation argument outlined above,
the bound

V t(S) = min
1≤k≤|S|∧kmax

{
∑
i∈S

1{pi(X)≥ tk}+ k−1

}
(6)

provides a valid FDP upper bound for any threshold family t

such that JER(t) ≤ α [6]. This bound can be calculated in
O(|S|) for a given set S using Algorithm 1 in [9].

2.4. Tighter FDP upper bounds via randomization

The Simes inequality (2) ensures JER control at level at
most α for the threshold family (αk/m)k. While this control
is sharp for independent p-values, it is typically conservative
for positively dependent p-values [6], leading to conservative
FDP bounds. The first degree of freedom that can be leveraged
to obtain tighter bounds for a given α is to choose the least con-
servative threshold family among a pre-defined set of families.
In the case of the Simes family, this is done by choosing the
threshold family (λk/m)k associated to the largest λ such that
the following inequality holds:

P
(
∃k ∈ {1, . . . ,m0} : p(k:m0) <

λk
m

)
≤ α . (7)

In order to reach this goal more generally, we consider col-
lections of threshold families called templates as introduced
in [6]. Formally, a template is set of functions λ 7→ (tk(λ ))k
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Figure 1: Computation of the post hoc bound (6) on the number of false positives, given a set of 10 p-values, using a JER controlling threshold family. Top
panels: computation of k-th bound for 3 template indices k, with horizontal colored lines representing the associated thresholds tk . Bottom panel: post hoc bound
computation, which corresponds to the minimum of all k-th bounds. In that case, we find that the number of false positives in the set of 10 p-values is no more than
5.

such that any fixed value of λ corresponds to a threshold fam-
ily. For example, the Simes template corresponds to the choice:
tk(λ ) = λk/m for all k = 1 . . .m and λ > 0.

The calibration procedure introduced in [5, 6] uses ran-
domization (see [2]) to obtain samples from the joint distribu-
tion of p-values under the null hypothesis. As the JER (5) is
a function of this distribution, these so-called randomized p-
values allow us to select the largest possible λ such that the JER
is controlled. Algorithm 1 describes how to compute such ran-
domized p-values in the case of one-sample tests, using sign-
flipping [23, 2]. Randomized p-values can also be obtained for
two-sample tests using class label permutations instead of sign-
flipping.

Algorithm 1 Computing randomized p-values using sign-
flipping. For a number B of sign-flips, compute p-values using
a one-sample t-test on the flipped data X f lipped .

1: function GET_RANDOMIZED_P_VALUES(X ,B)
2: n, p← shape(X)
3: ▷ n subjects, p voxels
4: pval0← zeros(B, p)
5: for b ∈ [1,B] do
6: flip← diag(draw_random_vector({−1,1}n))
7: ▷ matrix of shape (n, n)
8: X f lipped = flip.X
9: pval0[b]← one_sample_t_test(X f lipped , 0)

10: ▷ 0 = null hypothesis
11: end for
12:
13: pval0← sort_lines(pval0)
14: ▷ Sort each vector of randomized p-values
15: return pval0
16: end function

Figure 2 illustrates the conservativeness of the parametric
Simes template on real data and the benefit yielded by calibra-
tion using randomized p-values curves. Choosing λ > α in (4)
leads to a less conservative bound. Note that, the more depen-
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Figure 2: Conservativeness of the Simes inequality and calibration, illus-
trated on a set of 20 randomized p-values curves computed on real data and two
JER controlling families at level 10%. Notice that both threshold families cross
2 curves (= 10% of all curves) which indeed corresponds to controlling the JER
at level 10%. The uncalibrated Simes family (in red) is conservative since it is
possible to choose larger threshold families that cross the same number of black
curves. The calibrated Simes family is the least possible conservative threshold
family that crosses at most 2 curves.

dent the data, the more we expect the original Simes bound to
be conservative, see e.g. [6]. Thus, calibration should be partic-
ularly useful for smooth data.

While the ARI procedure corresponds to using Simes in-
equality without calibration1 for JER control, calibration us-
ing the Simes template can be considered the state-of-the-art
method for this problem [5, 6]. The bound obtained from this
calibration procedure is equivalent to the bound considered in
[1].

The second degree of freedom that can be exploited to achieve
better statistical power while still controlling the JER is to change
the shape of the template, instead of only optimising λ for a
given template shape. In the next section, we introduce a data-
driven approach to define a candidate template.

3. Main contribution: data-driven templates

Using the above-described calibration procedure to select a
threshold family based on the inference data typically yields a
substantial power gain (see [5, 1, 9]) even if the template shape

1Rigorously, the ARI bound corresponds to using Simes inequality with the
Hommel value h instead of m

is still linear as in the parametric ARI method. Yet, we notice
in Figure 2 that for small k, permuted p-value curves are not
exactly linear. This suggests that using a non-linear template
shape could be relevant for fMRI data. Several other parametric
templates are considered in [1], but the authors report that none
of these attempts outperformed the Simes template. An ideal
template should approximately reproduce the shape of random-
ized p-values curves computed from real data. Therefore, we
propose to learn a template directly from the data.

A related idea has been explored in [19]. However, since
the same data set was used for both the learning step and the
calibration step, the method proposed in that paper suffers from
circularity biases, as noted by [6, Remark 5.3]. Indeed, in the
JER framework, the template has to be fixed a priori.
In order to address this issue, we propose to learn a template
from an fMRI contrast that is independent from the contrasts
on which inference is performed. We thus assume that training
data are available to us to learn the template. Such data can eas-
ily be obtained from public data repositories.

First, we compute B randomized p-value curves using Al-
gorithm 1 and extract quantile curves tb = (tb

k )k for b = 1 . . .B,
as shown in the left panel of Fig. 3. These quantile curves
are then viewed as a set of B sorted threshold families (middle
panel), which is called a learned template. Note that it is in-
deed a template in the sense of [6], that has been discretized
over a set of B values.

After obtaining a learned template, calibration is performed
on the inference data (i.e. any inference contrast) as would be
done with a parametric template. This is shown in the right
panel of Figure 3 and in Section 2. In other words, we select the
largest b ∈ {1, . . .B} such that JER control holds on inference
data for the threshold family tb. In practice, this is done by
dichotomy.

The complete procedure is summarized in Algorithm 2, with
lines 1-7 corresponding to the training step and lines 8-20 cor-
responding to the inference step. The latter step requires the
computation of the empirical JER for a given family, which is
described in Algorithm 3.
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performed on inference data using the learned template. Notice that learned templates have varying shapes, contrary to parametric families such as Simes template.

Algorithm 2 Learning template on training data and cali-
brating on inference data. A template is learnt by comput-
ing permuted p-values and extracting quantile curves. Then,
this template is used to perform calibration on testing data by
choosing the least conservative family of the learned template
that empirically controls the JER.

Require: Xtrain,Xtest ,Btrain,Btest ,α,kmax
1: pvalstrain← get_randomized_p_values(Xtrain, Btrain)
2: ▷ vector of shape (Btrain,nvoxels)
3: for b ∈ [1,Btrain] do:
4: learned_templates[b]← quantiles(pvalstrain, b

Btrain
)

5: end for
6: learned_templates← learned_templates[:, :kmax]
7: ▷ retain first kmax columns
8: pvalstest ← get_randomized_p_values(Xtest , Btest )
9: ▷ vector of shape (Btest ,nvoxels)

10: for b ∈ [1,Btrain] do :
11: ĴERb← estimate_ jer(pvalstest , learned_templates[b])
12: end for
13: bcalibrated ← card{b ∈ [1,Btrain] s.t. ĴERb ≤ α}
14: ▷ Choose largest b such that JER control holds
15: if bcalibrated = 0 then
16: return Calibrated_Simes
17: ▷ No suitable learned template found
18: end if
19: chosen_template← learned_templates[bcalibrated]
20: return chosen_template

Algorithm 3 JER estimation on randomized p-values. The
empirical JER is computed for a given template and a matrix
of permuted p-values. This computation is directly based on
equation 5.

1: function ESTIMATE_JER(pvals, thr, kmax)
2: (Btest , p)← shape(pvals)
3: ĴER← 0
4: for b′ ∈ [1,Btest ] do:
5: for i ∈ [1, ...,kmax] do:
6: diff[i]← pvals[b′][i] - thr[i]
7: ▷ Check JER control at rank i
8: end for
9: if min(diff) < 0 then:

10: ĴER← ĴER+1/Btest
11: ▷ Increment risk if JER control event is violated
12: end if
13: end for
14: return ĴER
15: end function

Once Algorithm 2 has been run, according to [6, 5], Equa-
tion 6 yields is a valid FDP upper bound. This bound can be
computed on any subset of interest S in linear time in |S| us-
ing Algorithm 1 in [9]. The complete procedure leading to this
bound is called Notip for Non-parametric True Discovery Pro-
portion estimation.

4. Experiments

4.1. Data

To investigate the potential power gain yielded by using
data-driven templates, we performed experiments on an fMRI
dataset, collection 1952 [28] of the Neurovault database (http:
//neurovault.org/collections/1952). This dataset is an
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aggregation of 20 different fMRI studies, consisting of statisti-
cal maps obtained at the individual level for a large set of con-
trasts. These images have been preprocessed using the proce-
dure described in [28]. In particular, they have been spatially
normalized to MNI space using SPM12 software, and resam-
pled to 3mm isotropic resolution. In the present case, the infer-
ence question concerns one-sample tests, i.e. identifying what
brain regions show a significant increase of activity for the con-
trast of interest, as opposed to the baseline, across participants.
The group-level statistic and associated p-value are obtained
through a one-sample t-test on the individual z-maps.

Since collection 1952 only contains elementary ’versus base-

line’ contrasts, we had to find relevant pairs of contrasts to
obtain meaningful inference examples. Such ’versus baseline’
contrasts contain a massive amount of non-specific signal, hence
we pair them with control contrasts. A typical interesting con-
trast pair is "words vs baseline" vs "face vs baseline"; by sub-
tracting these two contrasts, we obtain the more relevant "words
vs face" contrast, which aims at uncovering brain regions with
higher signal for word images than for face images stimuli.

To obtain consistent results, we excluded contrasts with too
few subjects and/or trivial signal. The full list of 36 contrast
pairs is given in Table 3.

In order to use data-driven templates on fMRI data, we have
to choose a training set beforehand, on which we learn a tem-
plate once and for all.

Although choosing a different template for each contrast
pair would produce statistically valid inference, the computa-
tional cost would be high and this would lead to a loss in gen-
erality (i.e. the user would have to learn a template per infer-
ence contrast pair, instead of doing it once). For these exper-
iments, we chose a training pair of contrasts to learn the data-
driven template with 113 subjects and 51199 voxels smoothed
using FWHM = 4mm and 2% of active voxels (as estimated
using ARI). This is the pair of contrasts with the lowest propor-
tion of active voxels we could find among contrast pairs with
at least 100 subjects. This choice is explained in the Discus-
sion. We learn this template using B = 10,000 permutations
and kmax = 1,000≃ ⌊m/50⌋ for reasons detailed in Section 8.1.
Note that we also apply the same choice of kmax when using the
Simes template, so that both templates are compared on a fair
basis.

Data manipulation is mostly performed through Nilearn v0.9.0,
nibabel v.3.1.1. The proposed statistical methods are imple-
mented in the sanssouci package https://github.com/pneuvial/
sanssouci.python. The experiments presented in this sec-
tion can be reproduced using the code at the following address:
https://github.com/alexblnn/Notip. This repository con-
tains a script per experiment.

The analysis work we performed on this data can be divided
into 4 main experiments that are detailed in the rest of this sec-
tion.

4.2. Detection rate variation for different template types

To compare different choices of templates and investigate
whether data-driven templates yield a detection rate gain over
existing methods, we compute the size of the largest possible
region that satisfies a target error control for each choice of tem-
plate on the 36 chosen contrast pairs. This is typically the type
of inference that users perform with FDR controlling procedure
such as the Benjamini-Hochberg procedure. Formally, we solve
the following optimisation problem for any template t:

|St |= max
S
|S| s.t.

V t
α(S)
|S|

≤ q , (8)

where q ∈ [0,1] is the FDP budget, and V t
α(S)/|S| the upper

bound on the FDP at risk level α computed on S using tem-
plate t. Note that |St | can be obtained in linear time in m using
Algorithm 1 in [9].

Then, we compute the relative size difference of St for all
possible pairs of templates. Formally, the detection rate vari-
ation between the learned template (i.e., the Notip procedure)
and the calibrated Simes template is defined as:

|SLearned |− |SSimes|
|SSimes|

[6, 5] show that the calibration procedure on any a priori fixed
template indeed controls the JER.

Therefore, it makes sense to compare the detection rate as-
sociated with different template choices (i.e. ARI, calibrated
Simes and learned template) by comparing the number of de-
tections for a given error control. We compare the number of
detections for several values of q, the target FDP budget, for a
given risk α = 5%.
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4.3. Comparison with FDR control

The above experiment on detection rate variation leads to
a natural comparison with the regions obtained using the BH
procedure that controls the FDR ( = expected FDP). More pre-
cisely, we compare the size of the BH region and the size of
FDP controlling regions. Conversely, we also estimate the FDP
on the BH region to evaluate how accurately the FDP is con-
trolled using BH procedure.

4.4. Detection rate variation for low sample sizes

Because of the high cost of acquisition, many fMRI datasets
comprise few subjects. This may lead to unstable behavior and
limited statistical power. To study the impact of sample size
on the inference procedure both at training and inference step,
we perform two experiments. First, we compute the detection
rate for the three possible templates as in the first experiment,
with the difference that this time we learn the template using
ntrain = 10 subjects instead of ntrain = 113. Second, we use
the standard template with 113 subjects but this time infer on
25 pairs of fMRI contrasts with any number of subjects ntest ,
varying from ntest = 8 to ntest = 130.

4.5. Influence of data smoothness

As in numerous statistical learning problems, the statistical
properties of training and testing data ought to be well matched
for the method to perform as expected. To assess the conse-
quences on performance of a potential mismatch between train-
ing and inference data, we consider the case where smoothing
parameter FWHM (full width at half maximum) is different in
the training and inference data, using FHWM = 4mm for the
training data and FWHM = 8mm for the inference data.

5. Results

5.1. Detection rate variation for different template types

A comparison the detection rate obtained for the three pos-
sible methods at hand, i.e. ARI, calibrated Simes and the learned
template is displayed in Figure 4. To obtain this figure, we used
36 pairs of fMRI contrasts. The number ntest of subjects in each
inference contrast pair ranged from 25 to 120.
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Figure 4: Detection rate comparison between ARI, calibrated Simes and
learned templates across 36 pairs of fMRI contrasts from Neurovault col-
lection 1952. After learning the template on a single contrast pair (see section
4), we perform inference on all 36 pairs. For each contrast pair, we compute
the largest possible region that satisfies FDP control at level q∈ {0.05,0.1,0.2}
with risk level α = 0.05.

In Figure 4, we notice that learned templates yield a sub-
stantial gain in detection rate compared to both other template
choices for all requested controls. On average, learned tem-
plates offer a ∼ 40% increase in detection rate compared to
the ARI method and a ∼ 20% increase compared to calibrated
Simes. A concrete example of inference on fMRI data is shown
in Figure 5.
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ARI: FDP controlling region of 2023 voxels
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Calibrated Simes: FDP controlling region of 3255 voxels
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Figure 5: Detection rate comparison between ARI, calibrated Simes and
learned template on fMRI data. For a pair of fMRI contrasts "look negative
cue" vs "look negative rating" we compute the largest possible region that con-
trols the FDP at level q = 0.1 with risk level α = 0.05 for the three possible
templates: ARI, calibrated Simes template and learned template. Notice that
the detection rate is markedly higher (+ 77 %) using the learned template com-
pared to the calibrated Simes template.
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5.2. Comparison with FDR control
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Figure 6: Detection rate comparison between learned template and the BH
procedure on fMRI data. For a pair of fMRI contrasts "look negative cue" vs
"look negative rating" we compute the largest possible region that controls the
FDP at level q = 0.1 with risk level α = 0.05 for the learned template and the
largest possible FDR controlling region at level q= 0.1 using the BH procedure.
BH region size: 13814 voxels. Learned template region size: 5762 voxels.

Since FDR control is a much weaker guarantee than FDP
control, it is expected that the BH procedure yields a substan-
tially higher detection rate compared to FDP controlling proce-
dures, as seen in Figure 6. However, FDP being the true quan-
tity of interest, it is interesting to estimate the FDP on the FDR
controlling region yielded by BH. Table 1 shows the estimated
FDP on the FDR controlling region estimated with both the cal-
ibrated Simes template and the learned template.

ARI Calibrated Simes Learned template
Estimated FDP 61% 45% 25%

Table 1: Estimated FDP on the FDR controlling region obtained using the
BH procedure (at level q = 10%). Notice that the learned template method
yields more detections than the calibrated Simes template, but the estimated
FDP remains above the FDR guarantee (10%). In other words, in this region
the FDR is controlled but likely not the FDP at level α = 0.05 (if it were the
case, we would have an estimated FDP below 10%).

5.3. Detection rate variation for low sample sizes

The above results demonstrate that data-driven templates
yield consistent power gains over existing methods that offer
the same guarantees. In this section we investigate whether
these gains subsist in sub-optimal conditions. Namely, when
the template is learned on very few subjects or if inference is
done on experiments with few subjects. The first point is illus-
trated in Figure 7.
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Figure 7: Power comparison between ARI, calibrated Simes and a learned
template using a subsampled training set. Here, the template is learned using
ntrain = 10 subjects instead of ntrain = 113 subjects. Learned templates still
perform better than the calibrated Simes template on average, but subsampling
the training set leads to a sub-optimal detection rate, compared with Figure 4.

Unstable performance may occur when inferring on data
with few subjects, even if the template is learned on a large
number of subjects (ntrain = 113 here). This is illustrated in
Figure 8: detection rate gains remain consistent across datasets
with different number of subjects. However, for a single dataset
comprising 17 subjects, the learned template performs substan-
tially worse than calibrated Simes.
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Figure 8: Power comparison between learned template and calibrated
Simes for many contrast pairs with a different numbers of subjects. The
detection rate gains remain consistent across datasets with different number of
subjects. However, for a single dataset comprising 17 subjects, the learned tem-
plate performs substantially worse than calibrated Simes.
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5.4. Influence of data smoothness

Figure 9 shows that the smoothing parameter of the train-
ing data and the inference data have to be matched. Otherwise
performance gains relative to the calibrated Simes method are
reduced, albeit still positive.
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Figure 9: An example of mismatch between the smoothing factors of train-
ing and inference data. After learning the template on a single contrast pair
(see Section 4) with smoothing full width at half maximum (FWHM) 4mm,
we perform inference on all 36 pairs smoothed with FWHM 8mm. For each
contrast pair, we compute the largest possible region that satisfies FDP con-
trol at level 0.1 with risk level α = 0.05. The learned template still performs
marginally better than calibrated Simes in this case, but gains are substantially
lower in this regime.

6. Discussion

In this paper, we have proposed the Notip procedure, that
allows users to estimate the proportion of truly activated vox-
els in any given cluster. There are at least two ways to perform
inference on fMRI data using this procedure. First, one can
threshold a statistical map to obtain the largest possible region
that satisfies a requested FDP control. Second, users can also
estimate the FDP on any cluster, as is usually done in the liter-
ature (see an example in Section 8.2).

This type of analysis is meant to mitigate the arbitrariness
of cluster-forming thresholds in cluster-level inference, which
remains a popular framework. The crucial observations is that
estimates computed on these clusters may be plagued by circu-
larity biases.

We have introduced a data-driven approach to obtain valid
post hoc FDP control, thus achieving this goal. Moreover, con-
trolling the FDP is a substantially more precise guarantee than
controlling the FDR, its expected value. While FDP control

comes at an unavoidable power cost compared to FDR con-
trol, we show that our procedure yields a higher detection rate
than existing methods that offer the same statistical guarantees,
namely ARI and calibrated Simes. We could go further by ap-
plying a step-down procedure as described in [6], but the gains
are expected to be marginal [9].

However, this gain in detection rate is not systematic. First,
it depends on the choice of the training set for learning the data-
driven template. Interestingly, we found that certain learned
templates outperformed the others in terms of detection rate.
These templates correspond to the training contrast pairs that
contain a large number of subjects and low signal. This is co-
herent with intuition since a large number of subjects and min-
imal signal allow a more stable and accurate estimation of the
distribution of p-values under the null. Therefore, when select-
ing a template, it is useful to rely on a large-sample dataset with
small signal magnitude.

One should also be careful when using data-driven tem-
plates on small datasets, as their performance is sub-optimal
in this setting. In general, users should thus pay attention to
the matching of training and testing data. For instance, if the
smoothing parameter is poorly matched between the training
and testing data, the detection rate gain obtained by using the
learned template is reduced. It still remains non-negligible (9%
compared to calibrated Simes).

Overall, even in deteriorated inference settings, the learned
template offers substantial gains; this attests of the robustness
of the Notip method.

This method also comes with an additional computational
cost compared to classical calibration using the Simes template,
since we have to learn the template before inference. However
this additional cost is acceptable in practice since learning a
template on a contrast and inferring on a contrast have the same
time complexity.

We use 10,000 permutations for better resolution when learn-
ing the template instead of the typical 1,000 permutations used
at the inference step. Learning a template using Btrain = 10,000
permutations with a standard laptop (on a single thread) takes
around 7 minutes, while inferring on a contrast pair (using Btest =

1,000 takes around 45 seconds). This can be trivially paral-
lelized, as it is natively in the implementation we propose.
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Another limitation of the proposed method is that it only
handles one-sample or two-sample designs. This method could
be extended to multivariate linear models in future work.

The idea of learning templates is not specific to fMRI data
and could also be used on other types of data on which the cal-
ibration procedure is useful such as genomics [9].

We have achieved the goal of obtaining valid post hoc FDP
control - rather than FDR control, or even weaker guarantees
on clusters - while maintaining satisfactory power. This allows
users in the brain imaging community to use more reliable in-
ference methods that provide robust guarantees, avoiding cir-
cularity biases. The efforts to build such methods appear to
us as important goal for the brain imaging field. The Python
code used in this paper is available at https://github.com/
alexblnn/Notip. This code relies on the sanssouci package
available at https://github.com/pneuvial/sanssouci.python.
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8. Appendix

8.1. Choice of kmax

The post hoc bound (6) is valid for any value of the parame-
ter kmax, provided that this parameter is chosen a priori and not
after data analysis [6]. While some guidelines are given in the
Discussion of [6], the choice of kmax remains an open question.
Equation 6 may be written as follows:

V (S) = min
1≤k≤|S|∧kmax

Vk(S) , (9)

where Vk(S) = ∑i∈S 1{pi(X)≥ tk}+ k− 1. Each Vk(S) is it-
self an upper bound on the number of false positives in S. The
choice of kmax implies a tradeoff. On the one hand, large val-
ues of kmax can seem advantageous because the minimum in
(9) is taken on a larger set of values of k. On the other hand,
when the thresholds tk are obtained by calibration — as in [6]
or in the present paper, a smaller kmax leads to larger values
of (tk) for a given k, and thus to a tighter bound Vk. Noting
that Vk(S) ≥ k−1, the values of k such that k > q|S| will yield
Vk(S)/|S| ≥ q for any S. Therefore, these values of k are useless
for obtaining a FDP bound less than q. This motivates a choice
of kmax of the form

kmax = qmax|Smax| , (10)

where qmax is the maximum proportion of false positives that
can be tolerated by users and |Smax| is the size of the largest set
of voxels of interest.

In practice, the regions of interest are those in which a high
proportion of activated voxels can be guaranteed. To be con-
servative, we set qmax = 0.5, which simply means that we are
not interested in guaranteeing that the FDP is less than q for
q ≤ 0.5. In the case of fMRI, one is generally interested in
sparse activation extent, as widespread effect are by definition
not informative on the specific involvement of brain regions in
the contrast of interest. As a default choice, we observe that
most fMRI contrasts studied in the literature lead to less of 5%
of the image domain to be declared activate, which amounts to
setting |Smax|= 0.05m.

Finally, a reasonable choice seems to be kmax = 0.5∗0.05m=

0.025m. In the context of the experiments we described where
m ≃ 50,000, we settle for simplicity on using kmax = 0.02m =

1,000.
To illustrate the effect of the choice of kmax we display de-

tection rate variations of all three methods on 36 fMRI datasets
across 9 different inference settings for varying kmax in Fig-
ure 10. Except for extremely small or large values of kmax the
method is at worst slightly sub-optimal and kmax = 1,000 seems
to be a reasonable choice.

As noted in [6], no choice of kmax uniformly outperforms
others. For example, the above choice, which is motivated by
the prior: "|Smax| = 0.05m", may be poorly adapted in situa-
tions where very large regions are considered.

8.2. TDP estimation on clusters

While we chose to compare this method’s power in the stan-
dard inference setting of fMRI - i.e. find the largest possible re-
gion that satisfies a certain control - the method also yields valid
inference on the TDP of data-driven clusters. This is illustrated
in Table 2.
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Figure 10: Power comparison between learned template and calibrated Simes for various kmax values with 5% error bands in log-log scale. Notice that the
chosen kmax largely influences the maximum size of the FDP controlling region for the learned template.
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True Discovery Proportion
Cluster ID X Y Z Peak Stat Cluster Size (mm3) ARI Calibrated Simes Learned
1 -33.0 -94.0 -17.0 5.63 7695 0.17 0.24 0.26
1a -45.0 -79.0 -26.0 4.56
1b -48.0 -61.0 -26.0 4.13
1c -51.0 -64.0 -35.0 4.08
2 66.0 2.0 16.0 5.47 14877 0.20 0.33 0.45
2a 69.0 -22.0 10.0 4.67
2b 69.0 -10.0 13.0 4.59
2c 69.0 -28.0 13.0 4.43
3 -12.0 -82.0 -8.0 5.40 14445 0.27 0.38 0.50
3a 30.0 -73.0 -8.0 4.96
3b -24.0 -61.0 -11.0 4.91
3c 30.0 -46.0 -11.0 4.64
4 -6.0 11.0 52.0 5.30 5238 0.14 0.25 0.29
4a 6.0 8.0 55.0 4.19
5 45.0 14.0 25.0 5.27 4563 0.24 0.30 0.30
5a 48.0 29.0 13.0 3.36
6 12.0 -43.0 -26.0 5.08 12555 0.05 0.17 0.35
6a 0.0 -64.0 -14.0 4.43
6b 3.0 -55.0 -11.0 4.26
6c 3.0 -16.0 -32.0 4.23
7 39.0 -73.0 4.0 5.00 6075 0.04 0.09 0.17
7a 39.0 -64.0 16.0 4.44
7b 30.0 -82.0 10.0 4.42
7c 27.0 -67.0 34.0 3.63
8 -63.0 -34.0 16.0 4.95 25812 0.30 0.48 0.66
8a -63.0 -10.0 13.0 4.90
8b -27.0 -19.0 4.0 4.85
8c -57.0 -19.0 7.0 4.68
9 36.0 -94.0 -8.0 4.75 6507 0.08 0.15 0.17
9a 48.0 -70.0 -32.0 3.96
9b 45.0 -70.0 -23.0 3.92
9c 33.0 -82.0 -29.0 3.77

Table 2: Cluster localization (z > 3), size, peak statistic and estimated TDP using the three possible templates (ARI, Calibrated Simes and Learned template)
on contrast pair ’look negative cue vs look negative rating’. Cluster subpeaks are also reported when relevant. This table can be generated using script https:
//github.com/alexblnn/Notip/blob/master/scripts/table_2.py.
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Study Contrast 1 Contrast 2 nsub jects
HCP shapes vs baseline faces vs baseline 66
HCP right hand vs baseline right foot vs baseline 67
HCP right foot vs baseline left foot vs baseline 66
HCP left hand vs baseline right foot vs baseline 67
HCP left hand vs baseline left foot vs baseline 66
HCP tool vs baseline face vs baseline 68
HCP face vs baseline body vs baseline 68
HCP tool vs baseline body vs baseline 68
HCP body vs baseline place vs baseline 68
amalric2012mathematicians equation vs baseline number vs baseline 29
amalric2012mathematicians house vs baseline word vs baseline 37
amalric2012mathematicians house vs baseline body vs baseline 27
amalric2012mathematicians equation vs baseline word vs baseline 29
amalric2012mathematicians visual calculation vs baseline auditory sentences vs baseline 27
amalric2012mathematicians auditory right motor vs baseline visual calculation vs baseline 25
cauvet2009muslang c16 music vs baseline c02 music vs baseline 35
cauvet2009muslang c16 language vs baseline c01 language vs baseline 35
cauvet2009muslang c02 language vs baseline c16 language vs baseline 35
cauvet2009muslang c04 language vs baseline c16 language vs baseline 35
amalric2012mathematicians face vs baseline scramble vs baseline 85
ds107 scramble vs baseline objects vs baseline 44
ds107 consonant vs baseline scramble vs baseline 47
ds107 consonant vs baseline objects vs baseline 44
ds108 reapp negative rating vs baseline reapp negative cue vs baseline 32
ds108 look negative stim vs baseline look negative rating vs baseline 34
ds108 reapp negative stim vs baseline reapp negative rating vs baseline 34
ds109 false photo story vs baseline false photo question vs baseline 36
ds109 false belief story vs baseline false photo story vs baseline 36
ds109 false belief question vs baseline false photo question vs baseline 36
ds109 false belief story vs baseline false belief question vs baseline 36
ds109 false belief question vs baseline false photo story vs baseline 36
pinel2007fast visual right motor vs baseline vertical checkerboard vs baseline 113
pinel2007fast auditory right motor vs baseline visual right motor vs baseline 121
ds107 scramble vs baseline face vs baseline 85
amalric2012mathematicians house vs baseline scramble vs baseline 85
ds107 words vs baseline face vs baseline 100

Table 3: 36 pairs of fMRI contrasts used for experiments. These contrasts images have been downloaded from Neurovault 1952 collection.

15


	Introduction
	False Discovery Proportion control by Joint Error Rate control
	Notation
	Post hoc FDP control
	Joint Error Rate
	Tighter FDP upper bounds via randomization

	Main contribution: data-driven templates
	Experiments
	Data
	Detection rate variation for different template types
	Comparison with FDR control
	Detection rate variation for low sample sizes
	Influence of data smoothness

	Results
	Detection rate variation for different template types
	Comparison with FDR control
	Detection rate variation for low sample sizes
	Influence of data smoothness

	Discussion
	Acknowledgments
	Appendix
	Choice of kmax
	TDP estimation on clusters


