
HAL Id: hal-03648720
https://hal.science/hal-03648720v1

Submitted on 22 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MORESANE: MOdel REconstruction by
Synthesis-ANalysis Estimators

A. Dabbech, C. Ferrari, D. Mary, E. Slezak, O. Smirnov, J. Kenyon

To cite this version:
A. Dabbech, C. Ferrari, D. Mary, E. Slezak, O. Smirnov, et al.. MORESANE: MOdel REcon-
struction by Synthesis-ANalysis Estimators. Astronomy & Astrophysics - A&A, 2015, 576, pp.A7.
�10.1051/0004-6361/201424602�. �hal-03648720�

https://hal.science/hal-03648720v1
https://hal.archives-ouvertes.fr


A&A 576, A7 (2015)
DOI: 10.1051/0004-6361/201424602
c© ESO 2015

Astronomy
&

Astrophysics

MORESANE: MOdel REconstruction by Synthesis-ANalysis
Estimators

A sparse deconvolution algorithm for radio interferometric imaging

A. Dabbech1, C. Ferrari1, D. Mary1, E. Slezak1, O. Smirnov2,3, and J. S. Kenyon2

1 Laboratoire Lagrange, UMR 7293, Université Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d’Azur, 06300 Nice, France
e-mail: arwa.dabbech@oca.eu

2 Centre for Radio Astronomy Techniques & Technologies (RATT), Department of Physics and Electronics, Rhodes University,
PO Box 94, 6140 Grahamstown, South Africa

3 SKA South Africa, 3rd Floor, The Park, Park Road, 7405 Pinelands, South Africa

Received 15 July 2014 / Accepted 13 December 2014

ABSTRACT

Context. Recent years have been seeing huge developments of radio telescopes and a tremendous increase in their capabilities (sensi-
tivity, angular and spectral resolution, field of view, etc.). Such systems make designing more sophisticated techniques mandatory not
only for transporting, storing, and processing this new generation of radio interferometric data, but also for restoring the astrophysical
information contained in such data.
Aims. In this paper we present a new radio deconvolution algorithm named MORESANE and its application to fully realistic
simulated data of MeerKAT, one of the SKA precursors. This method has been designed for the difficult case of restoring diffuse
astronomical sources that are faint in brightness, complex in morphology, and possibly buried in the dirty beam’s side lobes of bright
radio sources in the field.
Methods. MORESANE is a greedy algorithm that combines complementary types of sparse recovery methods in order to reconstruct
the most appropriate sky model from observed radio visibilities. A synthesis approach is used for reconstructing images, in which the
synthesis atoms representing the unknown sources are learned using analysis priors. We applied this new deconvolution method to
fully realistic simulations of the radio observations of a galaxy cluster and of an HII region in M 31.
Results. We show that MORESANE is able to efficiently reconstruct images composed of a wide variety of sources (compact point-
like objects, extended tailed radio galaxies, low-surface brightness emission) from radio interferometric data. Comparisons with the
state of the art algorithms indicate that MORESANE provides competitive results in terms of both the total flux/surface brightness
conservation and fidelity of the reconstructed model. MORESANE seems particularly well suited to recovering diffuse and extended
sources, as well as bright and compact radio sources known to be hosted in galaxy clusters.

Key words. methods: numerical – methods: data analysis – techniques: image processing – techniques: interferometric

1. Introduction

In the past 40 years, the radio community has mainly been us-
ing, as a reliable and well-understood method for deconvolving
interferometric data, the CLEAN algorithm and its different (in-
cluding multiresolution) variants (e.g., Högbom 1974; Wakker
& Schwarz 1988; Cornwell 2008). Even if other methods have
been designed during this period (see for instance Magain et al.
1998; Pirzkal et al. 2000; Starck et al. 2002; Giovannelli &
Coulais 2005) none has become as popular and as widely used
as CLEAN in practice.

Deep and/or all-sky radio surveys characterized by sub-mJy
sensitivity and arcsec angular resolution, as well as by high
(>1000) signal-to-noise and wide spatial dynamic ranges (chal-
lenging features for a proper deconvolution and reconstruction of
both bright and diffuse radio components) will be available in the
next decades thanks to incoming and future radio facilities, such
as the Low Frequency Array (LOFAR), the Australian Square
Kilometre Array Pathfinder (ASKAP, Australia), and the Karoo
Array Telescope (MeerKAT, South Africa). These revolution-
ary radio telescopes, operating in a wide region of the electro-
magnetic spectrum (from 10 MHz to 15 GHz), are the technical

and scientific pathfinders of the Square Kilometre Array (SKA).
With a total collecting area of one square kilometer, SKA will
be the largest telescope ever built1.

Recently, much attention has been paid in various fields of
the signal- and image-processing community to the theory of
compressed sensing (CS, Donoho 2006; Candès et al. 2006).
Although the current theoretical results of CS do not provide
means of reconstructing realistic radio interferometric images
more accurately, there is one key domain that allows doing so,
and the applied CS literature often builds on this domain: sparse
representations. Sparse approximation through dedicated repre-
sentations is a theory per se, and it has a very long history (Mallat
2008). In the signal processing community and, in particular, in
denoising and compression, sparsity principles opened a new
era when Donoho and Johnstone (Donoho & Johnstone 1994)
proved the minimax optimality of thresholding rules in wavelet
representation spaces. We propose in Sect. 3 a survey of the use
of sparse representations in radio interferometry.

In this paper we describe a new deconvolution al-
gorithm named MORESANE (MOdel REconstruction
by Synthesis-ANalysis Estimators), which combines
1 See https://www.skatelescope.org/
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complementary types of sparse representation priors.
MORESANE has been designed to restore faint diffuse
astronomical sources, with a particular interest in recovering the
diffuse intracluster radio emission from galaxy clusters. These
structures are known to host a variety of radio sources: compact
and bright radio galaxies, which can present a tailed morphology
modeled by the interaction with the intracluster medium (ICM;
e.g., Feretti & Venturi 2002); radio bubbles filling holes in the
ICM distribution and rising buoyantly through the thermal gas
observed in X-rays (e.g., de Gasperin et al. 2012); Mpc-scale,
very low surface-brightness sources of radio emission, which
are related to the presence of relativistic electrons (Lorentz
factors γ � 1000) and weak magnetic fields (∼µGauss) in the
ICM (e.g., Ferrari et al. 2008).

An increased capability of detecting diffuse radio emission
is, of course, very relevant not only for galaxy cluster studies,
but also for other astronomical research areas, such as supernova
remnants (e.g., Bozzetto et al. 2014), radio continuum emission
from the Milky Way (e.g., Beck & Reich 1985), star-forming
regions in nearby galaxies (e.g., Paladino et al. 2006), and possi-
bly, in the near future, filaments of diffuse radio emission related
to electron acceleration in the cosmic web (Vazza et al., in prep.).

After an introduction to the radio interferometric model and
sparse representations, in Sects. 2 and 3 respectively, we justify
and describe our new algorithm in Sects. 4 and 5, respectively.
Applications of MORESANE to both simplified and fully real-
istic simulations of test images are presented in Sect. 6. We con-
clude with a discussion of our results and list several evolutions
for MORESANE (Sect. 7).

A word on the notations before starting. We denote matrices
by bold upper case letters (e.g., M), vectors either by bold lower
case letters (e.g., u) or by indexed matrix symbols when they
correspond to a column of a matrix (e.g., Mi is the ith column of
M). Scalars (and complex numbers) are not in boldface except
if they correspond to components of a vector (e.g., ui is the ith
component of u) or of a matrix (e.g., Mi j is the component at the
ith row and jth column of M).

2. Radio interferometric imaging
Radio interferometric data are obtained from the response of the
radio interferometer to the electric field coming from astrophys-
ical sources. The electro-magnetic radiation emitted by all the
observed celestial sources will arrive at an observation point r,
producing a total received electric field (Eν(r)) that we consider
as a scalar and quasi monochromatic quantity. For the sake of
simplicity, we omit the index ν in the following.

For an interferometer, each radio measurement, called com-
plex visibility, corresponds to the spatial coherence of the elec-
tric field measured by a pair of antennas that have coordinates r1
and r2 (Thompson et al. 2001):

V(r1, r2) = 〈E(r1)E∗(r2)〉 , (1)

where 〈·〉 represents time averaging and ∗ the complex conjugate.
The spatial coherence function of the electric field E depends

only on the baseline vector r1 − r2, and it is correlated to the
intensity distribution of incoming radiation I(s) (where s is the
unit vector denoting the direction on the sky) through

V(r1, r2) ≈
∫

I(s)e−2πiνs>(r1−r2)/cdΩ. (2)

In the equation above, > stands for transpose, c is the speed of
light, dΩ the differential solid angle, and we assume an isotropic
antenna response. Since interferometer antennas have a finite

size, an additional factor can enter into (2). This is the primary
beam pattern, which describes the sensitivity of the interferom-
eter elements as a function of direction s.

In the previous equation, the baseline vector b = r1 − r2
can be expressed with components measured in units of wave-
length (u, v, w), where w points in the direction of the line of sight
and (u, v) lie on its perpendicular plane. The direction cosines
(l,m, n) define the position of a distant source on the celestial
sphere, with (l,m) measured with respect to (u, v) axis. In the
adopted formalism, l2 + m2 + n2 = 1, so the coordinates (l,m) are
sufficient to specify a given point in the celestial sphere. Using
this formalism; (2) can be written as

V(u, v, w) =

∫ ∫
I(l,m) e−2πi(ul+vm+wn) dl dm

√
1 − l2 − m2

· (3)

In the particular cases where all measurements are acquired in a
plane (i.e. w = 0, such as with east-west interferometers) and/or
the sources are limited to a small region of the sky (i.e. n ' 1, for
small fields of view, which is the case considered in this paper);
(3) reduces to a two-dimensional Fourier transform.

In the impossible case of visibilities measured on the whole
(u, v) plane, inverse Fourier transform of V(u, v) would thus di-
rectly yield the sky brightness image I(l,m). In practice, visi-
bilities are measured at particular points of the Fourier domain,
defining the (u, v) coverage of the observations. The set of sam-
ples depends on the configuration and number of the antennas,
the time grid of measurements, and the number of channels, be-
cause the baselines change with the Earth’s rotation. A sampling
function M(u, v) is thus introduced, which is composed of Dirac
delta function where visibilities are acquired.

After the necessary calibration step on the visibilities (not
described here; see, e.g., Fomalont & Perley 1999), the measured
visibilities can be written as

Vmes = M · (V + ε), (4)

where ε corresponds to a white Gaussian noise coming essen-
tially from the sky, receivers, and ground pick up. In addition,
a weighted sampling function can be applied to the data, with
different weights assigned to different observed visibilities, de-
pending on their reliability, their (u, v) locus (tapering function),
or their density in the (u, v) plane (density weighting function)
(Briggs et al. 1999).

The image formed by taking the inverse Fourier transform
of Vmes is called a dirty image, which is defined as the convo-
lution of the true sky surface brightness distribution I(l,m) with
the Fourier inverse transform of the sampling function M(u, v)
(known as the dirty beam or the point spread function (PSF) of
the array). In practice, fast Fourier transforms (FFT) are used
where observed visibilities must be interpolated on a regular grid
of 2N × 2M points, generating an N ×M pixel image with a pixel
size taken to be smaller (∼1/3−1/5) than the angular resolution
of the instrument. Different ways can be adopted to optimize the
FFT interpolation (Briggs et al. 1999), whose discussion goes
beyond the purpose of this paper.

In this framework, the model for the visibility measurements
can be written in matrix form as

u = MFx + Mεεε, (5)

where u ∈ RN is a column vector that contains the measured vis-
ibilities for the sampled frequencies and zeroes otherwise; M is
a diagonal matrix with 0 and 1 on the diagonal, which expresses
the incomplete sampling of the spatial frequencies; F (resp. F†)
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corresponds to the Fourier (resp. Fourier inverse) transform, and
the vector x ∈ RN is the sky brightness image. Equivalently, the
dirty image y is obtained by inverse Fourier transform of the
sparse visibility map:

y = F†u = Hx + n, (6)

where H = F†MF,H ∈ RN × RN is the convolution operator
corresponding to the array’s PSF and n ∈ RN is the noise in the
image domain. In this setting H is a circulant matrix operator,
where every column is a shifted version of the PSF for every
pixel position.

Finally, in Model (6), the noise is additive Gaussian and
correlated because of the missing points in the (u, v) domain
(Thompson et al. 2001).

We hereafter restrict ourselves to the simplified acquisition
model described above. As we shall see, accurate image decon-
volution is already challenging in this case, especially for as-
trophysical scenes containing faint diffuse sources, along with
brighter and more compact ones.

3. Sparse representations in radio interferometry

3.1. CLEAN

Radio interferometry has a long acquaintance with sparse rep-
resentations. Högbom’s CLEAN algorithm (Högbom 1974) and
the family of related methods (Wakker & Schwarz 1988; Starck
& Bijaoui 1992; Cornwell 2009; Schwarz 1978) implement
ideas similar to matching pursuit (Friedman & Stuetzle 1981;
Mallat & Zhang 1993) and to `1 penalization (Solo 2008). In
fact, in the radioastronomical community CLEAN refers to a
family of algorithms (Clark’s CLEAN, Cotton-Schwab CLEAN,
MultiResolution CLEAN, etc.).

A remarkable fact is that the CLEAN method remains a
reference and a very well known tool for almost all radio as-
tronomers. There may be several reasons for this. First, CLEAN
is a competitive algorithm, with best results on point-like sources
and less accurate recovery of extended sources. In CLEAN, the
CLEAN factor does a lot: following Högbom’s original version
of the algorithm, the point source’s contribution, which is the
one most correlated to the data, is only partly subtracted from
the data (in contrast to matching pursuit, which makes the resid-
ual orthogonal to this atom). This has the effect of creating de-
tections at many locations and of mitigating the influence of the
brightest sources. These numerous localized spikes mimic ex-
tended flux components and somewhat compensate for the point-
like synthesis of the restored image once the detection is recon-
volved by the clean beam. Besides, after the stopping criterion is
met, the residual is added to the restored image, with the same
compensating effect.

From a practical viewpoint, CLEAN is easy to implement
and does not require any optimization knowledge. It is also easy
to build modular versions of CLEAN with deconvolution by
patches, for instance, allowing direction-dependent effects to be
accounted for and image restoration and calibration processes to
be coupled (Tasse et al. 2013).

Finally, the greedy structure of CLEAN was probably a ma-
jor advantage for devising an operational spatio-spectral radio
deconvolution algorithm (to our knowledge the only algorithm
allowing visibility data cubes to be deconvolved), the multiscale-
multifrequency CLEAN implemented in LOFAR data process-
ing (van Haarlem et al. 2013). As a matter of fact, CLEAN
algorithms are implemented in many standard radio-imaging
softwares.

3.2. Recent works: sparse representations

In the second half of the 2000s, stellar interferometry was iden-
tified as a typical instance of compressed sensing (CS, Candès
et al. 2006; Donoho 2006) acquisition. Since the theoretical re-
sults of CS had shed new mathematical light on the random
Fourier sampling of sparse spikes, radio interferometry has ap-
peared as a natural case of CS, and major achievements were
foreseen in this domain from CS theory. Looking back at the
literature from this period to now, it seems that innovation in
recent radio interferometric reconstruction methods has grown
less from CS theorems (because their assumptions are most often
not satisfied in practical situations) than from an unchained re-
search activity in sparse representations and convex optimization
(Norris et al. 2013). Although these domains existed long before
CS, they certainly benefited from the CS success. A survey of
the evolution of sparse models in the recent literature of radio
interferometric image reconstruction is proposed below. These
models fall into two categories, sparse analysis or sparse synthe-
sis, a vocabulary that stems from frame theory and was studied
in the context of sparse representations by Elad et al. (2007).

3.3. Sparse synthesis

This approach assumes that the image to be restored, x, can be
sparsely synthesized by a few elementary features called atoms.
More precisely, x is assumed to be a linear combination of a
few columns of some full rank `2- normalized dictionary S, of
size (N, L), with L usually greater than N:

x = Sγγγ, where γγγ ∈ RL is sparse. (7)

With (7), model (5) becomes

u = MFSγγγ + Mεεε, with γγγ sparse. (8)

The simplest and most intuitive sparsity measure is the number
of non-zero entries of x (i.e., the `0 pseudo-norm), but `0 is not
convex. To benefit from the properties of convex optimization,
the `0 penalization is often relaxed and replaced by `1

2, which
still promotes strict sparsity and thus acts as a variable selection
procedure (`p

p with 0 < p < 1 also, but leads to more difficult
-non convex- optimization problems; `p

p, p > 1 does not).
In a sparsity-regularized reconstruction approach, a typical

regularization term corresponding to such penalties (but there
are many others) has the form µp ‖ γγγ ‖

p
p, with a regularization

parameter µp ∈ R+ and it is added to the data fidelity term (the
squared Euclidean norm of the error for i.i.d. Gaussian noise).
The vectors γγγ that will minimize the cost function:

js(γγγ) =
1
2
‖MFSγγγ − u‖22 + µp ‖ γγγ ‖

p
p , 0 ≤ p ≤ 1, (9)

will then tend to be sparse for sufficiently high values of µp.
Synthesis-based approaches thus lead to solutions of the form3

x∗s = S ·
{

arg min
γγγ

1
2
||MFSγγγ − u‖22 + µp ‖ γγγ ‖

p
p

}
. (10)

The minimization problem corresponding to the particular case
p = 1 is called basis pursuit denoising (BPDB) in optimization
(Chen et al. 1998).

2 For a vector x, `p
p =
∑

i |xi|
p.

3 MFS is assumed to have unit-norm `2 columns. If this is not the
case, the components of γγγ should be weighted accordingly (see, e.g.,
Bourguignon et al. 2011).
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3.4. Sparse analysis

In this approach, regularity conditions on x are imposed by an
operator A>. The sparse analysis approach consists in finding a
solution x that is not correlated to some atoms (columns) of a
dictionary A of size (N, L). The sparse analysis model therefore
assumes that A>x is sparse.

Adopting a regularization term that imposes this sparsity
constraint, sparse analysis approaches usually seek solutions of
the form

x∗a = arg min
x

1
2
‖MFx − u‖22 + µp ‖ A>x ‖pp, 0 ≤ p ≤ 1. (11)

3.5. Representations and dictionaries

The sparsity expressed through S on γγγ or on A>x requires that
the signal is characterized by low dimensional subspaces. They
can be orthonormal transforms (corresponding to orthonormal
bases) or more generally redundant (overcomplete) dictionaries.
These subspaces correspond to mathematical representations of
the signal: the columns of S correspond to geometrical features
that are likely to describe the unknown signal or image, while
the columns of A impose geometrical constraints (in analysis).

A wide variety of such representations has been elaborated
in the image-processing literature, such as canonical basis (cor-
responding to point-like structures), discrete cosine transform
(DCT, 2D plane waves), wavelets (localized patterns in time and
frequency), isotropic undecimated wavelets (Starck & Murtagh
1994), curvelets (elongated and curved patterns Starck et al.
2003), ridgelets (Candès & Donoho 1999), shapelets (Réfrégier
2003), and others (see Mallat 2008; Starck et al. 2010, for de-
tails on these representations and their applications.).

The choice of a dictionary is made with respect to a class
of images. In astronomy, wavelet dictionaries are widely used;
however they are known not to be appropriate for the repre-
sentation of anisotropic structures. In such cases, other trans-
forms have been designed to capture main features of specific
classes of objects. Among them, curvelets sparsify well-curved,
elongated patterns (such as planetary rings or thin galaxy arms),
while shapelets sparsify, for instance, various galaxy morpholo-
gies well. All of them have shown empirical efficiency and can
be used in the dictionary.

To accurately model complex images with various features,
one possibility is indeed to concatenate several dictionaries into
a larger dictionary. However, the efficiency of a dictionary also
critically depends on its size and on the existence of fast oper-
ators, without which restoration algorithms (that are iterative)
cannot converge in a reasonable time. Concatenation or unions
of representation spaces are now classically used in denoising
and inverse problems because they can account for more com-
plex morphological features better than standard transforms used
separately (an approach advocated early in Mallat & Zhang
1993; and Chen et al. 1998; see also Donoho & Huo 2001;
Gribonval & Nielsen 2003; Starck et al. 2010). Such unions
may allow maintaining a reasonable computational cost if fast
transforms are associated to each representation space. They also
provide a natural feature separation through the decomposition
coefficients associated to each subdictionary. This property is in-
deed interesting for astronomy, where a celestial scene may con-
tain features as different as point-like sources, rings, spirals, or
smooth and diffuse components, with various spatial extensions.

3.6. Synthesis versus analysis

Analysis and synthesis priors lead to different solutions (and al-
gorithms) for redundant dictionaries. When A and S are square
and invertible, as for orthonormal bases, a change of variables
with S−1 = A> shows that the approaches in (10) and (11) are
equivalent. A seminal study is proposed in Elad et al. (2007),
whose first result shows that when S is taken as A>† (the
pseudo-inverse of A>), the analysis model is restricted to a space
with a lower dimension than the synthesis one. More generally,
Theorem 4 of the same paper shows by more involved means
that, for p = 1 and L ≥ N, a dictionary S(A>) exists for any `1
MAP-analysis problem with full-rank analyzing operator A> de-
scribing an equivalent `1 MAP-synthesis problem. The converse
is not true. In this sense, sparse synthesis is more general than
analysis and in theory it allows better reconstruction results.

The question of how the two approaches compare in practice
for usual transforms remains open, however, even for the case
p = 1. The works of Carlavan et al. (2010) propose an inter-
esting numerical comparison of the two approaches for various
transforms and dictionaries in the framework of noisy deconvo-
lution. Their conclusion is that synthesis approaches seem to be
preferable at lower noise levels, while analysis is more robust at
higher noise regimes.

Arias-Castro et al. (2010) report numerical experiments with
redundant dictionaries showing empirically that `1-synthesis
may perform as well as `1-analysis, while other papers high-
light better results for analysis models (Carrillo et al. 2012). A
clear and well-identified issue with synthesis is that the number
of unknown (synthesis coefficients) may rapidly become pro-
hibitive for large dictionaries, while in analysis the number of
unknowns remains constant (as it corresponds to the number of
image parameters in x). On the other hand, sticking to a syn-
thesis approach with dictionaries without enough atoms may
lead to rough and schematic reconstructed sources. Obtaining
more theoretical and general results on the analysis vs synthesis
comparison is a very interesting, active, and growing subject of
research4.

In radio interferometry, each recent reconstruction algorithm
has its own sparse representation model. Explicit sparse priors
were indeed first expressed in the direct image space, which
is typically appropriate for (but limited to) fields of unresolved
stars (Mary & Michel 2007; Mary et al. 2008). In this case, the
restored image can be obtained by solving the BPDN problem
associated to (10) with S = I (or to (11) with A = I). This is also
the approach of Wenger et al. (2010).

To efficiently recover more complex images, sparse synthesis
models involving a dictionary S taken as union of bases with a
union of canonical, DCT, and orthogonal wavelets bases were
proposed in Mary (2009), Vannier et al. (2010) and Mary et al.
(2010). The restored image is in this case obtained by solving
(10) with p = 1. The Compressed Sensing imaging technique
BP+ of Wiaux et al. (2009a,b) solves a synthesis problem (10)
with p = 1 subject to an image positivity constraint, and S is a
redundant dictionary of wavelets.

In Li et al. (2011), the Compressed Sensing-based deconvo-
lution uses the isotropic undecimated wavelet transform (IUWT,
Starck et al. 2010) for S and solves (10) under a positivity con-
straint. We show results of this method in the simulations. The
works of McEwen & Wiaux (2011) consider an analysis-based
prior (total variation), for which A> implements the `1 norm of

4 See for instance the references of http://small-project.eu/
publications
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the discrete image gradient:

x∗a = arg min
x
‖x‖TV s.t. ‖y −WMFx||2 < ε, (12)

where ε is a prescribed fidelity threshold.
Recently, the sparsity-averaging reweighted analysis

(SARA) (Carrillo et al. 2012) focused on an analysis criterion
with a solution of the form (11) with p = 1, a positivity
constraint on x and a union of wavelet bases for A. The work of
Carrillo et al. (2013) presents large scale optimization strategies
dedicated to this approach. Clearly, sparse models allied to
optimization techniques have attracted a lot of attention in this
field during the past seven or eight years.

4. Motivation for an analysis-by-synthesis approach

The imaging system described in Sect. 2 describes a linear fil-
ter whose transfer function is described by the diagonal of M.
In Fourier space, this transfer function has many zeros, making
the problem of reconstructing x from y underdetermined and
ill-posed. In image space, the PSF has typically numerous and
slowly decreasing sidelobes owing to the sparse sampling per-
formed by the interferometer. The PSF extension and irregular-
ity make the recovery of faint objects particularly difficult when
surrounding sources that are orders of magnitude brighter.

The specific problem of restoring faint extended sources sub-
merged by the contribution of the sidelobes of brighter and
more compact sources has led us to explore a fast restoration
method in Dabbech et al. (2012), which exploits positivity and
sparse priors in a hybrid manner and where MORESANE is an
elaborated version. Several essential changes have been intro-
duced in MORESANE with respect to the prototype algorithm
by Dabbech et al. (2012) in order to be able to apply it on realis-
tic radio interferometric data. The main developments include:

– identification of the brightest object, which is now done by
taking the PSF behavior into account in the wavelet domain;

– introduction of parameters τ and γ to improve rapidity and
obtain a more accurate estimation of the sky image;

– use of the conjugate gradient instead of the projected
Landweber algorithm for rapidity;

– deconvolution scale by scale, which does not oblige the user
to specify the number of scales in the IUWT.

Comprehensive surveys of the vast literature in image recon-
struction methods for radio interferometric data can be found
in Starck et al. (2002) (including methods from model fitting
to non parametric deconvolution) and in Giovannelli & Coulais
(2005), who emphasize the particular problem of reconstruct-
ing complex (both extended and compact) sources. On this spe-
cific topic, very few other works can be found. In Magain et al.
(1998) and Pirzkal et al. (2000), the point-like sources are writ-
ten in a parametric manner based on amplitudes and peak po-
sitions. Extended morphologies are accounted for in Magain
et al. (1998) using a Tikhonov regularization and in Pirzkal et al.
(2000) by introducing a Gaussian correlation. In Giovannelli &
Coulais (2005), a global criterion is minimized (subject to a pos-
itivity constraint), where the penalization term is the sum of the
`1 norm of the point-like component and the `2 norm of the gra-
dient of the extended component.

Radio interferometric image reconstruction is a research
field where synthesis and analysis-sparse representations have
been extensively and, in fact, almost exclusively investigated in
the last few years. To be efficient on recovering faint, extended,
and irregular sources in scenes with a high dynamic range, the

approach we propose is hybrid in its sparsity priors and builds
somewhat on ideas of Högbom (1974) and Donoho et al. (2006).
We use a synthesis approach to reconstructing the image, but we
do not assume that synthesis atoms describing the sources are
fixed in advance, in order to allow more flexibility in the source
modeling. The synthesis dictionary atoms are learned iteratively
using analysis-based priors. This iterative approach is greedy
in nature and thus does not rely on global optimization proce-
dures (such as l1 analysis or synthesis minimization) of any kind.
The iterative process is important for coping with high dynamic
scenes. The analysis approach allows a fast reconstruction.

5. Model reconstruction by synthesis-analysis
estimators

We model the reference scene x as the superposition of P
objects:

x =

P∑
t=1

θθθtXt = X θθθ, (13)

where Xt, columns of X, are `2-normalized objects composing x.
An object may be a single source or a set of sources sharing sim-
ilar characteristics in terms of spatial extension and brightness.
The matrix X is an unknown synthesis dictionary of size (N, P),
P � N, and θθθ is a vector of amplitudes of size P with entries θθθt.
The radio interferometric model (6) becomes

y = HX θθθ + n. (14)

This model is synthesis-sparse, since the image x is recon-
structed from few objects (atoms) Xt. In the proposed approach,
however, the synthesis dictionary X and the amplitudes θθθ are
learned jointly and iteratively through analysis-based priors us-
ing redundant wavelet dictionaries. Because bright sources may
create artifacts spreading all over the dirty image, objects θθθtXt
with the highest intensities are estimated at first, hopefully en-
abling the recovery of the faintest ones at last.

5.1. Isotropic undecimated wavelet transform

In the proposed method, each atom from the synthesis dictio-
nary X will be estimated from its projection (analysis coeffi-
cients) in a suitable data representation. One possible choice
for this representation, which will be illustrated below, is the
isotropic undecimated wavelet transform (IUWT) (Starck et al.
2007). IUWT dictionaries have proven to be efficient in as-
tronomical imaging because they allow an accurate modeling
through geometrical isotropy and translation invariance. They
also possess an associated fast transform.

We now recall some principles related to IUWT because
they are important for understanding the proposed algorithm.
Analyzing an image y of size N with the IUWT produces anal-
ysis coefficients that we denote ααα = A>y. Those are composed
of J + 1 sets of wavelet coefficients, where each set is the same
size as the image (see Fig. 1) and J ≤ log2 N − 1 is an integer
representing the number of scales of the image decomposition.
Formally ααα can be written as ααα = [w>(1), . . . ,w

>
(J), a

>
(J)]
>, where

the {w( j)}
J
j=1 are wavelet coefficients (for which j = 1 represents

the highest frequencies), and a(J) is a set of smooth coefficients.
Important is that the data y can be recovered by y = Sααα, where
S is the IUWT-synthesis dictionary corresponding to A.
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Fig. 1. Bottom right: a galaxy cluster model im-
age, with a galaxy circled in yellow. From top
left to bottom middle: IUWT analysis coeffi-
cients w>(1), . . . ,w

>
(4) and a>(4) of the galaxy clus-

ter up to the dyadic scale J = 4. The red circles
show the most significant part of the galaxy’s
signature in the analysis coefficients.

An interesting feature of the IUWT is that astrophysical
sources yield very specific signatures in its analysis coefficients.
As an illustration, Fig. 1 highlights a galaxy in the original image
of a model galaxy cluster (see below for a more detailed descrip-
tion) with the analysis coefficients generated by this galaxy (in-
side the red circles). The fingerprint let by this object is clearly
visible in the first three scales. This suggests that each source can
in principle be associated to a set of a few coefficients (w.r.t. the
number of pixels N), which capture the source signature at its
natural scales. Conversely, we may try to reconstruct the sources
from the sparse set of corresponding analysis coefficients.

This is the strategy followed below, and it actually requires
two steps. First, obviously, the image that we must consider for
identifying the sources is the dirty image, which is noisy. This
means that all analysis coefficients ααα are not genuinely related
to astrophysical information, and some of them should be dis-
carded as noise. Using standard procedures (see, e.g., Starck
et al. 2011), the noise level can be estimated scale by scale from
the wavelet coefficients using a robust median absolute devia-
tion (MAD) (Johnstone & Silverman 1997), for instance. The
resulting significant analysis coefficients, which we denote by α̃αα,
are obtained from the analysis coefficients ααα scale by scale, by
leaving the coefficients larger than the significance threshold un-
touched and setting the others to 0.

Second, we need a procedure that will estimate which frac-
tion of the significant analysis coefficients α̃αα characterizes the
brightest source(s) (because we want to remove them to see what
is hidden in the background). We call this step object identifi-
cation and describe it below. We will then be in a position to
present the global reconstruction algorithm.

5.2. Object identification

The brightest object in the dirty image is defined from a sig-
nature defined by a subset of significant coefficients α̃αα, which
we denote by αααmax. The starting point for obtaining the bright-
est object is to locate the most significant analysis coefficient.
The IUWT analysis operation A>y = A>Hx may be seen as the
scalar product between the atoms {Ak}

N×(J+1)
k=1 and Hx, or equiva-

lently of {H>Ak}
N×(J+1)
k=1 with x. We denote the pixel of maximal

correlation score between x and one of the convolved dictionary

atoms {H>Ak}
N×(J+1)
k=1 by

kmax = arg max
k∈[1,(N+1)×J]

A>k Hx
‖A>k H‖2

= arg max
k∈[1,(N+1)×J]

α̃ααk

‖A>k H‖2
· (15)

This normalization ensures that if x was pure noise, kmax would
pick up all atoms with the same probability. The third part of
the equation is indeed valid only if α̃αα contains nonzero coeffi-
cients. We also let αmax be the wavelet coefficient at the pixel po-
sition kmax defined by (15) and jmax be the corresponding scale.

To formalize the object identification strategy, we now need
two definitions from multiscale analysis (Starck et al. 2011).
First, a set of spatially-connected nonzero analysis coefficients
at the same dyadic scale j is called a structure and is denoted
by s. (This vector is thus a set of contiguous analysis coeffi-
cients.) Typically, the red circles of Fig. 1 encircle instances of
structures. Second, an object will be characterized by a set of
structures leaving at different scales and connected from scale to
scale. Typically, the structure in the red circles of Fig. 1 would
be connected from scales j = 3 to scale j = 1 because they are
vertically aligned. (More precisely, the position of the maximum
wavelet coefficient of the structure at the scale j−1 also belongs
to a structure at the scale j.) In the case of Fig. 1, the structures
associated to this object correspond to only one source − the cir-
cled galaxy in Fig. 1.

To estimate the whole fingerprint of the brightest object (say,
the circled galaxy), we proceed as follows. First, we identify kmax

and the structure smax, on scale jmax, to which the pixel posi-
tion kmax belongs. The other structures of this object are searched
only at lower scales ( j = 1, . . . , jmax − 1), where its finest details
live significantly. The resulting set of connected structures con-
stitutes the significant coefficients identifying the signature of
the brightest object in the data. These coefficients are stored in a
sparse vector αααmax of dimension N × (J + 1).

Of course, instead of detecting and using only the most sig-
nificant coefficient kmax in α̃αα, it can be more efficient to select
a fraction of the largest coefficients on the scale jmax (see, e.g.,
Donoho et al. 2006). In this case, the algorithm simultaneously
captures structures corresponding to other sources that have in-
tensities and natural scales that are similar to the brightest object
defined only by kmax and its associated structures. In our algo-
rithm, structures on the scale jmax are allowed to have their max-
imum wavelet coefficient as low as τ × αmax, where τ is a tuning
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parameter, which needs to be selected. The joint estimation of
these objects reduces deconvolution artifacts significantly since
their sidelobes in the data are taken into account simultaneously.
The choice of τ within a wide range (e.g., [0.6 0.9]) does not af-
fect the final results significantly. Only low values of τ (say 0.1)
can lead to convergence problems because the fainter objects are
dominated by the brighter ones. In this case, αααmax will capture
the signature of several sources in the dirty image. The detailed
description of the resulting object-identification strategy is given
by Algorithm 1.

In this algorithm, the significant analysis coefficients αααmax

are found as in Sect. 5.1, as well as the maximally significant
coefficients αmax, its position kmax and scale jmax (Steps 1 and 2).
In Step 3, we find and label all structures on scales smaller than
or equal to jmax, and we collect their number µµµ j per scale j in
µµµ = [µµµ1..µµµ jmax ]. In Step 5 we store the position of the maximum
wavelet coefficient of the ith structure of scale j in the entry Ki j
of a matrix K. The value of this coefficient is then αααKi j . Step 6
involves a recursive loop. Its purpose is to look for each signif-
icant structure si, jmax

on scale jmax, whether there is a structure
on scale jmax − 1, whose maximum is vertically aligned with it.
Such a structure is included in αααmax. The process is repeated for
this structure on the lower scale. This process creates a tree of
significant structures that describes the object’s signature.

Once the signature of a bright object has been obtained, the
object is deconvolved using αααmax by solving approximately the
following problem:

ẑ = arg min
z
‖ αααmax − DA>Hz ‖22, s.t. z ≥ 0, (16)

where D maps the analysis coefficients to the nonzero values of
αααmax and z ≥ 0 means that all components of z are non-negative,
and D is formally a diagonal matrix of size (N × (J + 1),N ×
(J + 1)) defined by Dkk = 1 if αααmax

k > 0 and 0 otherwise.

5.3. The MORESANE algorithm

These ideas lead to the following iterative procedure. At each
iteration i, we identify a sparse vector ααα(i), using Algorithm 1,
which contains the signature of the brightest object in the resid-
ual image within a range controlled by τ. The flux distribution
of this object (that may correspond to several sources belonging
to the same class in term of flux and angular scales) is estimated
at each iteration i as one object z(i) using the extended conjugate
gradient Biemond et al. (1990) as described in Algorithm 2. In
the conjugate gradient, since the conjugate vector and the esti-
mate are no longer orthogonal due to the nonlinear projection
on the positive orthant, a line search method must be deployed
to estimate the stepsize δ. The estimated synthesis atom corre-
sponding to z(i) is simply X̂i = z(i)

‖z(i)‖2
and θ̂θθi = ‖z(i)‖2. The

influence of this object can be removed from the residual image
by subtracting Hz(i) = θ̂θθiH X̂i. However, the complete removal
of the bright sources contribution at each iteration could create
artifacts in the residual image. Those are caused by an overesti-
mation of the bright contributions, which in turn can impede the
recovery of the faint objects. This fact is reminiscent of issues re-
garding proper scaling of the stepsize in descent algorithms and
of CLEAN loop factor (Högbom 1974). To provide a less ag-
gressive and more progressive attenuation of the bright sources’
contribution, we have introduced a loop gain γ in MORESANE
as in CLEAN. Values of γ that are close to 1 lead to instability in
the convergence. On the other hand, values that are too low lead
to very slow convergence. We found that γ ∈ [0.1 0.2] is a good
compromise. The version with γ is presented in Algorithm 3.

The formal number of objects may become significantly large
when using γ.

In the reconstruction of specific examples (see the next sec-
tion), it appears that when large features are deconvolved at
first, they somewhat capture the contribution of smaller sources,
which are then not accurately restored during the subsequent it-
erations on small sales (they incur significant artifacts, in partic-
ular on the border of the sources). Therefore, we have opted for
a general strategy (described in Algorithm 4) where Algorithm 3
is run iteratively for J = JPSF up to log2 N − 1, where J = JPSF is
the scale corresponding to the highest correlation of the PSF with
the analysis dictionary AT . As the considered number of scales
become larger, we also include all smaller scales in the dictio-
nary, because small structures may become significant once the
contributions of other sources have been removed. At iteration 1,
the input of Algorithm 3 is the dirty map y, and at the subsequent
iterations (J > JPSF), the input is the final residuals produced
by Algorithm 3 at the previous iteration (with J − 1 scales).
Iterations may stop before J reaches log2 N − 1 if no significant
wavelet coefficients are detected at some point.

Algorithm 1 Object identification

Input: ααα, τ.
Output: αααmax.
• Identify the significant analysis coefficients α̃αα as in Sect. 5.1.
• Identify kmax (15) and its corresponding αmax and jmax.
• Find and label all structures of α̃αα on scales j = 1 to jmax.
• Determine µµµ (µµµ j is the number of structures on a scale j).
• Determine the pixel position of the maximum wavelet coefficient of
the ith structure (denoted by si, j) on each scale j ( j = 1 to jmax), and
store it in a matrix entry Ki j. The value of its wavelet coefficient is α̃ααKi j .
• for i = 1 to µµµ jmax

1. if α̃ααKi jmax ≥ τ × α
max

1.1. Add si, jmax
to αααmax.

1.2. Initialize ` = 1.
1.3. for t = 1 to µµµ jmax−l

if Kt jmax−l is in the support of si, jmax−l+1

1.3.1. Add st, jmax−l to αααmax.
1.3.2. Set ` = ` + 1.
1.3.3. Repeat 1.3. until ` = jmax.

end if.
1.4. end for.

2. end if.

• end for.

Algorithm 2 Conjugate gradient method: minor cycle

Input: ααα, D, Litr, H, J, ε.
Output: deconvolved objects ẑ.
• Initialize ` = 0, iteration index, r(0) = Sααα, residual image, u(0) = r(0),
gradient, ẑ(0) = 0, DA>H ≡W.
• while ` < Litr do

1. z(`+1) = P+(z(`) + δu(`)), P+ is a projection operator on RN
+ , and the

stepsize δ is calculated using a line search method.

2. r(`+1) = r(`) − δ SWu(`).

3. β =
〈r(`+1)−r(`) ,r(`+1)〉
〈r(`) ,r(`)〉

·

4. u(`+1) = r(`+1) + βu(`).
5. Set ` = ` + 1.

Iterations stop if
‖ z(`+1) − z(`)‖2

‖ z(`)‖2
< ε.

• end while.
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Algorithm 3 Object estimation

Input: r, H, τ, γ, J, ε, Nitr.
Output: X̂, θ̂θθ, residual r.
• Initialize i = 0, major iteration index, r(0) = r, X̂ = 0, θ̂θθ = 0.
• Determine ααα(0), the sparse analysis vector corresponding to the
brightest objects in r(0) using Algorithm 1, and thus D(0).
• while ααα(i) , 0 and i < Nitr do

1. Analysis based deconvolution step: Compute

ẑ(i) =arg min
z
‖ ααα(i) − D(i)A>Hz ‖2, s.t. z ≥ 0, using Algorithm 2

2. X̂i = ẑ(i)

‖ ẑ(i)‖2
and θ̂θθi = ‖ ẑ(i)‖2

3. Update r(i+1) = r(i) − γ̂θθθiHX̂i.
4. Determine ααα(i+1), using Algorithm 1, and D(i+1).
5. Set i = i + 1.

Iterations stop if
‖ σr(i) − σr(i−1)‖2

‖ σr(i−1)‖2
< ε, where σr(i) is the standard

deviation of the residual r(i).
• end while.

Algorithm 4 MORESANE

Input: y, H, τ, γ, Nitr.
Output: reconstructed image x̂.
• Compute JPSF corresponding to the scale of the highest correlation of
the PSF with the IUWT-analysis dictionary.
• Initialize J = JPSF, number of scales for the IUWT-decomposition,
r(0) = y.
• while J < log2 N − 1

1. Determine θ̂θθ(J) and X̂(J) using Algorithm 3.
2. Update dictionary X̂ = [X̂ X̂(J)].
3. Update weights θ̂θθ = [̂θθθ θ̂θθ(J)].
4. Update residual r(J) = r(J−1) − γX̂(J) θ̂θθ(J).
5. Set J = J + 1.

iterations stop if X̂(J) = 0.
• end while.
• Synthesis step: x̂ = γX̂ θ̂θθ.

6. Application of MORESANE and the benchmark
algorithms

In this section, we evaluate the performance of the deconvo-
lution algorithm MORESANE in comparison with the exist-
ing benchmark algorithms. We provide two families of tests. In
the first scheme, we apply MORESANE to realistic simulations
of radio interferometric observations. The results are compared
to those obtained by the classical CLEAN-based approaches
(Högbom CLEAN and Multiscale CLEAN) and the deconvo-
lution compressive sampling method developed in 2011 by Li
et al. (IUWT-based CS method in the following). In the second
scheme, we apply MORESANE to simplified simulations of ra-
dio data, where the considered uv-coverage is a sampling func-
tion with 0 and 1 entries in order to compare MORESANE with
the SARA algorithm developed in 2012 by Carrillo et al. The
published code of the latter is currently applicable only to a bi-
nary uv-coverage and could not therefore be applied to the first
set of our simulations.

The simulated data presented in this paper concern two
kinds of astrophysical sources containing both complex ex-
tended structures and compact radio sources. We first consider
a model of a galaxy cluster. Similar to observed galaxy clusters
(see, e.g., Fig. 1 in Govoni et al. 2006), the adopted model hosts
a wide variety of radio sources, such as a) point-like objects,
corresponding to unresolved radio galaxies; b) bright and elon-
gated features related to tailed radio galaxies, which are shaped
by the interaction between the radio plasma ejected by an active
galaxy and the intracluster gas observed in X-rays (e.g., Feretti
& Venturi 2002); and c) a diffuse radio source, the so-called ra-
dio halo, revealing the presence of relativistic electrons (Lorentz
factor γ � 1000) and weak magnetic fields (∼µGauss) in the
intracluster volume on Mpc scales (e.g., Ferrari et al. 2008). So
far, only a few tens of clusters are known to host diffuse radio
sources (see, e.g., Feretti et al. 2012; Brunetti & Jones 2014, for
recent reviews), which are extremely elusive owing to their very
low surface brightness. The model cluster image adopted in this
paper (courtesy of Murgia and Govoni) has been produced using
the FARADAY tool (Murgia et al. 2004) as described in Ferrari
et al. (in prep.). We then analyze the toy image of an HII re-
gion in M 31 that has been widely adopted in most of previous
deconvolution studies (e.g., Li et al. 2011; Carrillo et al. 20125)
owing to its challenging features, i.e. high signal-to-noise and
spatial dynamic ranges. In the following, all the maps are shown
in units of Jy/pixel.

6.1. Results for simulations of realistic observations

We simulated observations performed with MeerKAT. The radio
telescope, currently under construction in South Africa, will be
one of the main precursors to the SKA. By mid 2017, MeerKAT
will be completed and then integrated into the mid-frequency
component of SKA Phase 1 (SKA1-MID). In its first phase,
MeerKAT will be optimized to cover the L-band (from ≈1 to
1.7 GHz). It will be an array of 64 receptors, among which 48
will be concentrated in a core area of approximately 1 km in di-
ameter, with a minimum baseline of 29 m (corresponding to a
detectable largest angular scale of about 25 arcmin at 1.4 GHz).
The remaining antennas will be distributed over a more extended
area, resulting in a distance dispersion of 2.5 km and a longest
baseline of 8 km (corresponding to maximum achievable reso-
lution of about 5.5 arcsec at 1.4 GHz). Both the inner and outer
components of the array will follow a two-dimensional Gaussian
uv-distribution, which produces a PSF whose central lobe can be
nicely reproduced with a Gaussian shape.

Our test images are shown in the top panels of Fig. 3. Their
brightness ranges from 0 to 4.792 × 10−5 Jy/pixel and from
−2.215×10−9 to 1.006 Jy/pixel for the cluster and M 31 cases, re-
spectively (with 1 pixel corresponding to 1 arcsec). The center of
the maps is taken to be located at RA = 0 and Dec = −40 degrees
(MeerKAT will be located at latitude ∼−30 degrees). To sim-
ulate realistic observations, we used the MeqTrees package
(Noordam & Smirnov 2010). We considered a frequency range
from 1.015 GHz to 1.515 GHz, with an integration time of
60 s and a total observation time of eight hours. We adopted
a robust weighting scheme (with a Briggs robustness parame-
ter set to 0) and a cell size of 1 arcsec, corresponding to ∼1/5
of the best angular resolution achievable by MeerKAT. The
resulting standard deviation of the noise in the simulated maps is
1.73× 10−6 Jy/pixel. The simulated image sizes were selected to

5 See also http://casaguides.nrao.edu/index.php?title=
Sim_Inputs
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Fig. 2. Left: (u, v) coverage of MeerKAT for 8 h of observations, colors
correspond to the same baseline. Right: its corresponding PSF.

be 2048×2048 pixels, corresponding to roughly one-third of the
primary beam size of MeerKAT (≈1.5 deg at 1.4 GHz). The sky
images shown in Fig. 3, originally both of size 512 × 512 pixels,
were padded with zeros in their external regions.

CLEAN-based approaches are performed directly on the
continuous visibilities using the lwimager software implemented
in MeqTrees, a stand-alone imager based on the CASA libraries
and providing CASA-equivalent implementations of various
CLEAN algorithms. Whereas both MORESANE and IUWT-
based CS, written in MATLAB, take the PSF and the dirty image
for entries and work on the gridded visibilities using the FFT.

The uv-coverage and corresponding PSF of the simulated
observations are shown in Fig. 2. The main lobe of the PSF is
approximated by a Gaussian clean beam (10.5×9.9 arcsec, PA =
−28 deg). The resulting dirty images provided by MeqTrees are
shown in the middle panel of Fig. 3.

Owing to the important dynamic range (≈1:10 000) of the
cluster model map, the diffuse radio emission of the radio halo
in the dirty map is completely buried into the PSF side lobes
of bright sources (see top panel of Fig. 3). To perform the de-
convolution step with MORESANE, we consider the following
entries. The gain factor γ that controls the decrease of the resid-
ual is set to γ = 0.2. The parameter τ that controls the number
of detected objects per iteration is set to τ = 0.7 and the max-
imum number of iterations to Nitr = 200 and ε = 0.0001. For
the wavelets denoising, we use 4σ clipping. For the minor cy-
cle, we fix the maximum number of iterations in the extended
gradient conjugate Litr to 50, (tests have shown that conver-
gence is usually reached before) and the precision parameter
ε to 0.001. MORESANE stops at J = 7. For both Högbom
and Multiscale CLEAN tests, we set γ = 0.2, the threshold to
3σ and the maximum number of iterations to Nitr = 10 000.
More specifically to the Multiscale CLEAN, we use seven scales
[0, 2, 4, 8, 16, 32, 64] and γ = 0.2. For the IUWT-based CS, we
use its reweighted version implemented in MATLAB6. We set
the level of the IUWT-decomposition to 6, the threshold to 5 per-
cent of the maximum value in the Fourier transform of the PSF,
the regularization parameter λ = 10−8, the threshold to 3σ and
the maximum number of iteration Nitr = 50.

The dirty image corresponding to M 31 is displayed in the
bottom panel of Fig. 3. The source is completely resolved and
above the noise level. To deconvolve it, we set the parameters
of MORESANE to τ = 0.7, γ = 0.2, Nitr = 200, ε = 0.0005,
and 5σ clipping on the wavelet domain. In the minor loop, we
set the precision parameter ε = 0.01. MORESANE stops at

6 Found at https://code.google.com/p/csra/downloads

J = 7. In the case of the Högbom CLEAN, we set γ = 0.2,
Nitr = 10 000, and a 3σ threshold. For Multi-Scale CLEAN we
adopt: γ = 0.2, Nitr = 10 000, a 3σ threshold and seven scales
([0, 2, 4, 8, 16, 32, 64]). Finally, the parameters set for the IUWT-
based CS method are: seven scales, the threshold to 5 percent
of the maximum value in the Fourier transform of the PSF,
λ = 10−4, the threshold to 3σ, and the maximum number of
iteration Nitr = 50.

To numerically quantify the quality of the image recovery
by MORESANE with respect to the benchmark algorithms, in
terms of fidelity and dynamic range, we use two indicators de-
scribed in the following.

i) The signal-to-noise ratio (S/N) is defined as the ratio of the
standard deviation σx of the original sky to the standard de-
viation σx̂−x of the estimated model from the original sky:

S/N = 20 log10
‖x‖2
‖x̂ − x‖2

· (17)

The CLEAN algorithm provides a very poor representation of
the original scene, since it is assumed to be only composed of
point sources. Therefore, the S/N of the CLEAN model is in-
herently very low. For a more reliable evaluation of the image
recovery given by the four algorithms, we use the S/N metric
on the model images convolved with a clean beam. The latter
is usually a two-dimensional elliptical Gaussian that fits the pri-
mary lobe of the PSF. These images are considered to be more
reasonable from the astrophysics point of view, especially in
the case of the CLEAN algorithm and its variants. Hereafter,
we call a beamed image, an image convolved with a clean
beam.

Radio astronomers usually refer to the restored map ỹ
given by

ỹ = Bx̂ + r. (18)

where B is the convolution matrix by the clean beam and r is the
residual image of the deconvolution.

ii) The dynamic range metric (DR) is defined in Li et al. (2011),
as the ratio of the peak brightness of the restored image to the
standard deviation σr of the residual image,

DR =
||ỹ||∞
σr
· (19)

Figure 5 shows the deconvolution results obtained on the galaxy
cluster. The model images, the beamed images, the beamed
error images, and the deconvolution residual images are dis-
played. From a qualitative inspection of Fig. 5, MORESANE
and the IUWT-based CS method provide better approxima-
tions of the original scene than CLEAN, since the morpholo-
gies of the different objects are estimated in a more accurate
way. MORESANE is additionally more robust to false detec-
tions: while the two versions of CLEAN and the IUWT-based CS
method detect a large number of fake components, almost all ob-
jects in the MORESANE model correspond to genuine sources
when checked against the true image.

For a more quantitative comparison between the different
methods, we compared the photometry of the reconstructed
models versus the true sky. In the case of the galaxy cluster, the
total flux density of the true sky over the central 512 × 512 pixel
area is 4.10 × 10−3 Jy. The total flux values that we get in the
cases of Högbom CLEAN, Multi-scale CLEAN, IUWT-based

A7, page 9 of 16

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201424602&pdf_id=2
https://code.google.com/p/csra/downloads


A&A 576, A7 (2015)

Fig. 3. Top: simulated galaxy cluster data.
Bottom: simulated M 31 data. From left to right:
input images of size 512 × 512 pixels (shown
respectively on log scale for the galaxy cluster
and linear scale for M 31), dirty images of size
2048 × 2048 pixels and zoom on their central
regions of size 512 × 512 pixels.

Fig. 4. Left: considered uv-coverage; middle and right: dirty images corresponding to the galaxy cluster and M 31, respectively.

Table 1. Numerical comparison of the different deconvolution algorithms for the realistic simulations.

Högbom CLEAN Multi-scale CLEAN IUWT-based CS MORESANE

Galaxy cluster
S/N of the beamed models [dB] 24.9012 27.5243 20.2848 33.44

DR 456.21 498.43 502.21 543.40
M 31

S/N of the beamed models [dB] 55.7455 51.6475 43.9001 59.3224
DR [×104] 1.5405 0.6881 0.4356 1.8541

CS, and MORESANE are 3.4 × 10−3, 3.6 × 10−3, 8.3 × 10−3,
and 4 × 10−3, respectively. We also compared the photome-
try pixel by pixel as shown in Fig. 7, where we plot the esti-
mated model images on the y-axis against the true sky image
on the x-axis. In both tests, MORESANE is the method that
gives better results in terms of total flux and surface brightness.
MORESANE also gives better results in terms of S/N on the
beamed models introduced before (see top part of Table 1).

The results of M 31 reconstruction confirm the better perfor-
mance of MORESANE. In Fig. 6, we do not show the beamed
models where the differences, unlike for the non-beamed
versions, are negligible. Instead, we show both the error images

x − x̂ (Fig. 6b) and its beamed version Bx − Bx̂ (Fig. 6c).
While the IUWT-based CS gives a very good estimation of the
model source, as confirmed by inspection of Figs. 6a and 8, it
is still less competitive than MORESANE when comparing fi-
delity tests and dynamic range results (bottom part of Table 1).
This is strongly related to false detections. The total flux of
the sky image is 1495.33 Jy. The reconstructed total flux by
Högbom CLEAN, Multi-scale CLEAN, IUWT-based CS, and
MORESANE are 1495, 1495.7, 1533, and 1495.8, respectively.
Both MORESANE and CLEAN conserve very well the flux,
while the high false detection rate of the IUWT-based CS method
explains its higher total flux value.
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Table 2. Numerical comparison of SARA and MORESANE for the toy
simulations.

SARA MORESANE
Galaxy cluster

S/N of the models [dB] 13.31 16.34
S/N of the beamed models [dB] 26.17 29.47

DR 395.41 397.07
M 31

S/N of the models[dB] 23.19 17.22
S/N of the beamed models [dB] 47.67 38.81

DR [×107] 1.38 0.0007

6.2. Results for simplified simulations of observations

To compare the performance of MORESANE with the algo-
rithm SARA, we used toy simulations of radio interferometric
images, where the considered uv-coverage is a binary sampling
function. The latter is derived from the previously generated
PSF of MeerKAT. Considering the central part of the PSF of
size 512 × 512 pixels, Fourier samples with very low magnitude
(<0.01 of the maximum) are set to zero, as is the central fre-
quency. The remaining values are set to 1, keeping only 4% of
the measurements. The resulting new PSF is simply the inverse
Fourier transform of the new uv-coverage. Within this configura-
tion, simulated radio images corresponding to the galaxy cluster
and M 31 are shown in Fig. 4. An additive white noise of stan-
dard deviation 6 × 10−8 Jy/pixel is added to the visibilities in
order to mimic a similar noise level to the previous simulations.

The SARA algorithm has shown its superiority to the IUWT-
CS-based algorithm in Carrillo et al. (2012). Therefore, in this
paragraph the performance of MORESANE is studied with re-
spect to SARA alone. To do so, we used the MATLAB code of
the SARA algorithm7. In this set of simulations, visibilities lie
on a perfect grid. MORESANE results are obtained using the
same parameters as for the preceding test.

Deconvolution results for the galaxy cluster are shown
in Fig. 9. Clearly MORESANE provides a better model than
SARA, as confirmed numerically in Table 2. The total flux den-
sity of the true sky is 4.10×10−3 Jy. The total flux values that we
get in the cases of SARA and MORESANE are 4.32 × 10−3 and
4×10−3, respectively. In the case of M 31 reconstruction, SARA
has proved to perform better deconvolution than MORESANE,
as shown in Fig. 10. The total flux of the sky image is 1495.33 Jy,
and its estimated values by SARA and MORESANE are 1496.1
and 1496.7. Furthermore, SARA provides better DR and S/N.

In SARA, very faint false components are reconstructed all
over the field. Our understanding of this effect is that the method
minimizes the difference between the observed and modeled
visibilities within an uncertainty range, which is defined in-
side the algorithm with respect to the noise level. Small er-
rors in the modeled visibilities give rise to weak fluctuations
within the whole reconstructed image (in this case a factor of
≈0.01 lower than the minimum surface brightness of the source).
The SARA estimated model is the one that describes the visibili-
ties best, within an error margin and subject to an analysis-sparse
regularization. This strategy results here in a residual image with
very low standard deviation, despite the artifacts visible all over
the field (see Fig. 11, middle panel).

The righthand panel of Fig. 11 shows that MORESANE
model includes a weak (a factor of ≈0.1 lower than the min-
imum surface brightness of the source) fake emission at the

7 Found at https://github.com/basp-group/sopt

edge locations of M 31. Because MORESANE uses dictionar-
ies based on isotropic wavelets, edges are less well preserved
in the current case where the source is fully resolved, ex-
tended, and significantly above the noise level. On the other
hand, the MORESANE method does not produce false detec-
tions in the field surrounding the source, because source detec-
tion (Algorithm 1) and reconstruction (Algorithm 2) are done
locally in the wavelet and image domains, respectively.

7. Summary and conclusions

In this paper, we present a new radio deconvolution algorithm –
named MORESANE (MOdel REconstruction by Synthesis-
ANalysis Estimators) – that combines complementary types of
sparse recovery methods in order to reconstruct the most appro-
priate sky model from observed radio visibilities. A synthesis ap-
proach is used for reconstructing images, in which the unknown
synthesis objects are learned using analysis priors.

The algorithm has been conceived and optimized for restor-
ing faint diffuse astronomical sources buried in the PSF side
lobes of bright radio sources in the field. A typical example of
important astrophysical interest is the case of galaxy clusters,
which are known to host bright radio objects (extended or un-
resolved radio galaxies) and low-surface brightness Mpc-scale
radio sources (≈µJy/arcsec2 at 1.4 GHz, Ferrari et al. 2008).

To test MORESANE capabilities, in this paper we simulated
realistic radio interferometric observations of known images, in
such a way as to be able to directly compare the reconstructed
image to the original model sky. Observations performed with
the MeerKAT array (i.e., one of the main SKA pathfinders,
which is being built in South Africa) were simulated using the
MeqTrees software (Noordam & Smirnov 2010). We considered
two sky models, including the image of an HII region in M 31,
which has been widely adopted in most of previous deconvolu-
tion studies, and a model image of a typical galaxy cluster at ra-
dio wavelengths, which has been produced using the FARADAY
tool (Murgia et al. 2004). We then compared MORESANE de-
convolution results to those obtained by available tools that can
be directly applied to radio measurement sets, i.e., the classical
CLEAN and its multiscale variant (Cornwell 2008) and one of
the novel compressed sensing approaches, the IUWT-based CS
method by Li et al. (2011).

Our results indicate that MORESANE is able to efficiently
reconstruct images of a wide variety of sources (compact point-
like objects, extended tailed radio galaxies, and low-surface
brightness emission) from radio interferometric data. In agree-
ment with the conclusions based on other CS-based algorithms
(e.g., Li et al. 2011; Garsden et al. 2015), the MORESANE out-
put model has a higher resolution than CLEAN-based methods
(compare, e.g., the second and fourth images in the first column
of Fig. 5) and represents an excellent approximation of the scene
injected in the simulations.

Results obtained in the galaxy cluster case (Figs. 5 and 9), as
well as the fidelity tests summarized in the top part of Tables 1
and 2, clearly indicate that MORESANE provides a better ap-
proximation of the original scene than the other deconvolution
methods. In both sets of simulations, the new algorithm proved
to be more robust to false detections: while multiscale CLEAN,
the IUWT-based CS, and SARA methods detect a large num-
ber of fake components, almost all objects in the MORESANE
model correspond to genuine sources when checked against the
true image. In addition, MORESANE gives better results when
comparing the correspondence between the true sky pixels and
those reconstructed (see Fig. 7). This proves that MORESANE
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(a) (b) (c) (d)

Fig. 5. Reconstructed images of the galaxy cluster observations simulated with MeerKAT. The results are shown from top to bottom for Högbom
CLEAN, Multi-scale CLEAN, IUWT-based CS and MORESANE. From left to right, model images a), beamed images b), error images of the
beamed models with respect to the beamed true sky c) and residual images d).

is robust in the case of a noise level that is significantly higher
than the weakest source brightness in the field. These are valu-
able results for getting an output catalog of sources from radio
maps. New radio surveys coming from SKA and its pathfinders
will allow getting all-sky images at (sub-)mJy level, thus requir-
ing extremely efficient and reliable source extraction methods
(Norris et al. 2013, and references therein). In addition, thanks
to the huge data rate of the new generation of radio telescopes
(300 Gigabytes per second in the case of LOFAR, which will
increase by a factor of at least one hundred with SKA), ob-
servations will not be systematically stored, but data reduction
will have to be completely automatized and done on the fly.
We plan to develop MORESANE further to automatically ex-
tract an output catalog of sources (position, size, flux, etc.) from

its reconstructed model. This would allow our new image re-
construction method in pipelines to be easily inserted for auto-
matic data reduction, based also on the fact that our tests indicate
that, unlike the IUWT-CS method, the settings of parameters of
MORESANE do not need a fine tuning of the user, but can be
easily optimized for generalized cases.

The results of M 31 reconstruction are less conclusive for
the best deconvolution method. On the realistic simulations,
while the IUWT-based CS gives a very good estimation of the
model source, it is still less competitive than MORESANE when
comparing fidelity tests and dynamic range results owing to
the high rate of false model components. However, for the toy
simulations of M 31, SARA outperformed MORESANE with a
higher dynamic range and fidelity. In the considered M 31 toy
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(a) (b) (c) (d)

Fig. 6. Reconstructed images of M 31 observations simulated with MeerKAT. The results are shown from top to bottom for Högbom CLEAN,
Multi-scale CLEAN, IUWT-based CS and MORESANE. From left to right, model images a), error images of the model images with respect to
the input image b), error images of the beamed models with respect to the beamed sky image c) and residual images d).

model, the source is fully resolved and has a lower noise level
than the intensity of its weakest component. We stress here that
in true observations, these criteria are only met when observing
bright sources with long exposure times and within small filed
of views.

These results are extremely encouraging for the application
of MORESANE to radio interferometric data. Further develop-
ments are planned, including comparing our tool to other ex-
isting algorithms that are, for the moment, not publicly avail-
able (e.g., Garsden et al. 2015), taking the variations in the PSF

across the field-of-view of the instrument into account, studying
other possible analysis dictionaries, reconstructing spectral im-
ages, and testing performances on poorly calibrated data. Tests
of MORESANE on real observations, which will be the object
of a separate paper, are ongoing and promising. The results of
this paper were obtained by using MORESANE in its origi-
nal version written in MATLAB. PyMORESANE, a recently
developed Python implementation of MORESANE8, is now

8 The implementation only depends on the most common Python mod-
ules, in particular SciPy, NumPy, and PyFITS.
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Fig. 7. From left to right: results of the galaxy cluster recovery using Högbom CLEAN, MS-CLEAN, IUWT-based CS and MORESANE. Plots of
the model images (y-axis) against the input sky image (x-axis).

Fig. 8. From left to right: results of M 31 recovery using Högbom CLEAN, MS-CLEAN, IUWT-based CS and MORESANE. Plots of the model
images (y-axis) against the input sky image (x-axis).

(a) (b) (c) (d)

Fig. 9. Reconstructed images of the galaxy cluster toy simulations. The results are shown for SARA (top) and MORESANE (bottom). From left to
right, model images a), beamed images b), error images of the beamed models with respect to the beamed true sky c) and residual images d).
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(a) (b) (c) (d)

Fig. 10. Reconstructed images of M 31 toy simulations. The results are shown for SARA (top) and MORESANE (bottom). From left to right,
model images a), error images of the model images with respect to the input image b), error images of the beamed models with respect to the
beamed sky image c), and residual images d).

Fig. 11. From left to right, input model image of M 31 and reconstructed models by SARA and MORESANE on a log scale, respectively. The
figures in the top and bottom lines show exactly the same images, but with different flux contrasts to highlight features within the source and its
background.
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freely available to the community under the GPL2 license9.
PyMORESANE is a self-contained tool that includes GPU
(CUDA) acceleration and that can be used on large datasets,
within an execution time that is comparable to the standard im-
age reconstruction tools.
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