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Abstract

In the context of simulation of bubble dynamics and cavitation, even the simple problem of the collapse of a spherical bubble
is challenging to compute accurately with general, three-dimensional, interface-capturing schemes. Difficulties arise from both
the physical model of the multicomponent fluid and the discretization scheme. Pathologies associated with each factor are
identified and solutions to remedy specific issues are proposed.

Introduction

Several applications require a detailed understanding of cav-
itation and bubble dynamics in and near soft materials, such
as biological tissues, polymeric coatings or biofouling. Few
preliminary studies highlight the dependence of the bubble
dynamics on the material properties and point to the need
to develop a comprehensive multiscale theory capable of ac-
counting for physical phenomena not present in traditional
hydrodynamic cavitation. However, before modeling vis-
coelastic effects that would allow to extend our understand-
ing of cavitation in and near soft materials, we focus on
developing accurate algorithms for bubble dynamics in wa-
ter either in free space or near rigid surfaces. Indeed, even
the simple problem of the collapse of a spherical bubble
is challenging to compute accurately with general, three-
dimensional (3D), interface-capturing schemes. Difficulties
arise from both the physical model of the multicomponent
fluid and the discretization scheme. It can be difficult to iso-
late the pathology to either factor. Once the pathologies are
identified, some solutions are proposed to remedy specific
issues.

Multiphase models and numerical methods

A high-order WENO (Weighted Essentially Non-
Oscillatory) scheme developed around the mechanical-
equilibrium model of Allaire (Allaire et al. 2002) showed
good results for shock-induced collapse and droplet atomiza-
tion (Coralic and Colonius 2014; Meng and Colonius 2014),
but failed to maintain sphericity or correctly predict collapse
time and minimum radius in the Rayleigh collapse problem.
As shown in (Tiwari et al. 2013; Rasthofer et al. 2017) for
small initial pressure ratios and in Fig. 1 for small and high
initial pressure ratios (pwater/pbubble = 10 and 1427), better

results are obtained when the model of Kapila (Kapila et al.
2001) is used. Indeed, there is a term in the volume-fraction
equation, not present in the model of Allaire, that accounts
for expansion and compression of each phase in mixture
regions and is the element that allows good agreement of
Kapila’s model with analytical, and indirectly experimental,
solutions of spherical bubble dynamics.

However, this term relating the volume fraction to the
compression rate leads to numerical stability problems dur-
ing strong compression and expansion. In this work, we pro-
pose to use instead a pressure-disequilibrium model (Saurel
et al. 2009) that is relaxed, during each time step, to equilib-
rium so that the additional term on the volume fraction equa-
tion is avoided and, at the same time, the results converge to
the mechanical-equilibrium model of Kapila. This last model
was previously implemented using low-order (MUSCL-type)
schemes (Saurel et al. 2009; Schmidmayer et al. 2018a,b).
We thus combine the pressure-disequilibrium model with the
high-order WENO scheme, and test the resulting model on
the spherical bubble problem (Fig. 1). Note that both mod-
els (Kapila and Saurel) are hyperbolic, conservative on mass,
momentum and total energy, and respect the second law of
thermodynamics. Furthermore, in the context of diffuse in-
terface method based on Godunov-type scheme (Godunov
1959), the Riemann problem is solved with an approximate
HLLC solver (Toro 1997).

Results

A complete study comparing the models of Kapila and
Saurel, and the low- and high-order numerics is provided
regarding agreement with analytical solutions and ability of
maintaining the sphericity during the collapses and rebounds
of the bubbles. Among the observations, the low-order nu-
merics have difficulties, related to analytical agreement and
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Figure 1: Dimensionless radius function of dimensionless
time for the collapse of a gas bubble in water.
Analytical solution of Keller-Miksis for spheri-
cal bubble collapse and 3D simulations using the
models of Allaire, Kapila and Saurel are shown.
pwater/pbubble = 10 (top) and 1427 (bottom), and
a resolution of 50 (top) and 100 (bottom) cells per
diameter is used for the 3D simulations.

sphericity, when considering a small initial pressure ratio
while the high-order numerics have difficulties, mainly re-
lated to sphericity, for the high ratio. Furthermore, through
another Rayleigh-collapse test case but this time with an ini-
tial disequilibrium between both sides of the bubble wall, an
additional issue is pointed out and is coming from the multi-
component models at the location of smeared interface (mix-
ture region) when pressure discontinuities are encountered.
Indeed, one can observe a phenomenon of wave “trapping”
from the interface and this last is related to the recovered
Wood speed of sound (Wood 1930) in this mixture region.

Solutions using adaptive mesh refinement (Schmidmayer
et al. 2018b) and interface-sharpening (Shyue and Xiao
2014) methods are proposed to remedy specific problems.

Conclusions

Pathologies of the physical model of the multicomponent
fluid and of the discretization scheme are identified and so-
lutions, such as compute the pressure-disequilibrium model
of Saurel et al. to guarantee the robustness of the simula-
tions and the THINC interface-sharpening method of Shyue
and Xiao to avoid the phenomenon of wave “trapping”, are
proposed.
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