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Anticipating system failures using predictive strategies based on efficient prognostics has become an important topic in manufacturing where 

maintenance plays a crucial role. As such, promising prognostics approaches use data-driven machine learning techniques, though the initial 

data set for learning is often small as failure occurrences are rare. Therefore, this study investigates data augmentation methods for improving 

prognostics by increasing data set size using samples generated by altering existing ones. First, a method is proposed for quantifying the gain 

from additional data. Thereafter, augmentation methods are assessed through a benchmark. Finally, contributions are illustrated in a steel 

industry case-study. 
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1 Introduction 

Maintenance plays a key role in ensuring asset availability and 

optimizing productivity of manufacturing plants. Preventive 

maintenance is standard with regularly scheduled operations in 

place to prevent failures. However, this method results in 

maintenance which is performed too soon and is not able to 

prevent unusual failures [1]. Thus, predictive maintenance [2] has 

gained attention. This method requires monitoring the system 

health in a diagnostic step and predicting its evolution by 

estimating the remaining useful lifetime (RUL) in a prognostics step. 

This RUL is then used to optimize maintenance decisions knowing 

that its uncertainty affects the decision optimization efficiency. 

Many methods are available for prognostics, including data-

driven ones, which are promoted today by the introduction of the  

Industry 4.0 paradigm [3]. Nevertheless, data-driven approaches 

need a significant amount of learning examples and for prognostics 

those examples mostly consist of recorded time series of the 

system degradation. Still, occurrences of failure and degradation 

are often rare, and a long-recorded process is necessary to collect 

a representative dataset. Therefore, new systems or newly 

instrumentalized ones present only a few samples. These small 

datasets reduce the efficiency and precision of data-driven 

prognostics which may lead to an increase of the RUL uncertainty 

impacting the decision-making optimization (e.g. too-soon 

reparation, un-avoided failure) and the lack of generalization to 

new failure modes, less represented in historical data [4]. Finally, 

from a practical point of view, physical models are rarely available 

for industrial systems, especially new ones. Thus, prognostics 

approaches must be with no prior system knowledge and end-to-

end prediction models need to be considered. 

To combat this problem, a newly emergent approach called Data 

Augmentation can be used to increase dataset size and improve 

prognostics results. However, it has not yet been fully developed to 

support efficient prognostics on industrial datasets [5] and is less 

represented in prognostics literature than other approaches such 

as meta-models. In addition, its use for prognostics end-to-end 

regression on time-series and run-to-failure datasets has not 

currently been considered.  

Therefore, this study seeks to characterize the performance loss 

of small datasets, then evaluate the performances of general data 

augmentation methods for industrial prognostics, first on a 

simulated dataset, then an industrial case-study from the steel 

industry. Finally, to improve the performances of the industrial 

dataset, a specific data augmentation method based on expert 

knowledge is proposed. 

Following from here the remainder of the paper is structured as 

follows:  Section 2 describes a problem statement for identifying 

issues on data augmentation for prognostics; Section 3 presents a 

method to combat these issues by using a simulation-based 

prognostics dataset; Section 4 introduces a steel industry case 

study to illustrate the proposed contributions; and finally 

conclusions and future works are presented in Section 5. 

2 Problem Statement on Data Augmentation for Prognostics 

The robustness and performance of data-driven or data-based 

approaches is directly related to the size of the dataset. Indeed, it 

is shown that smaller datasets may reduce the prognostics 

performance [6], but the impact of dataset size on the prognostics 

performance is still an open scientific issue which should be 

addressed. As a first scientific issue, this study seeks to assess what 

performance gain can be obtained by adding data to a small 

prognostics dataset. This can be achieved either by waiting for 

further data monitoring or by applying data augmentation in an 

emergent way. Data augmentation consists of generating new 

learning samples from an available dataset by applying specific 

modifications to the samples and is widely used in image processing 

for improving classification performance. Formally, existing 

augmentation methods can be specified into two main categories: 

(a) Firstly, if no physical or functional model of the system is  

available, generation can be based on generic data-based methods 

as presented in [7] for time series classification. This review shows 

that data augmentation can improve classification predictions. 

However, these methods do not focus on data augmentation for 

prognostics. Therefore, the current study intends to extend the 

data augmentation benchmarks to the industrial system 

prognostics and to assess its performance gain on maintenance 

decision-making. This is identified as the second scientific issue. 

(b) Secondly, if models of the system are available, model-based 

approaches consist of generating new samples through simulations 

[8]. But in the case of new systems, physics-based models are rarely 

available, and even when they are, the industrial complexity is 

usually too high to have a relevant model of the whole system. 

However, in practice, expert knowledge is often available during 

the system design step [9], e.g., thanks to functional analysis or 

Failure Mode and Effects Analysis (FMEA) [10]. Nevertheless, 

exploitation of this knowledge within certain data augmentation 

methods has not yet been attempted and is a third scientific issue 

to be solved in order to obtain efficient prognostics. This last issue 



is addressed in Section 4 by proposing a knowledge-based method 

using data augmentation for prognostics while the two first issues 

are studied in Section 3 from an existing prognostics dataset. 

3 Data augmentation for prognostics 

The first two issues are explored using an existing prognostics 

dataset based on simulated turbofans [11]. The study focuses on a 

dataset that considers one degradation mode and one operational 

condition. A state-of-the-art prognostics model is used for end-to-

end modeling of this dataset, which is based on Long Short-Term 

Memory (LSTM) networks [12]. Even still, it requires an important 

amount of training data. 

3.1 Prognostics performance on smaller datasets 

To study the link between dataset size and the loss of prognostics 

precision, the model has been trained on subsets randomly picked 

among the original dataset with size 𝑖 ∈ [75%, 50%, 25%, 10%]. 

The prognostics performances depend on the subsets data 

distributions and by repeating experiments on twenty random 

picks, representativity of the results can be ensured. When 

comparing subsets, the picks were performed such as, with 𝐷𝑖%
(𝑗)

 

the 𝑗-th pick of the subset of size 𝑖, 𝐷𝑖1%
(𝑗)

⊂ 𝐷𝑖2%
(𝑗)

, ∀𝑖1 < 𝑖2, ∀𝑗. The 

network was then trained twenty times for each pick with random 

weight initializations in order to evaluate the robustness of the 

learning. Finally, the results were evaluated on a common test set 

never seen during the training step [11] and the performance was 

measured using root mean squared errors (RMSE) similar to other 

works conducted on this dataset [12]. The results are shown as 

boxplots for each subset size in Figure 1. 

 
Figure 1 – Prognostics performances depending on the size of the 

training subset. The rectangles correspond to boxplots: middle bar 

is the median, edges are the first and third quantiles (Q1-Q3), bars 

are the span of values and points are outliers. The dashed diamonds 

are the 𝑚𝑒𝑎𝑛 ± 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒. 

Figure 1 shows both a decrease in average precision and an 

increase in the dispersion between trainings as the number of 

samples decreases. It is noted that the increase in the dispersion 

may be caused by the model’s hyperparameters being optimized 

for the full dataset. 

The ability to predict the increase in performance as the number 

of samples increases would be useful. So, it is found relevant to fit 

a function 𝑅𝑀𝑆𝐸𝑚𝑒𝑑𝑖𝑎𝑛 = 𝑓(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠)  to the datasets. The 

median RMSE is used to reduce the impact of dispersion and 

outliers on small datasets. The following model is proposed in the 

literature for other kinds of predictions, for instance as [13] for 

classifiers, with 𝑛 ∈ [0%, 100%] the dataset size: 

 𝑅𝑀𝑆𝐸(𝑛) = 𝑅𝑀𝑆𝐸∗ + 𝑐1 ∗
log(c2∗𝑛)+1

1

2
∗𝑐2∗𝑛

 (1) 

The model was fitted on the previous median results from 0% to 

75%  and validated on 100% . This corresponds to how 

augmentation expected gain would be predicted in a new 

application. Thus, the following fitting was obtained: 

𝑅𝑀𝑆𝐸∗ ≅ 11.5 𝑐1 ≅ 4.5 𝑐2 ≅ 0.21 

After fitting from 0% to 75%, the RMSE value at 100% was 

estimated with an error of 0.013, which is an acceptable result as 

𝑅𝑀𝑆𝐸(100%) ≅ 13.6. In conclusion, this calculation showed the 

suggested model is relevant for evaluating the gain obtained by 

increasing the size of a dataset in prognostics. The function is then 

fitted when new prognostics applications must be considered. 

3.2 Benchmark of generic data augmentation for prognostics 

To gain insights about method selection, the performance of the 

state-of-the-art machine learning model was used as a benchmark 

for the dataset augmented by several methods. This is done on the 

25% subset, which presented an important performance drop and 

the 10% subset was not selected due to its many outliers which 

would reduce the ability to interpret the results. All further 

experiments were performed based on the protocol of subsection 

3.1, where the same picks were used to ensure consistency and 

comparisons between results. The data augmentation methods 

tested were selected from the list proposed by the review in [7] 

among which a selection has been done based on the type of data 

present for turbofans application. Frequency-based methods were 

ignored because they could not adapt to this non-vibratory dataset. 

Similarly, generative models requiring large amounts of data or 

expert knowledge have been put aside. Three families of method 

have been selected: 

1. Random magnitude transformations, including jittering and 
magnitude warping. With 𝒙 = [𝑥1, … , 𝑥𝑡 , … , 𝑥𝑇] a nominal time 
series trajectory and 𝒙𝑚𝑒𝑡ℎ𝑜𝑑

′  the augmented trajectory using 
the augmentation method: 

{
𝒙jittering

′ = 𝑥1 + 𝜖1, … , 𝑥𝑡 + 𝜖𝑡, … , 𝑥𝑇 + 𝜖𝑇 with 𝜖1, … , 𝜖𝑇 ∈ ℝ

𝒙mag. warping
′ = 𝛼𝒙 with α∈R

 

2. Pattern mixing methods in the form of samples 
interpolation: 

𝒙interpolation
′ = 𝒙𝒂 + 𝜆(𝒙𝑏 − 𝒙𝑎) with 𝜆 ∈ [0,1] 

3. Random time-based transformations, including time slicing 
and time warping; time permutation was avoided because it was 
not suitable to run-to-failure data: 

{
𝒙time slicing

′ = 𝑥𝜙, … , 𝑥𝑡 , … , 𝑥𝑊+𝜙 with 1 ≤ 𝜙 ≤ 𝑇 − 𝑊

𝒙time warping
′ = 𝑥𝜏(1), … , 𝑥𝜏(𝑡), … , 𝑥𝜏(𝑇) with 𝜏(∙) warping func.

 

Unlike specific data augmentation approaches, the generic 

nature of these methods can be applied to a sample without 

feature selection or system knowledge. Therefore, these methods 

are more relevant to prognostics with no prior knowledge. 

The performance of each method was then evaluated on the 25% 

subset by individually applying it to the trajectories and training the 

model on this augmented dataset. For each original sample of the 

25% dataset, two additional samples were generated with different 

values of the augmentation parameters. Those parameters’ ranges 

were optimized to acquire the best performance for each method. 

The results presented in Figure 2 show that all but one method 

(magnitude warping) improved the prediction performances. Both 

the median and dispersion of the error are reduced, improving the 

prediction accuracy and the regularity among trainings, i.e., the 

robustness of the learning algorithms respectively. It must be 

noticed that magnitude warping decreased the performances and 

this negative effect confirms the importance of method selection. 

The results are analyzed to provide insight for method selection. 



 
Figure 2 – Performances of data augmentation. Red ones are un-

augmented datasets. “Duplicated” corresponds to an 

augmentation where some trajectories are just copied, to serve as 

reference.  

Prognostics learning data is run-to-failure for multi-variate time 

series, where the last samples correspond to the failure states. Just 

before the failure, several signals approach critical thresholds. 

Therefore, any amplitude modification might obtain signals over 

this limit and generate non-physics related information. This would 

decrease the performance on future data. This hypothesis is 

verified by the poor results seen for magnitude warping, which 

reduces the performance. Contrarily, time warping is adapted to 

prognostics as it can model the increasing or decreasing of 

degradation speed. It is in agreement with the diversity of 

trajectories met in such datasets and serves to enrich them. The 

results validate this insight, with time warping being one of the 

most efficient methods tested, with an average precision 

improvement of 4%. Finally, pattern mixing methods can be quite 

efficient if the considered degradation trajectories can be 

combined. This property is highly dependent on the actual case and 

would need extra care. The results confirm this hypothesis, with 

exceptionally efficient results for interpolation, showing an average 

precision improvement of 11%. Indeed, the present dataset 

includes only one degradation mode and one operating condition. 

Additionally, model characteristics can also be considered to select 

methods. LSTMs predictions at time 𝑡  depend on previous 

predictions and internal states at 𝑡 − 1. Hence, learning on the first 

samples of a trajectory is different than the rest. Augmentation 

methods supplying new origins of time to LSTMs can thus be 

efficient. This hypothesis is verified by the good results of time 

slicing.  

Eventually, an improvement of the average RMSE on the RUL 

from 17 to 15 is observed. The predicted RUL corresponds to the 

number of working cycles remaining before failure, hence the 

prognostics accuracy improved up to 2 working cycles. When 

applied to decision-making, this improvement is large enough to 

allow for maintenance decisions to be postponed to a more 

appropriate time. Similar results were obtained using a simpler 

Support Vector Machine (SVM), but to a lesser extent.  

In conclusion, for prognostics applications, time-based data 

augmentations are quite efficient when modifying the temporality 

of the problems and supplying new relevant trajectories. On the 

contrary, amplitude-based data augmentations modify the physical 

properties of the problem and tend to degrade performances. 

Finally, pattern mixing-based methods are efficient but need extra 

care to ensure their physical representativity. 

4 Case study: descaling hydraulic circuit 

The considered data augmentation methods are now illustrated 

on the hot strip mill (HSM) process of an ArcelorMittal steel plant 

(Florange, France). Each stop on the line is financially (10k€/h) and 

environmentally (CO2) expensive as the reheating furnaces are not 

shut down. So, the main maintenance objective at ArcelorMittal is 

to reduce unwanted stops. The case study is focused on the 

descaling process of HSM which is a mandatory step for product 

quality and thus any component failure leads to an immediate line 

stop. Technically speaking, descaling involves high-pressure water 

projected onto hot steel plates which removes scale, a surface 

oxide. The hydraulic circuit is composed of standard components: 

pumps, valves, pipes, and nozzles with the system sensors 

monitoring pressure, temperature, flowrate, vibrations, etc. 

Regularly planned stops of various lengths are available for process 

and maintenance operations. Decision-making mostly consists in 

selecting the best time for a stop to perform maintenance 

operations before failure. As a result, decision-making needs 

consistent RUL to effectively decide whether to skip an available 

stop for the next one or not. Given the available instrumentation, 

data-based approaches are preferred for prognostics as physical 

models are not precise enough on such complex systems under 

high constraints. However, new pumps have been recently installed 

so only a limited amount of historical data is available. Hence, data 

augmentation is expected to provide improvement of the learning 

algorithms related to the pumps. Firstly, thanks to the previous 

analysis, expected improvements from additional data are 

estimated. Then, selective data augmentation is applied to improve 

the pump prognostics and start predictive maintenance before the 

end of failure data gathering. In addition, the third issue mentioned 

in section 2 regarding “knowledge-based augmentation”, is 

addressed by presenting a methodology of data augmentation 

combining knowledge from functional analysis and FMEA. 

4.1 Potential improvement from augmentation/additional data 

The current failure dataset of the pumps consists of 16 

trajectories composed of two failure modes under one operating 

condition. Since only a limited number of trajectories are available, 

a simpler Support Vector Machine (SVM) regressor model is used 

to predict the RUL of the pumps which also serves to reduce the 

model development time. Given the small amount of data, a test 

set could not be defined without reducing the available training 

data, hence the following results are obtained using cross 

validation. Thanks to equation (1), the expected performances are 

estimated. The prognostics RMSE is computed for various dataset 

sizes, and equation (1) is fitted as shown in Figure 3. The fitted 

coefficients are, with 𝑛 the number of samples: 

𝑅𝑀𝑆𝐸∗ ≅ 23.1 𝑐1 ≅ 1.3e15 𝑐2 ≅ 2.5e14 

The fitting shows that the RMSE could eventually get down to 23 

hours, as opposed to 47 with the 16 samples evaluated. Moreover, 

if data augmentation is used to triple the dataset size as done 

previously, the RMSE could be improved by up to 10 hours. As 

regular stops on the line happen every 8 hours, this gain could 

improve the maintenance decision range by one full working cycle. 

Nevertheless, those results shall be considered with care as the 

fitting has been done on a small number of samples. However, they 

justify the implementation of data augmentation on this use-case 

to improve prognostics before further data gathering. 

4.2 Data augmentation on industrial use-case  

From the conclusion on data augmentation efficiency for 

prognostics, the previous methods have been applied and adapted 

to signal specificities. Pressure signals were not modified in 

amplitude as the pumps are regulated. Time warping was not 

applied to vibration signals to avoid altering frequency information. 

For each method, 32 additional trajectories were added, and the 

augmented dataset was then used to train the SVM model. The 

obtained performances on the augmented dataset are presented in 

Figure 4, which shows an improvement of average prognostics 

prediction up to 10 hours.  



 
Figure 3 – Prognostics RMSE against number of samples in dataset 

for use-case dataset. Points are medians and error range 

correspond to Q1-Q3. 

 
Figure 4 – Results of prognostics with augmented dataset on 

industrial dataset. Sorted by average RMSE except for duplicating, 

set as a reference. 

According to the predictions from Figure 3, this improvement 

would equate to of 50% increase in data within the dataset. 

Furthermore, though the average and dispersion are significantly 

improved, the median is not. More importantly, data augmentation 

is shown to significantly reduce the dispersion of prognostics 

performances. For industrial companies, this provides more 

confidence in the prognostic’s predictions.  

In the case of ArcelorMittal decision-making, this gain of precision 

would allow more flexibility when choosing stops for maintenance 

operations, and thus reduce the risk of increased stop times or the 

risk of stopping the line specifically for maintenance. 

4.3 Perspective of expert knowledge-based approaches. 

Finally, expert knowledge integration into data augmentation for 

prognostics in industrial applications is addressed.  

Previous results have shown data augmentation is limited when 

applied to a very small industrial dataset. Consequently, the next 

step for prognostics data augmentation is to develop a system-

specific data augmentation method. Advanced simulation models 

are generally not available on such systems. However, expert 

knowledge is normally available and can be used to improve data 

augmentation. For instance, functional analysis (FA) and Failure 

Mode Effects Analysis (FMEA) are often available. 

These analysis methods contain qualitative knowledge about 

links between components / signals and signal evolutions for 

subsequent failure modes. They are not complex enough for data 

generation but may guide data augmentation. This is illustrated 

with a pipe leakage located at the pumps output. The FMEA states 

that, as the new pumps are pressure-regularized, the pressure 

would not fall but their power consumption would rise. The FA links 

a power increase to a vibration modification, modeled by a local 

physics model as a frequency shift linked to the power increase. 

Therefore, new trajectories corresponding to this degradation 

mode would apply augmentation methods accordingly to those 

specificities. Therefore multiple new trajectories can be generated 

by using a distribution of magnitude scaling parameters. In 

conclusion, the proposed knowledge-based approach would 

provide additional data based on system properties and 

characteristics. Due to the lack of data, they cannot be evaluated, 

but do present potential for prognostics, where it was previously 

identified that the best augmentation methods are the ones 

adapted to system characteristics.  

For that reason, further experiments should be conducted to 

validate the preliminary results given by this use-case. 

5 Conclusions and perspectives 

In this paper, the issues regarding small datasets in the case of 

prognostics for industrial systems were addressed through the data 

augmentation technique. First, the potential gain of such 

approaches was evaluated and a model allowing for quantification 

of the impact of dataset size on the prognostics accuracy was 

proposed. It has been tested on a turbofans dataset and used on an 

industrial case-study. Furthermore, several data augmentation 

methods have been implemented and analyzed on the turbofan 

dataset [11]. Their efficiency was assessed and linked to their 

adaptability to the dataset features and prognostics aim. In the 

process a subset of the dataset was augmented and reached similar 

performances to that of a subset twice its size. This work was 

validated on the industrial use-case, whose performances were 

significantly improved. Finally, an augmentation methodology was 

sketched using expert knowledge. The results illustrate the 

importance of augmentation methods parametrization. Further 

work will focus on a deeper characterization of the parametrization 

impact of data augmentation as well as the development of the 

knowledge-based augmentation methodology. 
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