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Abstract

Living in the age of data explosion, the research of solutions for efficient long

term storage of the infrequently used ”cold” data is becoming of great interest.

However, even if existing storage systems suggest efficiency in capacity, they

are lacking in durability. Hard disks, flash, tape or even optical storage have

limited lifespan in the range of 5 to 20 years. Interestingly, recent studies have

proven that due to its biological properties, the DNA is a strong candidate

for the storage of digital information allowing also data longevity. The DNA’s

biological properties allows the storage of a great amount of information into an

extraordinary small volume while also promising efficient storage for centuries

or even longer with no loss of information. However, the biological procedures of

DNA synthesis and sequencing are expensive while also introducing important

restrictions in the encoding process. More precisely the encoding of digital data

onto DNA is not obvious, because when decoding, we have to face the problem

of sequencing noise robustness. This work proposes a coding solution for the

storage of digital images onto synthetic DNA. We developed a new encoding

algorithm which generates a DNA code robust to biological errors coming from

the synthesis and the sequencing processes. Furthermore, we compare this new

algorithm to the state of the art encoding techniques analysing the advantages

of using the proposed method.

Keywords: DNA coding, Image coding, robust encoding, long-term

storage

Preprint submitted to Journal of LATEX Templates April 21, 2022



1. Introduction

Digital evolution has caused an immersive increase in the amount of data

that is being generated and stored. The digital universe is forecast to grow to

over 160 zetabytes in 2025. At the same time studies show that after storage,

80% or more of this data might not be needed for months, years, decades, or5

maybe ever. Old photographs stored by users on Facebook is one such example

of cold data; Facebook recently built an entire data center dedicated to storing

such cold photographs. Unfortunately, all current storage media used for cold

data storage (Hard Disk Drives or tape) suffer from two fundamental problems.

First, the rate of improvement in storage density is at best 20% per year, which10

substantially lags behind the 60% rate of cold data growth. Second, current

storage media have a limited lifetime of five (HDD) to twenty years (tape).

As data is often stored for much longer duration (50 or more years) due to

legal and regulatory compliance reasons, data must be migrated to new storage

devices every few years, thus, increasing the price of data ownership. Several15

projects, for instance at the University of Southampton [1] or at Hitachi [2], are

currently considering new forms of very long term digital storage, using molding

silica glass, which estimated storage length time in the range of the 100 million

year. However, these projects are currently stymied by an important problem

related to space: both developed at most a storage capacity that does not20

exceed 40MBytes per inch, i.e. a very low value compared to the one Terabyte

per square inch capacity reached by any standard hard disk.

An alternative approach may stem from the use of DNA (deoxyribonucleic

acid), the support of heredity in living organisms. DNA possesses three key

properties that make it relevant for archival storage. First, it is an extremely25

dense three-dimensional storage medium that has the theoretical ability to store

455 Exabytes in 1 gram; in contrast, a 3.5 HDD can store 10TB and weighs 600

grams today. Second, DNA can last several centuries even in harsh storage

environments; HDD and tape have life times of five and twenty years. Third,

it is very easy, quick, and cheap to perform in-vitro replication of DNA; tape30
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and HDD have bandwidth limitations that result in hours or days for copying

large Exabyte-sized archives. DNA is a complex molecule corresponding to a

succession of four types of nucleotides (nts), Adenine (A), Thymine (T), Guanine

(G), Cytosine (C). It is this quaternary genetic code that inspired the idea of

DNA data storage which suggests that any binary information can be encoded35

into a DNA sequence of A, T, C, G. The main challenge lies in the restrictions

imposed by the biological procedures of DNA synthesis (writing) and sequencing

(reading) which are involved in the encoding process and introduce significant

errors in the encoded sequence while also being relatively costly (several dollars

for writing and reading a small strand of nucleotides).40

In this paper we make a very first step in introducing image compression

techniques for long term image storage onto synthetic DNA. One of our main

goals is to allow the reduction of the cost of DNA synthesis which nowadays

can be very high for storage purposes. Unlike previous works that have been

transcoding directly binary sequences onto DNA, our coding algorithm is applied45

on the quantized wavelet coefficients of an image. To this end, the proposed

solution is optimized thanks to a source allocation process, which from now

on will be called nucleotide allocation, across the different wavelet subbands by

taking into account the input data characteristics. The desired compression rate

can then be chosen, allowing to control the number of nucleotides to generate50

and thus, the DNA synthesis cost. Furthermore, we have developed a new

encoding algorithm which generates a DNA code robust to biological errors

coming from the synthesis and the sequencing processes.

In section 2, we are presenting some existing pioneer works on the topic of

DNA data storage which is relatively new to the field of digital data storage.55

The difficulties and constraints are discussed in section 3 while in section 4 we

present the general procedure and the main parts of the DNA coding of digital

data. In section 5, we describe analytically the algorithm proposed in this work,

including the construction of the code as well as the mapping of the source values

to DNA codewords. Then, in section 5.4, we compare our proposed encoder to60

some state of the art works and evaluate the performance of our algorithm in
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section 6. Finally, in section 7, we analyse all the processes needed to create

the DNA strands and pass from the digital world to the biological form of DNA

providing information about the wet lab experiment that has been carried out

during this study.65

2. Existing works

Recent works tackle the problem of digital data storage onto DNA still leav-

ing room for further improvements that could finally bring the idea of DNA

data storage into practice. In [3] there has been a first attempt to store data

into DNA while also providing a study of the main causes of biological error. In70

order to deal with errors, previous works in [4] and [5] have suggested dividing

the original file into overlapping segments so that each input bit is represented

by multiple DNA sequences (oligos). However, this procedure introduces ex-

tra redundancy and is poorly scalable. Other studies [6],[7] suggest the use

of Reed-Solomon code in order to treat the erroneous sequences while in [8] a75

new robust method of encoding has been proposed to approach the Shannon

capacity. Finally, latest works in [9] have introduced a clustering algorithm to

provide a system of random-access DNA data storage. Nevertheless, all these

approaches mainly try to convert a binary bit stream onto a DNA sequence

without considering the original input data characteristics. In addition to this,80

as the DNA synthesis cost can be really high it is extremely important to take

full advantage of the optimal compression that can be achieved before synthe-

sizing the sequence into DNA. Although previous works have used compressed

data such as images in a JPEG format, the final encoding has been carried out

on the compressed bit stream without interfering to the compression procedure.85

In this work, parts of which have been also presented in [10] and [11], we

present a new efficient encoding algorithm which is highly robust to the sequenc-

ing error and deals with the ill-case sequences containing pattern repetitions.

The construction of the code is strongly linked to some biological constraints

presented in section 3. This code is embedded in a coding workflow for the stor-90
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age of digital images onto synthetic DNA. The proposed solution optimizes the

trade-off rate-distortion thanks to a nucleotide allocation algorithm and is able

to compress an input image without affecting strongly its visual quality. Even

though the compression scheme presented in this work uses very simple com-

pression techniques and might not show the highest compression efficiency, with95

this paper we prove that controlling the end-to-end process allows to minimize

the DNA synthesis cost.

3. A constrained problem

DNA data coding is the process of encoding a stream of data into a quater-

nary sequence using the alphabet {A, T,C,G} to be synthesized into DNA and100

safely stored for many years without loss of information. The stored DNA can

be retrieved using the biological process of DNA sequencing and then decoded

to reconstruct the stored digital data. It is consequently a multidisciplinary

subject which involves the numerical processing of encoding and decoding of

digital data and the biological procedures of DNA synthesis (writing) and se-105

quencing (reading). Those two last mechanisms are very error-prone imposing

fundamental restrictions to the encoding workflow. DNA synthesis is an error-

free procedure as long as the DNA strands to be synthesised do not overpass

the length of 150-200 nts. For longer sequences the synthesis error increases

exponentially. Consequently to eliminate this error to zero the DNA sequences110

to be synthesized need to be cut into short pieces and formatted in such a way

that the initial sequence can be reconstructed in the decoding part. Detailed

explanation for the formatting of the DNA sequence will be given in section 7.1.

On the contrary, the biological procedure of DNA sequencing introduces much

error which can not be neglected and therefore there is a need for dealing with115

the erroneous oligos produced by the sequencer. Studies have shown that the

two main factors causing errors in the sequenced oligos are the following:

• Homopolymers: Consecutive occurencies of the same nucleotides should

be avoided.
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• G, C content: The percentage of G and C in the oligos should be lower120

or equal to the one of A and T.

• Pattern repetitions: The codewords used to encode the oligos should

not be repeated forming the same pattern throughout the oligo length.

Taking into account all the above rules the sequencing error can be reduced.

Consequently, in this work we propose in section 5.1 a novel efficient encoding125

algorithm which encodes the quantized wavelet coefficients using codewords that

respect those biological constraints.

4. Overview of the general coding process

As shown in figure .1, our proposed workflow consists of 4 main parts. The

first part is image compression where the data has to be compressed using a130

DWT and quantizing each subband of the wavelet decomposition independently.

In order to optimize the compression we use an optimal nucleotide allocation

algorithm, which works similar to the bit allocation algorithms described in

[12],[13] and [14], designed to serve the restrictions of the DNA coding process

as described in the section 3. This allocation serves to the choice of an optimal135

quantization step for each wavelet subband for storing the maximum possible

bits in one nucleotide for a given encoding rate. Consequently, the number of

oligos to be synthesized is minimized for a specified image quality. In the second

part of the workflow the quantized subbands are independently encoded into a

quaternary code of A, T, C and G using a novel encoding algorithm robust to140

sequencing error (see section 5.1). The encoded sequences are then cut into

chunks and formatted adding headers to produce the final oligos. Those oligos

are then processed biologically in vitro so that in the third part of the process

they are being synthesized into DNA and stored. After amplification (PCR

process) and sequencing, a set of oligos is retrieved. Finally, the last part of145

the scheme corresponds to the decoding and reconstruction of the initial image

from the sequenced oligos. All those sub-parts of our encoding workflow are

described in detail in the following sections.
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5. Our proposed encoding algorithm

5.1. Construction of the code150

The purpose of the DNA data coding is the encoding of some input data using

a quaternary code composed by the alphabet {A, T,C,G} to be later synthesized

into DNA. Let Σ = {s1, s2, . . . , sk}, with |Σ| = k, be a set of symbols to be

encoded into a set C∗ = {c1, c2, . . . , cL} of L quaternary codewords of length

l ∈ N \ {0, 1}. The goal of this encoding algorithm is to generate the code Γ155

where Γ : Σ → C∗. We denote Γ(si) = ci the codeword associated with the

symbol si ∈ Σ.

The algorithm for the construction of the code C∗ is guided by the restric-

tions imposed by the biological procedures included in the process of DNA data

coding. The main idea is the creation of codewords from a set of duplets (pairs160

of symbols) which create an acceptable sequence when assembled in a longer

strand. This means that this assembly creates no homopolymer runs and con-

tains a percentage of G and C which is lower or equal to the percentage of A and

T. More precisely, the codewords are constructed by selecting elements from the

following dictionaries:165

• C1 = {AT,AC,AG, TA, TC, TG,CA,CT,GA,GT}

• C2 = {A, T,C,G}

Dictionary C1 is composed only by pairs of symbols that when assembled

in a longer strand will respect some biological restrictions. To ensure that the

code does not create homopolymers, the dictionary C1 does not contain pairs of170

the same symbol. This means that the pairs AA, TT, CC, and GG are omitted.

Furthermore, to keep the C and G percentage lower or equal to the one of A and

T the pairs GC and CG are also not included. To verify this last claim we have

computed the evolution of the A,T and G,C percentages created using our code

for a source of symbols that follows a Gaussian distribution, in function of the175

dynamic of the source. The result is illustrated in figure .2. Consequently until
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this point it is clear that our encoding process respects the first two restrictions

described in 3.

Then, codewords of an even length l are constructed by selecting l
2 pairs

from dictionary C1. Codewords of an odd length are constructed by selecting180

l−1
2 pairs from C1 also adding a symbol from C2 at the end of the codeword.

More precisely, for the construction of a codeword of length l the first b l−12 c

nucleotide pairs will be filled by choosing symbol pairs from C1. There are

10b
l−1
2 c different choices for filling each those first nucleotide pairs. Then, to fill

in the last nucleotide in the case of and odd length codeword, or equivalently185

the last pair of nucleotides in the case of an even length codeword, one should

choose a symbol from C2 or a last pair of symbols from C1 respectively. At this

point it is necessary to mention that if the number k of different symbols sk to

be encoded is lower or equal to 4 we avoid an encoding using only symbols from

dictionary C2. This is due to the fact that in the case where the same symbol190

sk is repeated many times consecutively in the input sequence, the encoding

can create either homopolymer runs or pattern repetitions. Consequently, even

though it is feasible, an encoding rate R = 1 nucleotide/symbol is avoided in

order to ensure robustness of the code. As a result the codebook size L is given

by the following relation.195

L =

10
l
2 , if l is even

10
l−1
2 ∗ 4, if l is odd

It is obvious that the codebook length increases at an order of O(n). More

specifically, in the worst case where one needs to add an extra pair of symbols

to the codeword length to cover the needed size k of symbols to be encoded

into quaternary, the codebook size L will be multiplied by 10. This codebook

extension can be relatively big compared to the encoding needs and can pos-200

sibly leave a big part of codewords unused. However, this unused part can be

exploited to deal with the last biological restriction of pattern repetitions which

can occur in the case where the same symbol is repeated many times in the ini-
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tial sequence. The idea is to replicate m times k into L so that each symbol in

Σ is represented by more than one codewords in C∗ in such a way so to make use205

of the full codebook length. Using this method, which we will call replication

step, in every repetition of the same symbol a different codeword will be used

for the representation, not creating long pattern repetitions in the final encoded

sequence. The replication step of the mapping algorithm can cause an increase

in the encoding cost but will provide an encoded sequence which will be more210

robust to the biological error. Thus, depending on the needs and the purposes

of the encoding, the user can select whether the replication stage is necessary

or not. There are three different mapping algorithms each one using a different

replication method. Further explanation about this encoding step will be given

in the following section.215

5.2. Mapping

The mapping step of the encoding algorithm is based on a pseudorandom

association of a symbol in Σ to one or more possible codewords. As explained in

the previous section the mapping algorithm is different according to the needs of

the encoding. In the case where one wishes to have a more robust encoding they220

can use a replication step in which the algorithm ensures that the set of symbols

Σ can fit more than one times into the codebook C∗. The replication step

increases the robustness of the encoded sequence by inserting more randomness

which can also be used to give some information about possible errors that may

occur in the sequencing part. However, a drawback of the replication step is the225

increase in the encoding cost. It is obvious that there is a trade-off between the

encoding robustness and the final encoding cost so it is up to the user to select

if this replication step is useful. In the case where the replication phase of the

mapping is not used, the mapping algorithm is trivial and described in figure

.3a.230

In the case where the replication step should be used, the mapping algo-

rithm works as illustrated in figure .3b. In this case the code Γ is constructed

so that each symbol in Σ is mapped to a set of different m non-empty quater-
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nary codewords in C∗ following a one-to-many relation in such a way that it is

uniquely decodable. Since we ensure L ≥ 2 ∗k, the pseudorandom mapping can235

at least provide two possible codewords for one input symbol. The value of m

is given by computing the number of times that the dictionary Σ fits into the

code C∗ and is given by m = bLk c. More precisely, the mapping is described by

the following steps:

1. Build the corresponding code C∗ of size L using all possible codewords of240

length l which can be built following the rules described in the previous

paragraph,

2. Compute the number of times m that k can be replicated into the total

size L of the code C∗:

m = bL
k
c

3. The mapping of the quantized value si to a codeword ci is given by:

Γ(si) = C∗(i + rand(0,m− 1) ∗ k)

The encoding procedure is explained by Algorithm 1 (see Annex). It is

obvious to prove that the code produced by this algorithm is uniquely decodable.

5.3. Discussion245

Selection of one of the m codewords mapped at the same symbol. The number

of times m that the dictionary Σ can fit into the code C∗ can be selected ei-

ther using a random generator, as described in the algorithm above, or using

a deterministic function which will be known to the decoder. This option can

potentially be used for correcting errors that might occur during the sequencing250

of the data. More precisely when encoding each symbol in the input data the

encoder can select using a known function one of the m codewords representing

this same symbol. We can this way assume that there are m different codeword

classes. Consequently if an error occurs in the decoder turning a codeword be-

longing to one class into a codeword that belongs to another class, one will be255

able to detect that an error has occured in this position correcting it to the

closest codeword belonging in the correct class.
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Reducing the codebook length. In section 5.2, we have proposed the construction

of a codebook C∗ of length L requiring L ≥ k. On the one hand this requirement

ensures the construction of a robust code which will avoid the creation of pat-260

terns but on the other hand it creates a long codebook reducing the efficiency

of the encoding algorithm in terms of encoding rate. Consequently there is a

trade-off between the code robustness to errors and the coding potential. When

increasing the codeword length according to the needs, our proposed algorithm

multiplies the length of the code by a factor of at least 4. In the binary encoding,265

the addition of an extra bit in the codewords increases the code length by 2.

Consequently, it is clear that when our encoder is used to transcode binary files,

the length of the generated codebook is increasing faster than the number of

symbols to encode. As an example we take the case of encoding digital bytes (8

bits) into DNA codewords using our proposed encoder. While there are k = 256270

different values, one would need at least a code of L = 400 to encode the val-

ues into nucleotides. This applies to the case where one does not constrain the

codeword length to allow double representation of each symbol into the created

code C∗. However, even without this restriction, there are still 144 codewords

that corresponds to 36% of the code’s length that will be unused.275

However, in the case where the source symbols do not follow a uniform distri-

bution (DWT subband coefficients for example), one could map the most 144

most frequent symbols to those unused codewords and therefore balance in a

way the robustness/potential trade-off. At this point we recall the fact that

our encoding system is not constructed to only encode binary files but could be280

applied in any type of source data. Nevertheless this is just a simple example

to demonstrate the flexibility of this algorithm to optimization according to the

encoding needs.

5.4. Comparison to the state of the art

DNA data storage is a new field of research which is expected to make a285

breakthrough in the domain of “cold” digital data archiving. As briefly de-

scribed in section 2, some existing pioneering works suggest different algorithms
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for encoding the digital information into a quaternary sequence of A,T,C,G. In

this section we describe the advantages of the encoding algorithm proposed in

this work in comparison to existing encoding methods. The first attempt of290

encoding digital data into DNA is described in [3] by the works of Church et al.

In this work each binary bit is encoded to one nucleotide giving a total coding

potential of 1 bit/nucleotide. To improve the coding potential as well as the

robustness of the encoding to errors following works have adopted some more

complicated encoding algorithms. More precisely Goldman et al. in [5], have295

proposed an algorithm that respects the constraint from section 3 of avoiding

homopolymer runs to improve the quality of sequencing. This encoding applies

a ternary Huffman algorithm to compress the binary sequence into a ternary

stream of three symbols (trits). Then each of the trits is encoded into a symbol

from the dictionary {A, T,C,G} each time avoiding the symbol that has been300

previously used. However, this encoding method does not allow controlling the

balance of the G,G percentage in the produced strands. Furthermore, unlike

our proposed algorithm, in the encoding of a quantized or a sparse signal (as for

instance the wavelet coefficients of a DWT transform where a same quantized

value can be consecutively repeated many times), this encoding algorithm can305

create pattern repetitions which is an ill-case leading to a higher error prob-

ability at the phase of sequencing [15]. A later study in [16], introduces the

use of addressing fields to allow random access in the reading and writing of

the DNA oligos. As the addressing primers contain fundamental information

which should be correctly retrieved the authors propose a novel encoding for310

DNA data storage which is built such that secondary structure is avoided in the

encoded DNA strands. More precisely the DNA code differs for each oligo and

is constructed according to the oligo’s address field. The code is constructed

ensuring that there is no strong correlation between the encoding codewords

and the addressing header which could lead to the oligo binding on itself and315

therefore leading to important loss during sequencing. According to a later pub-

lication [17], this encoding can reach a coding potential of 1.57 bits/nt which is

slightly lower than the potential of our proposed solution. While this encoding
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avoids undesirable cross-hybridization problems during the process of oligo selec-

tion and amplification and can allow some limited error correction one possible320

drawback is the fact that the code is varying according to the addressing primer

and it is not fixed throughout the encoding process. Thus, in contrast to our

proposed algorithm, it can not be embedded to any encoding workflow. Another

interesting work has been proposed by Blawat et al [7]. This encoding proposes

the use of 5 nucleotides to encode 8 bits of information using a method for325

avoiding homopolymers. Furthermore the encoding inserts some randomization

in the selection of the codewords which can be exploited for avoiding pattern

repetitions as well as for correcting some types of errors that may occur. The

coding potential of this method is 5 nucleotides per 8 bits of binary sequence

which is equivalent to 1.6 bits/nt. To encode 8 bits (255 different symbols), our330

proposed algorithm also needs 5 nucleotides. Nevertheless, a strong advantage

of our algorithm is the fact that it can be extended to the encoding of more than

8 bits of information and it can be applied to any type of input data (binary

or not). In the works of Grass et al [6], the encoding is performed using Reed

Solomon codes. This encoding achieves a coding potential of 1.187 bits/nt in-335

troducing redundancy in order to introduce error correction but similarly to [7]

it is being applicable only in a binary stream. Bornholt et al in [4] have applied

the same encoding as in [5] improving the encoding scheme and avoiding the

fourfold redundancy which is suggested by the latter and synthesizes each DNA

chunk in 4 shifted copies of the initial sequence. For further information about340

the fourfold redundancy the reader can refer to [5]. Finally, Erlich et al [8] have

implemented an encoding using Fountain codes to reach a high coding potential.

Similarly to most of the previously mentioned works, despite the efficiency in

terms of information density, this type of encoding is only applicable to binary

information while also being very expensive in computational cost. To evaluate345

the efficiency of our encoding algorithm we have compared it to the one pro-

posed by [5]. The choice of this work for the comparison is for two main reasons.

Firstly, the work proposed by [5] is one of the most popular ones and is to our

knowledge the most widely used until this day. Secondly, similarly to our encod-
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ing, the algorithm proposed by this work can be applied to any type of symbols350

and is not limited to the encoding of binary data. For the comparison we have

used the JPEG and JPEG2000 codecs to compress an image of 512 × 512 pix

to different compression rates and have built the curves of coding potential in

nts/pixel in function of the PSNR. The results of this comparison are illustrated

in figure .4. More precisely, in our results we compare the encoder of [5] to the355

one proposed in this work for two different cases of mapping. The first case is

the mapping of one symbol to at least two different codewords as proposed in

section 5.2, which we will call mapping with repetition, and a second case where

one can make use of the codewords that are left unused to be mapped to the

most frequent symbols as proposed in the discussion in 5.3. Those results reveal360

the fact that our proposed encoder’s efficiency in terms of coding potential in

the encoded stream of nucleotides is comparable to the encoder proposed by

Goldman et al and even slightly better. It is also very interesting to point out

again that in the case of mapping repetition our encoder might perform slightly

worse than the Goldman encoder but it ensures that the encoded sequence of365

nucleotides does not contain pattern repetitions which endanger the reliability

of the sequencing and can therefore produce sequencing errors. Furthermore,

in contrast to the encoder proposed in [5], our algorithm does not make use of

the Huffman code. To the contrary, it is a simple fixed length encoder allowing

easier error correction in case of an insertion or deletion error. Hence, given also370

the fact that the proposed algorithm is flexible to modifications according to

the encoding needs, those results are very encouraging while proposing a highly

robust code.

6. Evaluation of the proposed image codec

6.1. Description of the simulations375

This work presents a very first attempt of minimizing the DNA synthesis

cost by controlling the part of compression to provide an optimal performance.

In this first step, we implemented a basic end-to-end compression scheme which

14



uses classical compression methods and while it may not provide the best com-

pression efficiency it is enough to prove the fact that the DNA synthesis cost380

can be controlled optimally. Other ways of compressing the image such as non-

uniform quantization could significantly improve the compression performance

and can therefore be used in our proposed encoder. The structure of the global

encoding scheme is presented in the figure .5.

6.2. Efficiency of the codec385

Parameter
Church

et al. [3]

Goldman

et al. [5]

Grass

et al.[6]

Bornholt

et al.[4]

Blawat

et al. [7]

Erlich

et al.[8]

Our work

(with compression)

Our work

(raw data)

Input data

(Mbytes)
0.65 0.75 0.08 0.15 22 2.15 0.26 0.26

Coding potential

(bits/nt)
1 1.58 1.78 1.58 1.6 1.98 2.14 1.6

Redundancy 1 4 1 1.5 1.13 1.07 1 1

Error correction No Yes Yes No Yes Yes No No

Full recovery No No Yes No Yes Yes Yes Yes

Net information

density (bits/nt)
0.83 0.33 1.14 0.88 0.92 1.57 1.71 1.31

Number of oligos 54,898 153,335 4,991 151,000 1,000,000 72,000 13,426 17,712

Table 1: Comparison to previous works - Coding potential: maximal information content

of each nucleotide before indexing or error correcting. Redundancy: excess of synthesized

oligos to provide robustness to dropouts. Error correction/ detection: the presence of error-

correction code to handle synthesis and sequencing errors. Full recovery: DNA code was

recovered without any error. Net information density: input information in bits divided by

the number of synthesized DNA nucleotides (excluding primers).

Our experiments use a 3-level 9/7 DWT decomposition for the image com-

pression, quantizing each subband with a uniform scalar quantizer of quantiza-

tion step size that is being determined by a source allocation algorithm. The

source allocation, called nucleotide allocation in figure .5, consists in minimiz-

ing the total quantization mean squared error (mse) under a constraint on the390

maximum number of nucleotides used for the encoding. It determines the value

of the set of optimal quantization steps to be used by the quantizers in each

subband. For more details on source allocation, readers should refer to [12],[13]

and [14]. This part ensures the maximum possible compression of the input
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image at a given rate while keeping the best visual quality.395

The quantized image subbands are then being encoded using the proposed

algorithm described in section 5.1 respecting the restrictions imposed by the

biological procedures. At this point it is important to highlight the fact that

the state of the art encoding procedures do not take into consideration the last

restriction of pattern repetitions. In our case however, as we wish to use quan-400

tization of wavelet subbands in order to achieve high compression and decrease

the synthesis cost, it is possible that after quantization we get a long sequence

of repeated values in the quantized coefficients. The DNA coding of such a se-

quence can produce pattern repetitions which is an ill case which is more likely

to introduce higher percentages of sequencing errors. Thus, our encoding algo-405

rithm tackles this problem by applying some kind of randomness as described

in section 5.2. For the evaluation of our encoder’s efficiency we carried out two

simulations. A first one compressing the input image as described above and a

second one which transcodes directly the bitstream coming from the output of

a JPEG2000 codec. For the comparison to the state of the art we used some410

compression measures that have been used also in [8].

Simulations have been carried out on Lena image of size 512× 512 pix. For

the case in which compression is used, one can see on figure .6 the evolution of the

Peak SNR (PSNR) in function of the coding rate in bits per nucleotide. In Table

1 is reported the coding result at 2.14 bits per nucleotide which corresponds to a415

nearly lossless compression, allowing a fair comparison with the state-of-the art

approaches. The corresponding PSNR is equal to 43.21dB providing a perfect

reconstructed image without any visual artefacts. The visual quality of the

compressed image is shown in figure .7. The coding results using the proposed

solution are presented in the last two columns of the Table 1. Those results show420

that when appropriately controlled, the slightest compression can provide good

results without important visual loss. Furthermore the theoretical performance

of our encoder when used for transcoding a binary stream (called “raw data” in

the Table) might not outperform all the existing encoding methods but is still

comparable. At this point it is necessary to highlight the fact that unlike the425
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works in [6] and [8] which outperform this work, our encoder is fixed length in

order to ensure higher robustness to the sequencing error and therefore can not

take advantage of further compression allowed by variable length codecs.

7. From digital image to biological data

As described in 3, DNA digital data storage is a multidisciplinary process430

which is aimed to allow efficient, long-term storage of digital data. To create a

robust code which encodes any input data into a quaternary stream composed

by the 4 DNA bases A, T, C, and G, we have proposed in 5.1 a new encoder that

respects the restrictions imposed by the biological procedure of DNA sequencing.

DNA synthesis is an error-free biological procedure under the condition that the435

DNA strands that are being synthesized into DNA are not longer than 150-200

nts. In the case where longer DNA strands are created biologically in vitro,

the synthesis error is no longer negligible and increases exponentially with the

increase in the oligo length. To maximise the reliability of the DNA synthesis

process and to ensure the accuracy of the synthesised DNA strands, in our440

experiments the encoded data needs to be cut into smaller chunks of base-

pairs to be piece-wise synthesised into DNA. This yields the need for inserting

some special headers in each synthesised oligo which contains information about

the position of each DNA chunk in the initial encoded sequence as also some

headers which contain information for the encoding parameters . Those headers445

are necessary for the correct decoding of the stored data. This formatting

procedure is described in detail in the following section.

7.1. Formatting the oligos

In our experiments we have formatted our oligos according to the needs of the

compression that has been used for the encoding. More precisely, special headers450

should be inserted in each oligo containing information about the position of

the encoded information forming a data oligo (DO). Furthermore, as each one

of the B subbands is quantized using a different optimal quantization step, we
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also need to encode some oligos containing information for the decoding. More

specifically we create B subband-info oligos (SIO) containing information about455

the quantization of each type of subband as also a global-info oligo (GIO) that

contains general information about the format of the encoded image and the

levels of DWT that have been used. The detailed description of the formatting

are depicted in figure .8.

7.2. DNA synthesis and storage460

The third part of the encoding workflow consists of three sub arts of biolog-

ical procedures. More precisely when the digital information is encoded into a

quaternary sequence and formatted into oligos, it has to be sent to a biologi-

cal laboratory to be synthesized “in vitro” into DNA1. This DNA is synthetic

which means that the created sequences do not contain any real genes and thus465

they do not serve in the existence of any living organism. However, while it is

composed by real DNA nucleotides that have been assembled in a strand, the

synthetic DNA shares the properties of a real DNA molecule which is capable

of carrying a great amount of information into a tiny volume (as the volume of

a cell nucleus), for a very long time. Stability of the synthesized oligos can be470

good for several months at −20◦C. For longer storage DNA can be encapsulated

in DNAshell2 capsules, a storage that protects it from contacts with oxygen and

water. This kind of special capsules is ideal for DNA storage and can keep the

encoded data safe from corruption from years to centuries, and probably over.

7.3. DNA sequencing475

To decode the encoded data and retrieve the stored information one needs

to read the stored DNA fragments that have been encapsulated in the storage

capsule. This process is performed by special machines called sequencers; in our

experiment we utilized the Illumina NextSeq 500 instrument. As mentioned

1For our experiment, DNA synthesis has been done by the Company Twist Bioscience.
2For our experiment, encapsulation has been done by the Company Imagene, Evry, France.
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in previous sections, sequencing is an error prone procedure and can cause sig-480

nificant errors as insertion, deletion or substitution of nucleotides. The use of

a robust encoding scheme, like the one proposed by this work, which takes into

consideration the biological restrictions that have been analytically described in

section 3, may reduce the probability of error occurences. However, in order to

ensure the accuracy of the decoded data, the stored oligos are firstly cloned us-485

ing PCR amplification, a biological process which uses enzymes to create many

copies of a DNA sequence. Then the copies can be read by a sequencer using

the method of bridge amplification (BA) which allows reading the oligos while

cloning them into more copies ([18]). This redundancy is very important for the

reduction of the sequencing error. One can imagine the role of the PCR and490

BA like the one of classical repetition coding used for transmission over a noisy

channel that may corrupt the transmission in various positions. As in repeti-

tion coding, PCR and BA produces during sequencing many copies of the oligos

hoping that only a minority of these copies will be corrupted by the sequencing

noise.495

7.4. Experiment

In this study we have carried out a real biological experiment for storing two

small images into DNA. More specifically, one image of Lena of size 128× 128

pixels and a 120×120 pixels cover image from the famous Massive Attack album

Mezzanine have been transformed into synthetic DNA. The choice of the size500

of the images was constrained by the high expenses of the biological procedures

involved in the experiment. Here, the coding leads to a PSNR equal to 32.5 dB

at 2.68 bits/nt for the image of Lena and a PSNR equal to 29.67dB at 1.78

bits/nt for the image of Mezzanine. As shown in figure .9 (left image), this

experiment proves the feasibility of correctly retrieving back the stored image505

from DNA. The values of PSNR has been computed by comparing the encoded

images to the ones before compression. Here, The sequencer provided us with

a data set containing many copies of each stored oligo which also contained

sequencing errors. In order to test the sequencer’s reliability we tested two
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different ways of selecting the oligos for reconstructing the initial image. First510

we tested the reconstruction using the oligos with the highest frequencies which

we assume to be the most representative ones. Then we also tested the case

of random oligo selection. The visual results are presented in figure .9 (right

images).

It is clear that by choosing the most frequent oligos from the different copies515

provided by the sequencing, it is more probable to achieve the best possible

reconstruction of the image.

8. Conclusions

In this work we have proposed a new encoding algorithm for the robust

encoding of digital images into DNA. Our proposed solution has important ad-520

vantages compared to previous state of the art works as it can be applied on any

kind of input data format (binary, symbols, quantized samples...) and tackles

the problems of biological constraints, including pattern repetitions that accord-

ing to some studies may affect the performance of the sequencing procedure by

introducing more errors in the decoded DNA strands. In a comparison of our525

work with a popular state of the art encoding algorithm for DNA data stor-

age we have evaluated the performance of our proposed encoder and received

some very promising results. Furthermore, we discussed the importance of min-

imizing the DNA synthesis cost by introducing a compression method which is

optimally controlled at the encoder side. Using some classical compression tech-530

niques, we made a very first attempt to store an image, optimally compressed at

a given rate, into DNA proving the feasibility of our proposal. The outcome of

this study is very encouraging suggesting that the introduction of more sophis-

ticated quantization solutions at the encoder side, capturing the source statistic

distribution for example, could provide even more interesting results.535
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ANNEX 1: Our proposed algorithm

Algorithm 1 Encoding Algorithm

1: Compute length l of codewords needed for encoding all k levels of quantiza-

tion:

2: if log10 k not an integer then

3: if 10blog10 kc ∗ 4 ≤ k then

4: l = blog10 kc ∗ 2 + 1

5: else l = dlog10 ke ∗ 2

6: end if

7: elsel = log10 k ∗ 2

8: end if

9: Build code D of L different codewords:

10: if l is even then

11: Construct all possible codewords of length l using l
2

choices from D1

12: else if l is odd then

13: Construct all possible codewords of length l by using l
2

choices from D1

adding one symbol from D2

14: end if

15: Mapping of index values of quantization to codewords from D

Compute: m = bL
k
c

Compute: Γ(x̂i) = D∗(i + rand(1,m− 1) ∗ k)
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ANNEX 2: Figures

Figure .1: The general encoding workflow
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Figure .2: Evolution of the percentages of A,T (blue curves) and G,C (red curves) for a

centered Gaussian source of variance σ2 and mean µ = k
2

(k denoting the number of different

source symbols) in function of the source dynamic normalized by k. The full line and dashed

curves represent two different cases of codeword length l of 6 and 7 nucleotides respectively.
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Figure .3: Mapping of quantized values into quaternary code. The gray area corresponds to

not used codewords, if they exist.
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Figure .4: Comparison of the encoder proposed by Goldman et al. in [5] and our encoder. For

the encoding we consider each byte (8 bits) as a symbol to be encoded and the figures show

the evolution of the PSNR (dB) in function of the Rate (nts/pixel) for different compression

qualities using the JPEG codec (results on the left figure) and the JPEG2000 (on the right

figure).
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Figure .5: Image compression encoder and decoder used in our experiments. Encoder: The

input image f is decomposed into different subbands using a DWT. The produced subbands

are quantized using an optimal quantization step-size q selected by a nucleotide allocation

algorithm to produce a sequence of quantization indices j. The indices are then encoded into

DNA using our proposed algorithm. Decoder: The DNA sequence is decoded to the corre-

sponding quantization indices j. The indices are used to retrieve the corresponding quantized

coefficients using a Look Up Table (LUT). Finally, the quantized image is reconstructed using

the inverse DWT.
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Figure .6: PSNR in function of the coding rate in bits per nucleotide for the image Lena of

size 512 × 512 pix. The selected point (at 2.14 bits/nt) is the one represented in our results

in table 1.
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Reconstructed image Quantization error

Figure .7: Visual quality of the compressed Lena image of size 512 × 512 pix that has been

compressed and encoded into DNA at 2.14 bits/nt, PSNR=43.21dB.
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PSNR=32.5 dB
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PSNR=14.3 dB
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Figure .9: Visual results for two different cases of reconstruction: using the most frequent

oligos (left column) and random selection (right column). For the left images the PSNR value

is only due to the error inserted by the quantization process as we have managed to get a

reconstruction without any sequencing noise, For the right images (random selection), both

quantization and sequencing error appear.
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