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Abstract— Digitalization of the decision-making process in 

healthcare has been promoted to improve clinical performance 

and patient outcomes. The implementation of Clinical Practice 

Guidelines (CPGs) using Clinical Decision Support Systems 

(CDSSs) is widely developed in order to achieve this purpose 

within clinical information systems. Nevertheless, due to 

several factors such as (i) incompleteness of CPG clinical 

knowledge, (ii) out-of-date contents, or (iii) knowledge gaps for 

specific clinical situations, guideline-based CDSSs may not 

completely satisfy clinical needs. The proposed architecture 

aims to cope with guideline knowledge gaps and pitfalls by 

harmonizing different modalities of decision support (i.e. 

guideline-based CDSSs, experience-based CDSSs, and data 

mining-based CDSSs) and information sources (i.e. CPGs and 

patient data) to provide the most complete, personalized, and 

up-to-date propositions to manage patients. We have 

developed a decisional event structure to retrieve all the 

information related to the decision-making process. This 

structure allows the tracking, computation, and evaluation of 

all the decisions made over time based on patient clinical 

outcomes. Finally, different user-friendly and easy-to-use 

authoring tools have been implemented within the proposed 

architecture to integrate the role of clinicians in the whole 

process of knowledge generation and validation. A use case 

based on Breast Cancer management is presented to illustrate 

the performance of the implemented architecture. 

Key words—Clinical Decision Support System, Ontology, 

Clinical Practice Guidelines, Computer Interpretable Guidelines, 

Decisional Event, Decision Trees, Patient Outcomes, Breast 

Cancer  

I.  INTRODUCTION  

Clinical practice guidelines (CPGs) are defined as 
“systematically developed statements to assist practitioner 
and patient decisions about appropriate health care for 
specific clinical circumstances” [1]. Hence, the 
implementation of CPGs is intended to decrease clinical 
negligence and improve patient clinical outcomes [2]. 
Nevertheless, the adherence to CPGs is not as strong as 
expected since there are many barriers to be overcome by 
clinicians when they try to apply them such as (i) lack of 
awareness or familiarity, (ii) lack of agreement, self-efficacy, 
or outcome expectancy, or (iii) the inertia of previous 
practice or behavior [3]. To overcome this deal, the 
implementation of guideline-based clinical decision support 

systems (CDSSs) has been promoted. To insure the 
improvement of clinical practices, CDSSs must (i) be 
integrated within the clinician workflow, (ii) provide 
recommendations automatically, (iii) be implemented in a 
computerized way, and (iv) give the correct decision support 
in a short time [4]. Nevertheless, even with the use of 
CDSSs, it is estimated that about 30%–40% of patients 
receive treatments that do not comply with guideline 
recommendations [5]. 

In this paper, we present a multimodal CDSS that 
combines a guideline-based CDSS with two other different 
kinds of CDSSs, i.e. experience-based and data mining-
based CDSS, to cope with the limitations of strictly 
guideline-based CDSSs. We introduce a Decisional Event 
(DE) structure to overcome the issue of the lack of previous 
practice performance data and its evaluation. DEs store all 
the information related to the decision-making process in a 
processable way. Visual analytics are also explored to 
present information in a user-friendly way. Finally, authoring 
tools for the different CDSSs are presented in order to make 
clinicians active in the review and update of new clinical 
evidence.  

II. CLINICAL KNOWLEDGE FORMALIZATION  

This chapter defines the three main modules that will 
serve as the core of our architecture: the definition of a 
decisional event in a processable structure, the formalization 
module used to translate CPGs into computer-interpretable 
guidelines (CIGs) for their integration into a CDSS, and the 
module for the semantical validation of all the formalized 
knowledge using an ontology. The formalization given by 
these three modules will be used all along the 
implementation of the different decision support systems. 

A. Decisional Event structure 

Clinical diagnostic and follow-up decisions usually 
tend to focus on a single patient and lose the perspective 
based on previous similar clinical cases and their 
outcomes [6]. As described in our previous work [7], the 
Decisional Event (DE) intends to store all the 
information needed and generated during the decision-
making process into a computer interpretable way. This 
structure is composed by (i) a set of the clinical 
parameters characterizing a given patient, (ii) a subset of 
the formalized CIG rules that fit the studied patient, (iii) 
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the set of recommendations generated by those rules, and 
(iv) the final decision made by the clinician. This final 
decision can be one of the recommendations provided by 
the system, thus, in compliance with guidelines, or not. If 
the decision made is not compliant, (v) criteria should be 
given to argue this final decision non-supported by the 
clinical evidence formalized in the guidelines. Besides, 
the (vi) treatment actually performed is also stored in the 
DE to compute the compliance of the decision made with 
the treatment actually administered to the patient. Finally, 
(vii) a set of patient outcomes is formalized (e.g. 
toxicities, relapse, survival, adverse events) for the 
evaluation of the performance of the received treatment.   

This structure is used to compute not only the 
compliance of the clinical decision with guideline 
recommendations, but also to generate the new clinical 
knowledge produced when a non-compliant decision is 
made. The DE is considered as the core of the whole 
architecture since it formalizes all the needed knowledge 
in a processable way and provides a backbone structure 
to the rest of the modules.  

B. CIG formalization module 

The translation of guideline-based clinical 
knowledge into a computer interpretable format requires 
some domain knowledge and major implementation 
skills. Nevertheless, it is widely known that it facilitates 
the decision support as it is able to analyze patient-
specific clinical information using latest available 
evidence in the shortest time [8]. CIGs can be formalized 
following the “Task-Network Models” (TNM), i.e. 
models that represent the dependency among actions 
structured as hierarchical networks which, when fulfilled 
in a satisfactory way, provide recommendations. Several 
proposals have been reported in the field aiming to cope 
with different clinical modelling challenges, such as 
GLIF [9], PROforma [10], or Asbru [11]. 

In our approach, an object called Condition Triplet 
was defined within the DE structure to replicate the TNM 
in Java. This object is composed of (i) a precedent 
condition, (ii) a binary operator (i.e. and, or), and (iii) a 
consequent condition. The precedent and consequent 
conditions are based on a Condition object that was also 
formalized. This Condition object stores (i) the name of 
the clinical variables to be evaluated, (ii) the 
mathematical operator (i.e. >, >=, =, <, <=), and (iii) the 
value or threshold imposed by the condition to be 
evaluated.  

 
Fig. 1. Our CIG formalization concept example. 

This approach allows the formalization of CPGs into 
rule-based CIGs that can be written down in any 
document-based format (e.g. .drl, .xml, .json), since the 
knowledge is already tipped over a java-based structure. 
Moreover, this formalization is domain-independent, 

allowing the implementation of different CPGs from 
different domains using the same structure. 

C. Ontology-based semantical validation 

Semantic Web Technologies, such as ontologies, are 
often proposed in the healthcare domain to represent the 
clinical knowledge contained in CPGs in a standard and 
semantically interoperable way [12]. The use of 
annotation properties is promoted to add labels to the 
ontology classes and to link each concept with its 
definition in validated and available standard 
terminologies, such as SNOMED CT1 or NCI Thesaurus2. 
This guaranties the interoperability of the implemented 
knowledge with stable and unique codes for each 
biomedical concept.  
In our approach, we have developed a Jena API3 based 

tool for interacting with any ontology formalized in the 
Resource Description Framework (RDF) language to be 
used along with the CIG formalization module. Focusing 
on the classes and the defined properties relating them 
within the model, we restricted the knowledge to be used 
in the CIG formalization module to the one defined in the 
ontology. This is meant to avoid including corrupted 
knowledge and to assure the semantic interoperability in 
the whole CIG definition. As it totally relies on the 
relationships defined in the ontology, it is domain 
independent and can be used to query any ontology and to 
search the possible values of any class within it. 

III. MULTIMODAL CDSS  

The main goal of a CDSS is to give support to clinicians 

in the decision-making process during a clinical case 

evaluation by providing latest evidence-based 

recommendations in the shortest time [4]. Nevertheless, due 

to the knowledge gaps embedded within CPGs and the 

difficulties of the formalization and implementation of  

CIGs, sometimes CDSSs do not accomplish their objective 

successfully [13].  We propose the implementation of a 

multimodal CDSS relying on the conjunction of three kinds 

of decision supports (i.e. guideline-based, experience-based 

and data mining-based) to help clinicians during the 

decision-making process.  

A. Guideline -based CDSS 

The guideline-based CDSS (GL-CDSS) provides the 

best patient-specific evidence-based recommendations 

formalized in CIGs. GL-CDSSs are developed in order to 

improve clinical care and change physicians’ behavior for 

better patients’ clinical outcomes. Nevertheless, CPGs 

become out of date, especially in rapidly evolving fields, 

and they should be reviewed and updated to include latest 

evidence [3]. This requires a hard task of re-formalization 

                                                           
1 http://www.snomed.org/ 
2 https://ncit.nci.nih.gov/ncitbrowser/ 
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of the whole new guidelines and their implementation, 

being a very time-consuming process.  

To ease the achievement of those objectives, a domain 

independent GL-CDSS that leans on our java-based DE 

structure and an authoring tool have been implemented. 

They are composed of a rule engine, that triggers the CIG 

rules in a runtime production environment and of an 

authoring tool to ease the CPG updating process. 

1) Rule Engine 

A rule engine can be defined as any system that 

implements rules, which when applied to data result into 

an outcome. In our case, rules come from the formalized 

CIGs and inputted patient data are evaluated to return the 

treatment that best fits the clinical case. Following 

Drools4, we have built up a java-based rule engine with 

two main components (i) an automatic rule file generator 

in Drools Rule Language (.drl extension) leaning on our 

java-based Rule object (contained within the DE 

formalization) and (ii) a standalone runtime execution 

environment. The first module assures that our system is 

domain independent and will work for any CIG 

formalized following our java structure. To achieve these 

objectives, Rule Templates5 were used.  

 
Fig. 2. Screenshot of the drl template used for CIG formalization. 

These templates write the pattern of the rules, and 

populate them after with concrete rules content, 

generating a .drl file from java objects specifications. In 

our approach, four attributes are specified in the Rule java 

object to be mapped with the template: name (i.e. the 

name of the rule), object (i.e. the patient to be analyzed), 

condition (i.e. the conditional part of the rule to be 

accomplish by the patient clinical data) and action (i.e. 

the recommendations defined by the rule). First, 

formalized CIGs are retrieved from a source (e.g. xml file, 

database) and stored into the Rule java object. This Rule 

object is transformed into a Java Map object that 

simplifies its complexity into four key attributes and their 

values to be mapped to the template, where each attribute 

will be substituted by its value in the Java Map object. 

Once all rules are mapped, the final .drl file is generated 

and is ready to be triggered by the standalone runtime 

execution environment. If, in any case, the rule base needs 

any update or modification, the new rule will be added 

                                                           
4 https://www.drools.org/ 
5https://docs.jboss.org/drools/release/7.6.0.Final/drools-
docs/html_single/#_rule_templates 

following the same procedure, extending the existing .drl 

file with the new reported knowledge in a dynamic way. 

2) Authoring tool for CPG formalization 

In order to provide clinicians with a tool to easily 

formalize, update, and maintain CIGs, an authoring tool 

mapped in the backend with our java Rule object was 

built. First, the conditions that compose the rule are 

defined. Different combo boxes are provided to the user 

that query the ontology depending on the selected value. 

This means that if in the first combo box where the 

variable name should be selected the clinician clicks on 

“Age” the condition value will be restricted to the 

possible values defined for that variable in the ontology 

(i.e. natural numbers). The condition operator will be also 

filtered depending on the studied variables, since 

categorical and numerical values cannot be evaluated the 

same way. Once the condition is fulfilled, a binary 

operator can be selected (i.e. AND, OR) for including 

more conditions or end building the rule by defining the 

recommendation. 

Fig. 3. Screenshot of the authoring tool GUI for the definition of new rules. 

Modifications made by clinicians are automatically 

added into the knowledge base and used for updating 

the .drl to the latest version. 

B. Experience-based CDSS 

In some cases, the GL-based CDSS is insufficient to 

provide recommendations for particular clinical cases. To 

cope with those grey areas of CPGs, an Experience-based 

CDSS is proposed, which focuses on (i) the augmentation 

of CPGs with new experience-based rules and (ii) the 

assessment of the clinical evidence reported in the rules 

using patient-reported outcomes. Both tasks totally rely 

on the DE structure for the new knowledge computation. 

1) Experience-based rules generation 

The main objective of this module is to create new 

rules based on the experience of the clinicians that will 

cope with CPG non-compliant decisions. If the clinician 

considers that the proposed CPG-based recommendations 

are not adapted to the studied clinical case and he/she 

decides to not follow guidelines, the Experience-based 

CDSS will need the justification of this decision, i.e. non-

compliance criteria. Then, the clinician decision is 

specified, and this information is stored. Using the 

triggered rules, the clinical data of the patient, the non-

compliance criteria and the final decision, a new rule is 

built as explained in [7].  This new rule is integrated 

within the rule base of the GL-CDSS to be triggered in 



 

 

case of upcoming similar clinical cases. All the 

information generated in compliant and non-compliant 

cases is stored as new DEs to be exploited later when 

computing different measurements, such as the clinical 

evidence assessment. 

2) Clinical evidence assessment  

Different outcomes are analyzed to assess the impact of 

the treatment executed for a patient. In our previous work 

[15], we analyzed three different kinds of outcomes (i.e. 

treatment response, toxicities and adverse events, and 

patient-reported outcomes) for computing quality 

measurements, such as the usability and strength of the 

experience-based CDSS propositions, based on the past 

DE. These measurements are reflected in the rule defining 

that treatment as recommended. This allows not only to 

update the quality or strength of CPG-based 

recommendations but also to evaluate and validate the 

new experience-based propositions. 

C. Data Mining-based CDSS 

Purely rule-based CDSSs have some limitations since 

they require explicit knowledge definition of the studied 

clinical domain which is a very time-consuming task [16]. 

The data mining-based CDSS proposes to exploit the data 

directly to seek for new clinical knowledge that was not 

identified in guidelines, or to evaluate the already 

reported knowledge with evidence. Different machine 

learning techniques are proposed in the literature as 

supportive CDSS with good results [17]. One of the most 

used techniques is based on decision trees (DTs) [18], 

[19], since clinicians are quite used to this kind of data 

representation and evaluation.  

1) Decision tree model generation 

DTs are classification methods widely used for 

mining large datasets [20]. It relies on a hierarchical 

structure or tree that groups homogeneously data 

according to the variable to be predicted (e.g. predict if 

the patient will survive or not). The tree structure is made 

of nodes and depending on their position they will 

represent a recommendation (i.e. termination node) or a 

conditional part to be accomplished by the evaluated 

variables (i.e. non-termination nodes). The termination 

nodes define the stop criterion to abort the recursive 

partitioning into branches during the learning process of 

the model. Hence the model applies recursive partitioning 

until a stop criterion is reached. Our approach implements 

the most frequently used DTs (e.g.  C4.5/J48, C5.0) using 

different toolkits for recursive partitioning from R [21], 

such as partykit [21], rpart [22], C50 [23], and R/Weka 

[24]. As these models provide suitable results when 

supporting the reasoning process and replicate the 

reasoning workflow of a clinician, they have high 

acceptance rates among clinicians. Nevertheless, some 

clinicians require flexibility to modify or update the 

automatically generated DT [25]. To overcome this 

limitation, an authoring tool was built. 

2) Authoring tool for DT modification 

An authoring tool is meant to provide a tool allowing a 

user to edit or update content in an easy-to-use way. 

There are several software proposals for the creation and 

visualization of DTs, such as Orange6, RapidMiner7, 

Weka8 or KNIME9. These tools can generate different 

machine learning models, visualize them and test them. 

Nevertheless, they do not allow any modification once the 

model is generated, restricting the interaction with the end 

user. Other approaches give some tools for interacting 

with the user while creating the model [26], [27]. They 

visualize the dataset to be modelled to give the clinician a 

way to define more accurately the nodes of the tree. The 

main pitfall is that these visualizations are difficult to 

understand and hence, difficult to interact with for the end 

user. In our approach, the authoring tool allows editing 

DTs built from machine learning techniques for adding 

experts’ knowledge. When new cases with non-modelled 

information are introduced into the system, our authoring 

tool allows the clinician to model this new knowledge and 

extend the model. Since it is mapped with the Rule java-

object in the backend (Authoring tool for CPG 

formalization alike), the node definition of the authoring 

tool is equal to the condition definition. Hence, this model 

could easily be translated into rules and be added into the 

rule base, along with the CPG and experience-based rules.  

 
Fig. 4. Screenshot of the authoring tool GUI for the definition of a DT. 

IV. VISUAL ANALYTICS 

This module provides a research tool to visualize 

different results coming from the DE structure and clinical 

data. We provide two main screens: (i) a statistical 

dashboard with different information about administered 

treatments, outcomes, and compliance and (ii) parallel 

coordinates to show patterns among the studied clinical data 

for a given outcome.  

The statistical dashboard focuses on the executed treatment, 

the outcomes, and the compliance and non-compliance 

                                                           
6 https://orange.biolab.si/ 
7 https://rapidminer.com/ 
8 https://www.cs.waikato.ac.nz/ml/weka/ 
9 https://www.knime.com/ 



 

 

criteria. First, a general overview of the executed treatments 

is given, showing the frequency of their administration. 

Outcome results are also analyzed, focusing on results as 

relapses and toxicities, where not only toxicity rates but also 

the kind of toxicity observed are given (e.g. toxicities can be 

described following the CTCAE [28] terminology, where 

five different grades describe the severity of the reported 

toxicities). Moreover, since data is retrieved from the DE 

stored over time, we can also explore compliance rates. We 

describe the compliant and non-compliant cases percentages 

with detailed information (i.e. the non-compliant criteria are 

described and shown in a graph with their usage 

percentage).  

The parallel coordinates (see fig. 5) represents the main “n” 

clinical attributes as perpendicular axis, organized by their 

correlation level for a given outcome, having most 

correlated attributes next to each other [29]. Each clinical 

case will draw a horizontal line joining the values of the 

analyzed clinical attributes.  Moreover, clinical cases will be 

grouped depending on a particular outcome (e.g. toxicity 

level), showing a color scale that classify them. This 

visualization type allows seeking for new patterns and 

insights among the clinical data in an easy and user-friendly 

way for the clinicians. 

 
Fig. 5. Screenshot of the parallel coordinates visual analytics. 

V. USE CASE: BREAST CANCER MANAGEMENT 

We present a simplified use case in primary breast cancer 

at the diagnostic stage. We implemented the local protocol 

of Onkologikoa hospital as the knowledge base of the GL-

CDSS. A simplified dataset of about 300 patients with 15 

attributes was used for the DT generation implemented in 

the data mining-based CDSS, having as outcome the 

appearance of toxicities.  

 
Fig. 6. The DT obtained from the primary breast cancer simplified dataset. 

First, we generated the DT considering the different 

treatment groups available for treating primary Breast 

Cancer in diagnostic stage (i.e. surgery, oncology). The first 

node of the tree split the dataset by treatment group, 

predicting 0.99 of probability of having toxicities when 

treated with oncology versus 0.01 of probability for surgical 

interventions. Hence, we decided to regenerate the model 

ignoring this variable and we observed that patients with a 

tumor size larger than 7.5 mm and a Breast Cancer Stage 

equal to IIB, IIIA or IV had a probability of suffering any 

toxicity of 0.86 (orange path in fig.6). For patients with any 

other Breast Cancer Stage, a Ki67 lower than 72.5%, cT 

equal to cT4b or cT4c and age between 45 and 71 years, the 

score was 0.83 (green path in fig.6). We simulated a patient 

that matched those criteria and the guidelines gave a 

neoadjuvant treatment recommendation for the first case and 

an hormonotherapy for the second case. Thus, using the 

experience-based CDSS, clinicians could generate a new 

rule for patients that match the conditions discovered in the 

DT, defining a less aggressive treatment as final decision 

and a non-compliant criteria of high toxicity probability. 

VI. DISCUSSION AND CONCLUSION 

In this paper a multimodal CDSS is presented, combining 
guideline-based CDSS, experience-based CDSS and data 
mining-based CDSS. This multimodal CDSS aims to cope 
with the non-compliance of the guidelines by providing 
complementary propositions coming from alternative 
sources. A Decisional Event structure is presented aiming to 
overcome the issue of the lack of previous practice 
performance and its evaluation, as it stores all the 
information related to the decision-making process in a 
processable way. Some visual analytics were proposed to 
explore these results in a user-friendly way. Finally, 
authoring tools for these CDSS are presented to include the 
clinician actively in the review and update process of new 
clinical evidence.  

As future work, we will extend this architecture to be fed 
directly from the EHR, hence, being totally integrated in the 
clinical workflow and we will explore its potential for 
epidemiological studies. 
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