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Abstract

Lymphocytes have been described to perform different motility patterns such as Brownian

random walks, persistent random walks, and Lévy walks. Depending on the conditions,

such as confinement or the distribution of target cells, either Brownian or Lévy walks lead to

more efficient interaction with the targets. The diversity of these motility patterns may be

explained by an adaptive response to the surrounding extracellular matrix (ECM). Indeed,

depending on the ECM composition, lymphocytes either display a floating motility without

attaching to the ECM, or sliding and stepping motility with respectively continuous or discon-

tinuous attachment to the ECM, or pivoting behaviour with sustained attachment to the

ECM. Moreover, on the long term, lymphocytes either perform a persistent random walk or

a Brownian-like movement depending on the ECM composition. How the ECM affects cell

motility is still incompletely understood. Here, we integrate essential mechanistic details of

the lymphocyte-matrix adhesions and lymphocyte intrinsic cytoskeletal induced cell propul-

sion into a Cellular Potts model (CPM). We show that the combination of de novo cell-matrix

adhesion formation, adhesion growth and shrinkage, adhesion rupture, and feedback of

adhesions onto cell propulsion recapitulates multiple lymphocyte behaviours, for different

lymphocyte subsets and various substrates. With an increasing attachment area and

increased adhesion strength, the cells’ speed and persistence decreases. Additionally, the

model predicts random walks with short-term persistent but long-term subdiffusive proper-

ties resulting in a pivoting type of motility. For small adhesion areas, the spatial distribution

of adhesions emerges as a key factor influencing cell motility. Small adhesions at the front

allow for more persistent motility than larger clusters at the back, despite a similar total adhe-

sion area. In conclusion, we present an integrated framework to simulate the effects of ECM
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proteins on cell-matrix adhesion dynamics. The model reveals a sufficient set of principles

explaining the plasticity of lymphocyte motility.

Author summary

During immunosurveillance, lymphocytes patrol through tissues to interact with cancer

cells, other immune cells, and pathogens. The efficiency of this process depends on the

kinds of trajectories taken, ranging from simple Brownian walks to Lévy walks. The com-

position of the extracellular matrix (ECM), a network of macromolecules, affects the for-

mation of cell-matrix adhesions, thus strongly influencing the way lymphocytes move.

Here, we present a model of lymphocyte motility driven by adhesions that grow, shrink

and rupture in response to the ECM and cellular forces. Compared to other models, our

model is computationally light making it suitable for generating long term cell track data,

while still capturing actin dynamics and adhesion turnover. Our model suggests that cell

motility is affected by the force required to break adhesions and the rate at which new

adhesions form. Adhesions can promote cell protrusion by inhibiting retrograde actin

flow. After introducing this effect into the model, we found that it reduces the cellular dif-

fusivity and that it promotes stick-slip behaviour. Furthermore, location and size of adhe-

sion clusters determined cell persistence. Overall, our model explains the plasticity of

lymphocyte behaviour in response to the ECM.

Introduction

Lymphocytes continuously patrol in tissues and are recruited to infected areas to detect and

clear the area of pathogens and cancer cells. Theoretical studies have shown that the efficiency

by which active particles, such as motile cells, can find target particles depends on the charac-

teristics of the trajectories that lymphocytes follow, the local density of the environment, and

the distribution of targets. In absence of obstacles, at low target density and if targets need to

be revisited multiple times for a ‘kill’, persistent random walks or random walks characterized

by long ballistic phases intermitted by local exploration, such as Lévy walks, perform better

than more diffusive, Brownian walks because the ballistic strides prevent local oversampling

[1, 2], where the search efficiency depends on the distribution of the stride lengths [3]. For

large target densities, Brownian walks become the optimal strategy, whereas for targets that

need only a single hit to be killed moving ballistically becomes the optimal strategy [1]. The

presence of non-overlapping convex obstacles does not affect the efficiency of Lévy walks, but

in porous media characterized by concave obstacle boundaries, such as dense biological tis-

sues, Brownian-like search strategies can become more effective because the ballistic phase of

Lévy walks leads to frequent collisions of the particles with the obstacle walls [4]. Relative to

Brownian walks, subdiffusive random walks are characterized by enhanced local exploration.

This enhances the probability that the active particle binds the target within a given time [5],

suggesting that this strategy becomes effective when the lymphocyte has detected its target,

e.g., through detection of diffusive signals, but is still unable to bind it, or when the lymphocyte

needs to hit the target multiple times for an effective kill of the target [6]. For a recent in-depth

study of search efficiencies of subdiffusive, diffusive and superdiffusive random walkers, we

refer to Ref. [7].
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Consistent with theoretical predictions of the optimal search strategies in presence of obsta-

cles, within densely populated lymph nodes, T lymphocytes perform Brownian walks [8, 9] or

persistent random walks [10]. In brain tissue, which is less dense than lymph node tissue, T

cells perform Lévy walks [11]. In pancreatic islets, CD4+ T cells perform subdiffusive random

walks, whereas CD8+ T cells perform confined random walks [12]. Thus, the characteristics of

the trajectories taken by immune cells and the density of the tissues through which they travel

determine together how efficiently lymphocytes can find their target cells. Therefore, it is key

to understand what cellular properties give rise to the characteristics of the random walks per-

formed by lymphocytes.

Mathematically, the superdiffusive and subdiffusive search strategies observed in leukocytes

are non-Markovian and therefore require a memory of previous cell positions (Ref [13] and

references therein). Such positional memory can be provided by local modification with the

micro-environment, e.g., through autochemotaxis [13], by local modification of the ECM, or

by intracellular memory effects such as cell polarization and cell-matrix attachments, as we

show here. In agreement with these theoretical considerations, experimental work has shown

that plasticity of lymphocyte motility behaviour is dictated both by environmental factors and

by cell intrinsic features [14, 15]. An in vitro study has shown that the type of extracellular

matrix (ECM) used as cell culture substrate affects the motility patterns of B lymphocytes, pos-

sibly due to the attachment strength [16]. On fibronectin, B lymphocytes show higher diffusiv-

ity and more effective displacement than on collagen IV substrates where cells move more

slowly. The B lymphocytes form larger adhesive connections with fibronectin than with colla-

gen IV, and on fibronectin the cells change shape more rapidly than on collagen IV. Similar

effects have been found for T lymphocytes. The majority of cells on a casein substrate move

through multiple, distinct and temporary adhesion zones, i.e., walking motility, whereas on

ICAM-1 substrates, the majority of cells make one continuous contact zone with the substrate,

i.e., sliding motility [17]. Apart from these environmental effects, cells also show large individ-

ual variation in their motility patterns indicating that cell intrinsic features matter as well. On

fibronectin, individual B lymphocytes showed either floating-like behaviour with little attach-

ment, dynamic attachment leading to stepping/walking behaviour, or sustained attachment

leading to cells pivoting around their adhesive area [16]. Similarly, T lymphocytes can show

either walking, mixed or sliding behaviour, with relative frequencies depending the type of cul-

ture substrate [17].

It is still poorly understood what causes, on the one hand, the consistent differences in

motility modes between culture substrates, and on the other hand, the large individual differ-

ences between cells on the same type of substrate. Modelling helps shed light into such ques-

tions [18], and indeed previous theoretical studies have provided useful insights. Copos et al.

[19] asked what causes the cellular extension and retraction cycles driving the motility of Dic-
tyostelium discoideum cells. They modelled D. discoideum forward and backward movement

in a force-based model. In agreement with preliminary experimental observations, the model

predicted that for low densities of adhesion binding sites in the substrate and low adhesion

strength, the cells crawled smoothly along the surface, aka gliding motility. For an increased

binding site density or stronger adhesion, the cells switched to stepping motility, that is they

moved by extending and reducing their length at a reduced speed relative to gliding motility.

For the highest adhesion densities or adhesion strengths, the cells became stationary. Thus,

this work showed that both the amount and strength of the attachments can determine the cell

motility patterns observed in D. discoideum. Aranson and coworkers [20, 21] introduced a

phase-field model to study how actin polymerization, dynamical adhesion site formation, and

substrate compliance together determine the characteristics of cell trajectories. The model pre-

dicted gliding motility at high substrate stiffness, high protrusion strength and high formation
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rate of adhesions. At intermediate substrate stiffnesses with sufficiently high protrusion

strength and intermediate adhesion formation, the cells displayed a stick-and-slip motility.

Thus, phase-field models have provided key insights into how the extracellular matrix affects

cell motility. However, the high computational costs of phase-field modelling currently limit

the production of the large data volumes required for statistical analyses of cell trajectories. A

first step in this direction was taken by Yu et al. [22] who have introduced a computationally

efficient, coarse-grained model to study long term cell persistence. The model considered

spheroid cells with a fixed pool of focal adhesions. These adhesions were assumed to be widely

dispersed within the cells for soft substrates and more narrowly dispersed for rigid substrates.

The increased persistence times on rigid substrates led to durotaxis, i.e., preferential move-

ment towards stiffer substrates. In their model, Yu et al. [22] assumed a direct dependence of

cell persistence on adhesion distribution.

Altogether, the previous experimental and computational work has shown that the mecha-

nisms driving cell motility and the adherence of the cells to the matrix together are key deter-

minants of cell motility patterns, and hence of the search strategies of lymphocytes. However,

to precisely relate mechanistic cell characteristics to cellular search strategies, we must be able

to explain how the kinetic interplay between cell motility and cell adhesion determines the

bulk characteristics of cell motility, such as velocity distributions and the shape of the mean

squared displacement curves. To this end, here we introduce a simplified, yet entirely mecha-

nistic mathematical model of cell motility and the adhesive interaction with the ECM. The

model is computationally sufficiently fast for the production of the large numbers of predicted,

two-dimensional cell trajectories required for statistical analysis. The model is an extension of

the Act model [23], a recent extension of the Cellular Potts model, that provides a fast and

phenomenological model of actin dynamics. Depending on the parameter settings, this

phenomenological model of actin-polymerization-driven cell motility on its own already dis-

plays intermittent (stop-and-go) motility and persistent random walks. The model displays

universal coupling between speed and persistence [24], as observed in many cell types. Alto-

gether the Act-model provides a biologically-plausible and computationally-efficient starting

point for our purposes. In the remaining part of this paper, we increase the complexity of the

model step by step, to show how each component contributes to the final behaviour of the

model. First we show that a combination of coarse-grained actin dynamics with simplified

dynamics of adhesion formation and detachment reproduces both pivoting behaviour and

sliding and stepping behaviour, but fails to reproduce the requirement of cell-substrate adhe-

sion for cell motility. We then introduce a further mechanism into the model in which the

cell-ECM adhesions promote cell protrusion by inhibiting retrograde actin flow. The extended

model suffices to reproduce the three phases of lymphocyte motility on fibronectin [16]. Thus,

our work shows how much of the variety of cell motility can follow from actin dynamics and

cell-ECM adhesion, and provides a computationally-tractable model that allows for statistical

analysis of cell motility.

Results

In this section, we first introduce the main assumptions of the model, referring to the Methods

section for detail. We then show that this model can reproduce a number of lymphocyte motil-

ity modes. Next, we extend the model with feedback from the adhesions onto the actin poly-

merization force and show that we can capture more dynamic motility behaviours. Overall,

our model recapitulates the diversity of lymphocyte motility modes and provides insight into

the mechanisms underlying such behavioural diversity.
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Modelling cell-matrix adhesions

The computational model is based on the Act model [23, 24], which is an extension of the Cel-

lular Potts model (CPM, [25, 26]) that efficiently simulates persistent, amoeboid cell motility

emerging from feedback mechanism inspired by detailed insights into actin-polymerisation

driven cell motility. Depending on its parameter settings, the model produces a variety of real-

istic cell shapes, and reproduces realistic cell polarisation and cell trajectories. In short, the

model is two-dimensional, and can be interpreted as a projection of the three-dimensional cell

and the underlying substrate from the top. The Act extension keeps track of recent “actin poly-

merisation” inside the cell, which is represented through Act values at each lattice site. Novel

protrusions get a high Act value and cell protrusions at sites with locally high Act values are

favoured. Two important parameters for this are λAct, the weight of the Act model that can be

interpreted as the maximum protrusive force of the actin network, and MaxAct, the maximum

Act value, interpretable as the lifetime of an actin subunit within the actin network (see

Table 1). Here we extend the model with dynamical cell-matrix adhesions (Fig 1). Full detail is

given in the Methods section.

In this two-dimensional model we consider integrin bonds between the cell and the under-

lying substrate, by which the cell adheres to the substrate. They are represented by a binary

number in each lattice site, which indicates if at this site there is an active adhesion or not. In

biological cells, the formation of new adhesions occurs at the cell’s leading edge during actin

polymerisation and pseudopod protrusion [27–29], as well as through formation and expan-

sion of adhesions in the middle region of the cell. In absence of forces pulling the whole cell off

of the substrate, due to the two-dimensional representation of the cell, only the adhesions at

the edges of the cell will affect cell motility. Nevertheless, we will need to consider formation

and degradation of adhesion in the middle of the cell as well, because–as will become apparent

when we consider the dynamics of the model–a large patch of adhesions at the cell edge will

still resist a series of unbinding events better than a few isolated adhesions. In addition, in an

extended version of the model (see Section Including the effects of cell-substrate adhesion on

cell protrusion) we consider a feedback of the adhesions on actin polymerization.

We mimic formation of adhesions at the leading edge as follows: in the Act model, the lead-

ing edge is marked by lattice sites with high Act values. We thus assume that the probability of

adhesion formation is proportional to the Act-value. More precisely, defining Vð~xÞ ¼ f~y 2
NBð~xÞjsð~yÞ ¼ sð~xÞg as the Moore neighbourhood of lattice site~x (NBð~xÞ) restricted to the

same cell as site~x, a lattice site~x receives an adhesion with probability ps (Fig 1A and 1B,

Table 1. List of parameters involved in adhesion dynamics and values used for simulations.

Parameter Description Values

Figs 2, 3 and 4 Figs 6 and 7 Fig 8

λAct Weight of the Act-extension, the maximum protrusive force induced by actin polymerisation 240 120, 240 240

MaxAct Maximum value of the Act-field, actin lifetime 120 120 120

(value in Eq 10) Fraction of MaxAct above which adhesion formation is possible 0.75 0.75 0.75

ps New adhesion formation rate 0.004–0.020 0.001–0.004 0.003,0.001

pe Rate of neighbouring grid site to become adhesion site if not already so 0.0055 0.0055 0.0015,0.004

pd Rate of unbinding adhesion site dependent on adhesionless neighbouring sites 0.0008 0.001 0.0004

λadh Energy required to rupture adhesion upon retraction of the cell 20–100 20–100 60

f Prefactor for the adhesion feedback onto Act model - interval [b,1] interval [b,1]

b Base value of f in absence of adhesions - 0.5 0.5

s Adhesion area fraction saturation threshold above which f = 1 - 0.1 0.12

https://doi.org/10.1371/journal.pcbi.1009156.t001
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process 1) if the geometric mean of Act-value Actð~yÞ, with~y 2 Vð~xÞ exceeds a threshold

ð
Q

~y2Vð~xÞActð~yÞÞ
1

jVð~xÞj � 0:75MaxAct. Note that in our model, ps lumps together the effect of mul-

tiple biological processes, including the rate at which integrin molecules bind to their ligands

in the extracellular matrix, and the concentration of integrins at the cell front. A detailed bio-

physical model suggests that local integrin-substrate bonds favour the formation of adjacent

bonds, because they stabilise the membrane, reducing membrane fluctuations [30]. We sim-

plify patch expansion phenomenologically using the Eden model [31] of radial colony growth.

Empty lattice sites adjacent to an existing adhesion site join the adhesion patch with probabil-

ity pe (Fig 1B, process 2). Unbinding of cell-matrix adhesions occurs spontaneously or as a

result of cellular forces. More specifically, adhesion patches rupture from the edges of the

patches [17]. We model this process only at the edge of the cell, where cellular contraction

forces are sufficient to break bonds. Integrin bonds are known to show catch-slip bond behav-

iour, meaning that initially the bond strengthens with increase of force, but will still break if

enough force is applied. Here, we neglect this specific behaviour and associate a single required

energy cost of λadh with the rupture of adhesions at the retracting edge (Fig 1B, process 3). λadh

is given by the binding affinity between integrins and their ligands and the concentration of

integrins bound to the ECM. In addition, we assume that association with adjacent adhesions

reduces the spontaneous unbinding rate. The probability that an adhesion site unbinds thus

becomes pd �
jfnb2NBð~xÞnf~xgjAdhðnbÞ¼0gj

jfnb2NBð~xÞgnf~xgj

� �2

, where NBð~xÞ indicates the Moore neighbourhood of lat-

tice site~x (Fig 1B, process 4). Our model thus represents the dynamic behaviour of cell-matrix

adhesions.

All in all, our proposed model extension for adhesions is relatively simple and computation-

ally light. All adhesion dynamics are governed by the four parameters ps, pe, pd and λadh. An

overview of all the relevant parameters is shown in Table 1. Estimates of length scale, time

scale, and the parameter MaxAct, as well as the relative magnitudes of λAct and λadh can be

found in S1 Text. The simulations were performed using Tissue Simulation Toolkit ([32];

Fig 1. Overview of the adhesion processes within the model. A) Top: overview of a simulated cell. Red to yellow

shading indicates the Act-level of each lattice site according to the colour bar. Darker coloured lattice sites contain an

adhesion. Bottom: the same cell with in blue the region where new adhesions can form, as the local Act-levels exceeds

the 0.75 MaxAct threshold. Both: Arrows point to area with one lattice site with high Act-level due to a recent extension

of the cell (top, red), but the geometric mean of Act-levels does not exceed the threshold and hence new adhesions

cannot form there (bottom, grey). B) Visual summary of adhesion processes. Dark coloured circles indicate lattice sites

containing an adhesion. 1) New adhesions can form spontaneously with probability ps at cell lattice sites where the

geometric means of Act values exceeds the threshold of 0.75 MaxAct (blue region). 2) An adhesion patch can grow by

Eden growth. A random neighbour of an adhesion site is selected. When it does not contain an adhesion yet, the patch

extends into that lattice site with probability pe. 3) To break an adhesion, retractions must overcome an energy cost ΔH
= λadh. 4) Adhesions can also unbind spontaneously, depending on the number of neighbouring lattice sites without

adhesions and probability pd.

https://doi.org/10.1371/journal.pcbi.1009156.g001
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source code in S1 Data). An interactive version in Artistoo [33] of the model running in a web

browser is in S2 Data.

Model reproduces walking motility and sustained attachment leading to

pivoting motility

We first investigated the influence of the cell adhesion formation probability ps, and adhesion

strength λadh on the motility patterns. Fig 2A–2D summarize the variety of patterns observed

in the model. We observe roughly two types of cell motility patterns. If λadh is low to moderate

(Fig 2A and 2C, S1 Video) the substrate adhesions do not affect retractions of the cell, and the

model behaves, therefore, practically like the standard Act-model [23] which mostly repro-

duces sliding motility [24] For larger values of λadh, the simulated cells show less persistent

motility (Fig 2B and 2D, S1 Video). For high values of λadh and ps cells form sustained adhe-

sions. For these parameter values, the adhesions form easily and require much energy to break,

Fig 2. Simulations of the model showing different motility types. A-D) First column, a display of a single cell at 5000

MCS interval snapshots combined with the cell centre’s trajectory. Each trajectory starts in the centre of the field and

periodic boundaries are used. Second column, a close-up of the cell with the adhesions displayed in a darker colour.

E-H) A plot of the cell’s speed and percentage of the cell’s area containing adhesions corresponding to the track on the

left. Vertical dashed lines indicate the times of the snapshots on the left. Parameters are: A,E) λadh = 20, ps = 0.004, B,F)

λadh = 100, ps = 0.004, C,G) λadh = 20, ps = 0.02, D,H) λadh = 100, ps = 0.02. Furthermore, pd = 0.0008 for all cases. These

simulations are also available as S1 Video.

https://doi.org/10.1371/journal.pcbi.1009156.g002
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such that cells will remain stuck in place on the matrix. However, they can still make protru-

sions around them, leading to pivoting motility (Fig 2D, S1 Video).

To further characterize the cell motility and the effect of the dynamic adhesion patches, we

measured the cell speed alongside with the summed area of the adhesions divided by the total

area of the cell (Fig 2E–2H). Note that this percentage adhesion area should be interpreted as

the percentage of the bottom area of the cell that is adhered to the underlying substrate. First

we looked at the effect of ps and λadh independently, expecting that ps regulates the adhesion

area. Indeed, at relatively low values of ps = 0.004 (Fig 2E and 2F), the cells formed low adhe-

sion area, and at higher values of ps = 0.02, we observed a larger adhesion area (Fig 2G and

2H). ps thus positively correlated with the percentage of adhesion area. We expect that λadh reg-

ulates cell speed. Indeed, at relatively low values of λadh = 20 (Fig 2E and 2G) the average speed

was higher and also fluctuated less than at higher values of λadh = 100 (Fig 2F and 2H), as indi-

cated by the mean squared logarithmic difference (E:0.00313 and G:0.00442 versus F:0.0072

and H:0.0167; see distributions at the left). λadh thus negatively correlated with cell speed.

Interestingly, in Fig 2B and 2F we observed sliding-stepping-like behaviour: the cells fre-

quently slowed down followed by burst of acceleration. However, the simulations did not dis-

play the cyclic expansive and contractile shape changes observed in experiments [16] and

reproduced in more complex models [19].

Overall, the behaviour of our model resembles observations by Rey-Barroso et al. [16] that

B cells on fibronectin with fluctuating adhesion areas showed walking behaviour, and cells

with large and sustained adhesion surfaces displaced very little and the adhesion patch did not

displace. The behaviour of the model also agrees with observations of Jacobelli et al. [17] that T

cells displaying a gliding motility with higher adhesion area have lower speed than cells with a

walking motility with lower adhesion area. An important difference is that the gliding cells in

experiments show a large adhesion patch at the front where they assist in cell protrusion,

whereas in our model the bulk of the adhesions appears more to the back, where they mostly

reduce cell retraction probability (Fig 2C and 2G).

Adhesions slow down cell motility and reduce diffusivity

The examples shown in Fig 2 and S1 Video suggest that higher adhesion area correlates with

reduced cell speed and reduced cell diffusivity. To characterize this potential correlation, we

analysed 1000 independent runs for different combinations of ps and λadh, and measured the

average cell speed and adhesion area. Fig 3A shows the mean speed of the cells as a function of

ps and λadh, and Fig 3B shows the diffusivity. In both panels, symbols with the same value of

λadh are connected and symbols of the same colour have the same value of ps. Fig 3A shows

that increasing the value of λadh decreases cell speed and that the average adhesion area

increases with the value of ps. Furthermore, for high values of λadh, the effects of ps on cell

adhesion are larger, and for high values of ps, the effects of λadh on cell speed are also larger.

Fig 3B plots the diffusivity of the cells and adhesion area as a function of ps and λadh. As a

crude measure for diffusivity we took the slope of the mean squared displacement curves from

11500 to 24000 MCS, assuming the MSD has entered a linear regime in that time period as dis-

cussed in more detail below. Similar to the cell speed, increasing λadh results in lower diffusiv-

ity and the effect is larger for higher values of ps. Moreover, the effect of λadh is larger on cell

diffusivity than on cell speed. The drop in instantaneous cell speed (from highest to lowest in

Fig 3A a reduction to about one half) is modest compared to the drop in diffusion coefficient

(Fig 3B, from highest to lowest a reduction to about one fiftieth). Cell diffusivity is determined

by instantaneous cell speed and persistence of movement direction. Thus, this observation

suggests that the drop in diffusivity is for a large part caused by a loss of cell persistence.
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Reduced diffusivity of adhesive cells is due to reduced persistence times

To further characterize the cause of the reduced diffusivity at high values of ps and λadh, we fit-

ted the mean squared displacement curves with a persistent random walker model, the Fürth

equation [34, 35]:

MSDðtÞ ¼ 4
n2

th

g2
1

g1t � 1þ e� tg1ð Þ; ð1Þ

where νth is the walker’s speed and γ1 is its persistence time (S1 Fig). The persistent random

walker model fits well with the MSD curves at long time scale, but it fails at the short time scale

where the cell trajectories are mainly determined by the random fluctuations in the CPM. We

therefore extended Eq 1 with a term for translational diffusion [36],

MSDðtÞ ¼ 4
n2

th

g2
1

g1t � 1þ e� tg1ð Þ þ DTt ð2Þ

The extended Fürth equation (Eq 2, S1 Fig) gives good fits for most cases (Fig 4A–4C).

Extending the Fürth equation with anomalous diffusion instead of translational diffusion, i.e.,

adding the term DTtβ, does not result in better fits, despite the additional parameter (S1 Fig).

The persistence times, as obtained from the extended Fürth equation (Eq 2), indicate that

indeed the reduced diffusivity can be attributed for a large part to a reduced persistence time

with higher adhesion energies and large adhesive areas (S2 Fig). However, for the highest val-

ues of λadh = 80 to λadh = 100 Eq 2 still does not fit well with the data (Fig 4D). We attempted

Fig 3. Mean speed, diffusion coefficient, and mean adhesive area change by increasing ps and λadh. Mean speed (A)

and diffusion coefficient (B) plotted against mean percentual adhesion area for different values of parameters ps and

λadh. Each dot represents the mean of 1000 independent simulations. Different colours indicate different ps, where

shades from light to dark and marker symbol indicate λadh 2 {20, 40, 60, 80, 100}. For reference, the mean speed and

diffusion coefficient of the Act model without any adhesions are indicated by a black circle. Error bars indicate 95%

confidence intervals.

https://doi.org/10.1371/journal.pcbi.1009156.g003
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to improve the fit by increasing the initialization period left out of the MSD computation, in

order to compute the MSD of cells closer to their dynamic equilibrium in both Act model

dynamics as well as adhesion-extension dynamics. This barely improved the fit and suggests

that cell motility in this regime cannot be correctly described by a persistent random walker

with translational diffusion.

Strongly adhesive cells show subdiffusive behaviour

To characterise the diffusive behaviour of strongly adherent cells at high λadh values we fitted

the data with the MSD of a fractional Klein-Kramers (FKK) process. Previously the fractional

Fig 4. MSD fits either a persistent random walker or a subdiffusive persistent random walker. Log-log plot of MSD

for the four scenarios in Fig 2, with fits of Eqs 2 and 4. Parameters are: A) λadh = 20, ps = 0.004, B) λadh = 100, ps =

0.004, C) λadh = 20, ps = 0.02, D) λadh = 100, ps = 0.02.

https://doi.org/10.1371/journal.pcbi.1009156.g004
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Klein-Kramers (FKK) process was proposed to describe the motility of transformed Madin-

Darby canine kidney cells [37]. The MSD of the FKK process was given by,

MSDðtÞ ¼ 4n2
tht

2Ea;3ð� gataÞ þ ð2ZÞ
2
; ð3Þ

where Eα,3 is the generalized Mittag-Leffler function and η is a noise term. The standard Fürth

model (Eq 1) is a special case of the FKK-process for α = 1 and η = 0, where α parameterizes

the long-term diffusive behaviour and is restricted to 0< α� 1 [38]. The same MSD expres-

sion, except for the noise term, has also been derived from a fractional Langevin equation of

motion, which only holds for 1< α< 2 [39]. Since we already concluded that translational dif-

fusion plays a significant role in the short-time scale of the CPM, we assume that the noise

term is due to translational diffusion, thus obtaining,

MSDðtÞ ¼ 4n2
tht

2Ea;3ð� gataÞ þ DTt: ð4Þ

which reduces to Eq 2 for α = 1. For t!1, Eqs 3 and 4 can be approximated by MSDðtÞ �
4Dtht2� a

Gð3� aÞ
[37]. So for α> 1, the long-term behaviour is subdiffusive, whereas for α< 1, the long-

term behaviour is superdiffusive.

In the cases where Eq 2 fits well, we obtain α� 1 (Table 2). However, for the cases were Eq

2 fits badly, Eq 4 has a better fit and α> 1 (Fig 4, Table 2) indicating subdiffusive behaviour.

This behaviour corresponds to cases where the cells are strongly attached to the matrix, pivot-

ing around their adhesion patch. Thus, these cells move persistently on a local scale as they

have a single protrusion front, but they move subdiffusively on a longer timescale as they stay

within a confined area.

Including the effects of cell-substrate adhesion on cell protrusion

So far, the model can explain (i) sliding and stepping, and (ii) pivoting cell behaviour as

observed in Ref. [16]. However, key differences between the behaviour of the extended Act-

model with real cell motility remain. In particular, in the extended model the cell-substrate

adhesions only reduce the probability of cell retraction, whereas in biological cells, the adhe-

sions near the cell front are instrumental for pulling the cell forward. For this reason, the cur-

rent model still fails to explain (iii) the floating phase that was also observed in Ref. [16], i.e.,

the observation that B cells with a low adhesive area or no adhesive area on a fibronectin sub-

strate show low displacement compared to cells with dynamic attachment [16].

To also recapitulate such floating behaviour, we extended the model as follows. In presence

of a stable adhesion, the forces generated by actin polymerization are transferred onto the

matrix leading to protrusion. With reduced adhesions, actin polymerisation more often leads

to treadmilling. Thus, in presence of cell-matrix adhesion, actin polymerisation more effi-

ciently translates to cell protrusion [40–42]. We model this effect using a prefactor f to λAct,

such that it dynamically alters the strength by which the Act-values affect the cell protrusions,

and hence the protrusion force. For simplicity, the protrusion efficiency increases linearly with

Table 2. Fitted values of α from Eq 4 for different values of λadh and ps.

Parameters α

λadh = 20, ps = 0.004 1.019

λadh = 20, ps = 0.020 1.013

λadh = 100, ps = 0.004 1.024

λadh = 100, ps = 0.020 1.257

https://doi.org/10.1371/journal.pcbi.1009156.t002
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the cell’s total adhesion area. Furthermore, we assume that there is a threshold adhesion area

at which the adhesive force suffices to withstand the forces of actin polymerization. Hence, we

define,

f ¼

bþ
1 � b

s
AadhðiÞ
AðiÞ

if
AadhðiÞ
AðiÞ

� s

1 if
AadhðiÞ
AðiÞ

> s

8
>>>><

>>>>:

ð5Þ

with b the baseline protrusion efficiency and s the threshold adhesion area. Thus the effect of

the adhesion area on the propulsion strength only affects cell motility if the adhesion area is

below or near the threshold s. A schematic overview is shown in Fig 5.

Extended model reproduces all three phases of cell motility

To test if the new model indeed reproduces floating motility alongside the other two phases of

motility observed in Ref. [16], we focus on parameter combinations that result in adhesion

areas below or around the threshold s. For adhesion areas above the threshold s, the model

behaviour does not change. We choose s = 0.1 and a baseline protrusion efficiency b = 0.5.

From the previous section, we know that ps is the main parameter controlling adhesion area,

so we chose ps� 0.004.

The model shows a variety of behaviours depending on the value of ps (Fig 6, S2 Video). For

very low values of ps = 0.001 (Fig 6A), cells make only a small number of tiny adhesion patches

and thus have a small adhesive area. Furthermore, they explore relatively small areas (Fig 6A

and 6B). Nevertheless, their trajectories can still be described well with Eq 2 or with Eq 4 with

Fig 5. Schematic representation of the effect of adhesion on cell propulsion strength. Colour schemes are similar to

Fig 1A. Arrow width corresponds to the effective protrusion strength fλAct. A) In the absence of adhesions, the

propulsion prefactor f is equal to the base level b. B) Below the saturation point s, f increases linearly with adhesion

area. C) Above the adhesion area saturation point s, prefactor f, and thus effective protrusion strength fλAct, are

maximal.

https://doi.org/10.1371/journal.pcbi.1009156.g005
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α = 0.974, so the type of motility can still be classified as a persistent random walk, albeit with

lower persistence time (S3 Fig). For increased adhesion formation probability ps = 0.0025,

stick-slip behaviour is observed (Fig 6C). Interestingly, in contrast to the initial model, the

cells accelerate as the adhesion areas grow and they decelerate when they have lost their adhe-

sions (Fig 6D). For ps = 0.004 (Fig 6E), the mean adhesive area approaches the threshold. In

this case, the diffusivity and persistence are lower compared to the model without the adhe-

sion-protrusion feedback, but the cell speed is comparable (Figs 6F and 7A).

Fig 7 shows the average speed (Fig 7A) and diffusivity of cells (Fig 7B) with low adhesive

areas for both the initial (filled symbols) and the extended model (open symbols). The cell

speed and cell diffusivity of the standard Act model are shown in the figure for reference. The

cell speed and cell diffusivity of the initial model follow the same trend as observed in Fig 3,

Fig 6. Simulations of the model with adhesion-propulsion feedback. A-C) First column, a display of a single cell at 5000 MCS intervals combined with

trajectory of the cell centre. Each trajectory starts in the middle and periodic boundaries are used. Second column, a close-up of the cell with the adhesion

displayed in a darker colour. D-F) A plot of the cell’s speed and percentage of the cell’s area containing adhesions corresponding to the track on the left.

Parameters are: A,D) λadh = 100, ps = 0.001; C,F) λadh = 100, ps = 0.0025; B,E) λadh = 100, ps = 0.004. Furthermore pd = 0.008 for all cases. These

simulations are also available as S2 Video.

https://doi.org/10.1371/journal.pcbi.1009156.g006
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both decreasing for increasing values of ps and λadh. The model converges to the Act model for

low adhesion areas as expected (λAct = 240 (black cross)). Similarly, the extended model con-

verges to the Act model for low adhesion area (black plus sign), where λAct = 120 corresponds

to the baseline propulsion strength b = 1/2. Near the adhesion area threshold of s = 0.1 both

models show the same behaviour. The mean speed and diffusion coefficient increase mono-

tonically between these two extremes: higher adhesion areas lead to higher speed. Whereas the

value of λadh has little effect on the cell speed in this parameter regime, ps determines the adhe-

sion area and thus has a large effect on cell speed. Remarkably, there is a slight difference in

mean adhesion area between the models. This small effect is likely due to the positive feedback

loop between adhesion growth and cell propulsion in the extended model.

In conclusion, by adjusting the parameters ps and λadh, the extended model provides a mini-

mal model explaining the three motility phases of B cells observed on fibronectin: for low cell-

matrix attachment the cells have reduced motility (floating motility), for increased cell-matrix

attachment the cells form dynamic adhesion areas and display increased motility (sliding-step-

ping motility), and for the strongest cell-matrix attachment the cells displayed sustained

attachment with low displacement (pivoting motility) [16].

Distribution pattern of adhesions influences cell motility by changing the

persistence times

So far, we have neglected the effect of adhesion distribution and variation in time on cell motil-

ity. However, the dynamics of the distribution and size of the adhesive patches over the cell

Fig 7. Mean speed, diffusion coefficient and adhesion area differ between the model with and without adhesion-

propulsion feedback. Mean speed (A) and diffusion coefficient (B) plotted against mean percentual adhesion area for

different values of parameters ps and λadh. Each dot represents the mean over 1000 independent simulations. Filled

symbols are results from the model without adhesion-propulsion feedback, and open symbols show results from the

model with adhesion-propulsion feedback. Different colours indicate different ps, where shades from light to dark and

marker symbol indicate λadh 2 {20, 60, 100}. Error bars indicate 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1009156.g007
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may have a large effect on cell motility patterns. For example, the distribution of the adhesion

clusters differs between walking and sliding T cells [17]. Sliding T cells have a large contact

area at the cell front. Walking T cells, in contrast, had multiple distinct adhesion areas that

were distributed over the cells, including the rear end of the cell.

To gain insight in the impact of adhesion patch distribution on cell motility, we explored

parameter settings resulting in the same adhesion area but with different adhesion cluster size

distributions We did this by varying the formation rate for new adhesions (ps) as well as the

adhesion growth rate (pe). Fig 8 shows the results of two such parameter settings resulting in

the same time-averaged adhesion area. The blue parameter set obtains its adhesive area mostly

through the formation of new adhesions (ps> pe, Fig 8A: blue), whereas the orange parameter

expansion of existing adhesion clusters dominates (ps< pe, Fig 8A: orange, see also S3 Video).

The two parameter sets form cells with approximately the same average adhesion area (Fig 8B;

t-Test for difference: p = 0.07), but the cluster size distribution differs (Fig 8C). For ps> pe

there are many small adhesion clusters (blue line), whereas for ps< pe (orange line) small clus-

ters are combined with a few large clusters. Furthermore, the distribution of adhesion along

the cell differs (two-sample K–S test D = 0.164, p = 0.0): if the cell forms many small adhesions

(blue), adhesions are located preferentially towards the front of the cell, whereas adhesions are

located more towards the back of the cell if the cell forms larger adhesions (orange; Fig 8D).

Next, we studied whether the differences in adhesion distribution lead to differences in cell

motility. First, the speed distribution has a slightly higher mean for the many-small-cluster

Fig 8. Adhesion growth dynamics influence adhesion cluster size and localisation, cell speed and MSD. (A) Example of different adhesion cluster

size for different parameter values of ps and pe. Blue: ps = 0.003, pe = 0.0015 resulting in multiple small adhesions. Orange: ps = 0.001, pe = 0.004,

resulting in a small number of larger clusters. Colours in B-F correspond to these parameter settings. (B) Average adhesion area of 1000 cells over time

measured after a ‘burn in’ time of 1000 MCS; each data point represents one cell and vertical lines show the average. (C) Distribution of cluster sizes for

1000 independent simulations for each parameter setting on a logarithmic scale. Distribution of blue does not exceed cluster size 20. (D) Distribution of

adhesions along the front-rear axis of the cell for 1000 independent simulations for each parameter setting. Axis was determined from the cell’s position

at 25 MCS in the past and 25 MCS in the future at 100 MCS intervals. Position 0 indicates the cell’s centre of mass. Dotted lines show the means of the

distributions. (E) Distribution of instantaneous speed of 1000 independent simulations for each parameter setting. Mean speed for orange is lower

compared to blue. (F) Log-log plot of the MSD. The onset of the second linear regime (log-log slope approximately equal to 1) is marked with an

arrowhead in corresponding colours. This regime starts at smaller dt for the orange curve compared to the blue curve, which corresponds to a lowered

persistence time compared to blue. Simulations are also available as S3 Video.

https://doi.org/10.1371/journal.pcbi.1009156.g008
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(blue) setting, and appears more bimodal than the few-large-cluster (orange) setting (Fig 8E).

The MSD curves largely overlap on the short term, but on the long term the few-large-cluster

(orange) setting shows an earlier start of the final linear regime. The onset of this regime corre-

sponds to the persistence time, which we obtained by fitting the MSD curves with Eq 2 as well

as Eq 4. Indeed, the few-large-cluster (orange) setting has about 25% lower persistence time

than the many-small-cluster (blue) setting, possibly because it is harder to detach a large adhe-

sion patch than a few small ones. Although we cannot fully exclude that these differences are

due to the wider distribution of cluster sizes (Fig 8B), these data suggest that not only the total

adhesion area, but also the location and distribution of the adhesion clusters influences cell

motility. This further shows that the dynamics of cell-matrix adhesion can be a key component

of the plasticity of cell motility.

Discussion

The variability in cell trajectories of lymphocytes, as observed in both in vitro and in vivo stud-

ies, can be ascribed to both intrinsic and extrinsic factors. More specifically, the dynamics of

the cytoskeleton are influenced by internal cellular processes and interactions with the local

ECM, thereby shaping cell motility. In order to investigate how extrinsic factors determine cell

motion, we present here a CPM model that combines actin dynamics and cell-ECM interac-

tions by expanding the existing Act model with cell-matrix adhesions. In this model, cell-

matrix adhesions can form de novo if the local actin cytoskeleton is sufficiently established.

Subsequent adhesion dynamics are: i) expansion into adhesion patches, ii) shrinkage of adhe-

sion patches, or iii) adhesion breakage at a set energy cost. By combining the actin-dependent

cell propulsion of the Act model with cell-matrix adhesions, our model captures key features

of cell motility as seen in vitro. For example, it can describe the floating, stepping, and pivoting

behaviour observed in B cells on fibronectin [16] as well as the walking and gliding behaviour

observed in T cells on ICAM and casein [17]. The first by altering adhesion bond energy cost

and de novo adhesion formation and the latter by adjusting de novo adhesion formation and

adhesion patch growth.

In addition to recapitulating hallmark modes of cell motility, our model sheds light on how

cell-ECM interactions determine cell motion on longer time scales. For example, increasing

the strength of adhesion bonds, λadh, and increasing the probability by which adhesions form

de novo, ps, decreases cell speed and especially cell persistence. Strongly adherent cells primar-

ily pivoted around their axis and, interestingly, such motility was persistent on a short time

scale, but subdiffusive on long time scales. To sufficiently capture the behaviour of weakly

adherent cells, cell propulsion strength was made dependent on the degree of adhesion in a

second extension of our model. Thus, cells with very low adhesion correspondingly showed

low diffusion and a slight increase in adherence resulted in temporary spurts of increased

adhesion and cell speed. Finally, we also showed that cell motility is determined by the distri-

bution of adhesion clusters. Numerous small adhesion clusters at the front of a cell result in a

higher persistence time than several large adhesion clusters located at the centre of the back of

a cell.

Despite these agreements with experimental data, clear disagreement of the model predic-

tions with experimental observation of course remains. B cells form larger adhesive connec-

tions on fibronectin than on collagen IV, and they move faster and more randomly on

fibronectin, whereas they move more slowly and more persistently on collagen IV [16]. Inter-

estingly, this observation also disagrees with the universal coupling between cell speed and cell

persistence (UCSP) [43] which is reproduced by the Act-model [24] that is at the basis of our

model. Briefly, UCSP states that persistence correlates positively with speed. Future
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experimental and theoretical work is required for elucidating the causes of this counterexam-

ple to the UCSP principle; possibly causes might include polarization cues in the collagen

IV matrix facilitating persistent motility, or activation of actin polymerization in response

to matrix binding: integrin type α5 β1 signalling induces membrane protrusions, and

generates RhoA/Rock-mediated myosin II, whereas αv integrins signal to reinforce adhesive

sites [44].

Linking cell variability and parameter variability

The experimental studies by Rey-Barroso et al. [16] and Jacobelli et al. [17] showed variability

in motility among the cells. Other studies have also described variability among genetically

identical Dictyostelium discoideum cells in their chemotactic performance [45], and among

keratocytes in their shape and speed. Which features of the individual cells underlie such vari-

ability in cell motility? By adjusting the adhesion formation rate, adhesion strength and adhe-

sion distribution, we could already capture the different motility modes of B cells on

fibronectin and of T cells on casein and ICAM. Still, it would be very interesting to be able to

link the changes in these parameters to actual differences between cell populations on different

substrates or between individual cells on the same substrate.

An interesting starting point for addressing the variability in lymphocyte motility are mea-

surements of the different subsets of differentiated CD4+ T cells. Th1, Th2, and Th17 subsets

have been described to harbour distinct motility properties both in vitro and in vivo, as well as

distinct molecular equipment in terms of adhesion and cytoskeleton dynamics [46, 47]. Th1

and Th17 cells show low speed and displacement, have a low expression of integrin αv β3 and

show fluctuating, yet high concentrations of Ca2+, whereas Th2 cells have high mobility, high

levels of αv β3 and lower and more constant levels of [Ca2+]. Interestingly, these differences

have been proposed to support distinct search strategies aligning with the fact that these cell

subsets target different types of pathogens. The differences in motility and integrin expression

correspond well with the observations in our simulations with adhesion-dependent protru-

sions, where a larger rate of de novo adhesion resulted in higher motility as well as more adhe-

sive surface. As such, our model predicts a larger adhesive area for Th2 cells than for Th1/

Th17 cells, which can be verified experimentally. By further measurements such as measuring

integrin expression levels among individual cells by flow cytometry, or monitoring size and

distribution of adhesions with super-resolution microscopy approaches, we can specify our

model parameters and assess the predictive value of our model. In general, our study provides

a mechanistic framework to identify which processes lead to differential motility and then

address this experimentally.

Conversely, experimental measurements can elucidate the current estimates of protrusion

and adhesion energies. With the current parameter settings, protrusion energy exceeded the

adhesion energy, whereas our literature-based estimates suggest the reverse should be true (S1

Text, [48–51]). However, the referenced studies measured adhesion forces in fibroblasts, osteo-

clasts and CHO cells, which can have adhesive properties distinct from lymphocytes. For

instance, a study on adhesion between a T cells and TNF-α stimulated HUVEC cells measured

a de-adhesion work of the entire T cell in the same order as our estimates for protrusion-asso-

ciated work of a single lattice site [52]. This suggests that our estimated adhesion energies

based on other cell types might be largely overestimated. However, how this cell-cell adhesion

energy translates to adhesion energies on substrates is yet unclear, and new experimental mea-

surements on lymphocyte adhesion energies on substrates can further improve our model.
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Motility on multiple time scales

An important feature of our model is the possibility to study cell motility at multiple time-

scales, especially long-term motility. For long-term behaviour in our model, we mostly

observed regular diffusive behaviour or, for more extreme λAct and ps values, subdiffusive

behaviour. This corresponds with the pivoting B cells observed by Rey-Barroso et al. [16]. The

other extreme, superdiffusive behaviour, has also been observed in mammalian cells. Harris

et al. [11] showed that murine T cells display superdiffusive behaviour, but they have only

been tracked for a relatively short time (*10 min), so their diffusive behaviour on longer time

scales is unknown. In comparison, our simulated cells display persistent, and hence superdiffu-

sive, behaviour at time scales up to 400 to 1000 MCS, which is in the order of minutes, yet they

display regular diffusive behaviour at larger timescales. This highlights the existence of multi-

ple time scales in cell motility. Interestingly, the Madin-Darby canine kidney cell in Dieterich

et al. [37] have also been tracked for longer time (*1000 min) and show three time scales of

roughly 0–4 minutes, 4–16 minutes and from 16 minutes onwards, at all of which superdiffu-

sion is observed. Furthermore, cell velocities show long range correlations in time. What

causes these long-time correlations and the corresponding long-term superdiffusive behaviour

is unclear. Non-trivial behaviour among the factors that determine cell motility might intro-

duce such long-term behaviour, e.g., anomalous rheological properties of the cytoskeleton

[53].

An experimental study showed this correlation to be a universal coupling between cell

speed and cell persistence (UCSP), mediated by actin flow [43], as actin flow stabilizes cell

polarity. In our model, the actin flow is modelled phenomenologically by the Act model [23],

which displays this UCSP as well [24]. So the observation that B lymphocytes can display slow

persistent motility on fibronectin, and much faster Brownian cell motility seems to disagree

with UCSP. Signalling between the cytoskeleton and the matrix may further contribute to the

differences in cell motility between the two types of matrices.

Interplay between cytoskeleton and substrate

In our current model, there is only an explicit interaction between the adhesions and the Act-

extension. Specifically, only the protrusion efficiency is directly influenced by the presence of

adhesion. However, whether other aspects of the actin network, such as life time and turnover

rate of actin networks, are influenced by adhesions is not taken into account.

Where the Act-extension mainly models the actin network at the front of the cell, many

locomotion-related processes also involve the contractile components of the cytoskeleton,

such as myosin-II. Myosin-II contraction pulls the back of the cell towards the front and can

increase cell speed [17]. Within the CPM, myosin-II contractility is modelled indirectly

through the perimeter constraint and the contact energy between cell and medium. Changing

parameter values for both results in altered speeds within our model (S4 Video). Part of this

cortical tension is transferred onto the matrix through adhesions [44, 54]. An interesting ques-

tion is whether the cortical tension is also influenced by the presence of adhesions. Further-

more, myosin-II is suggested to be a polarization cue and to be transferred to the back of the

cell by retrograde actin flow and could possible also alter persistence of cell polarization [43].

An interesting direction for future research would be to study how the retrograde flow is influ-

enced by cell-matrix adhesions and how this may affect the UCSP that also depends on the

actin flow.

Next, the retraction of the rear end is slowed down by adhesions if they do not detach. Our

current model uses greatly simplified adhesion patch detachment: a stochastic process of loss

of sites, and energy requiring retractions of adhesion sites. It ignores the following two
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processes: First, myosin-II, besides contracting the rear end, is also involved in the detachment

of adhesion patches in T cells [17, 55], as it increases the forces exerted on the adhesions. Sec-

ond, adhesion detachment at the rear of the cell is also regulated by scaffolding proteins talin

and moesin. Both compete for binding sites between integrin and the cytoskeleton, but have

different properties. While talin connects the cytoskeleton to integrins, moesin inactivates

integrins, thereby decoupling the adhesion from the cytoskeleton at the rear end [56]. Consid-

ering the myosin-II dependent detachment and rear-end specific detachment in a next model

can further enhance the understanding of the role adhesion cluster size and distribution in cell

motility.

So far, we have addressed model improvements regarding intracellular processes. However,

cell-matrix interactions are also determined by integrin and matrix properties, including

mechanistic feedback between the integrins and matrix. Hence, both matrix rigidity and the

cell’s ability to generate force influence cell shape and cell motility. When it comes to model-

ling this feedback, different approaches have been used already in phase-field models of cell

motility. In Copos et al. [19], adhesions were modelled as mechanosensitive bonds. In Ziebert

et al. [20], adhesions ruptured when they exceeded a maximum length. In Shao et al. [57] the

probability of adhesion rupture increased with force. In Löber et al. [21], the matrix deforma-

tion was also taken into account, leading to non-trivial motility such as bipedal motility. In

Kim et al. [58], a 3D matrix was modelled as individual fibres which a cell can push and pull

on. This allows filopodia to sense the matrix stiffness locally, which results in durotaxis.

Modelling matrix deformation or displacement of adhesion sites within the CPM is chal-

lenging, but a lot of progress has been made recently. Methods to estimate forces within the

CPM cell have been developed, either based on cell shape or on the Hamiltonian [59, 60]. The

CPM has also been combined with a finite element method to model matrix traction forces

with feedback between the CPM and FEM [59, 61]. Explicit descriptions of cell-matrix adhe-

sions were recently introduced into this framework [62] to describe tension-dependent growth

of focal adhesions. In our future work, this methodology will allow us to study the mechanisms

by which substrate compliance affects lymphocyte motility.

In conclusion, we propose a simple mechanism by which the ECM can affect the character-

istics of lymphocyte trajectories. To this end, we have introduced a novel CPM model that

combines the Act model [23] with dynamic cell-matrix adhesions, generating a large repertoire

of cell trajectories (Fig 9). We show that a simple model considering actin-driven protrusion

formation in interaction with the dynamic formation and detachment of adhesions to the sub-

strate, suffices to reproduce both persistent random walks as well as short-term persistent but

long-term subdiffusive random walks. Thus, our simplified model reproduces the motility pat-

terns observed in individual B cells on a fibronectin substrate, such as reduced motility for

non-attached cells, walking motility, and pivoting motility due to sustained attachment, as well

as the walking and gliding motility of T cells on ICAM or casein substrate. The computational

efficiency of the model allowed us to efficiently study both short-term molecular scales as well

as the long-term cell behaviour following from it, providing insight into the molecular parame-

ters that explain the plasticity of cell motility due to interaction with substrates. Our study

shows that the interplay between adhesion formation, adhesion expansion and adhesion

strength may determine the turn-over of the adhesion area which regulates cell speed and

persistence.

Methods

In this work, we model the cells moving on and adhering to flat substrates. The basis of our

model is the Cellular Potts model.

PLOS COMPUTATIONAL BIOLOGY Computational modelling of cell motility modes emerging from cell-matrix adhesion dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009156 February 14, 2022 19 / 28

https://doi.org/10.1371/journal.pcbi.1009156


Cellular Potts model

We use the Cellular Potts model (CPM) to represent a cell on a regular, square lattice. Lattice

sites~x 2 L 2 Z2 are assigned an identity sð~xÞ, with sð~xÞ ¼ 1 if the site belongs to the cells,

and sð~xÞ ¼ 0 if the cell belongs to the medium. The cell can then be defined as the set

f~x 2 Ljsð~xÞ ¼ 1g. The model mimics cell protrusions and retractions through iterative

attempts to extend or retract the cell into one of the neighbouring lattice sites, depending on a

Hamiltonian function, H, representing passive forces acting on the cell, and a number of

active, dissipative processes (e.g., actin protrusion). Together, these represent the balance of

forces that drive cell motility. More formally, the algorithm selects a pair of adjacent lattice

sites ð~x;~yÞ, where cells are considered adjacent if they are adjacent orthogonal or diagonal

neighbours, i.e.,~y 2 NBð~xÞ n f~xg where NBð! xÞ is defined as the set of the eight first and

second-order neighbours of~x.

Fig 9. Overview of the motility modes possible in the model and which parameters govern the transitions between

them. For each motility mode, a representative cell and its trajectory are plotted in a persistence versus total adhesion

area plane.

https://doi.org/10.1371/journal.pcbi.1009156.g009
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The Hamiltonian, H, describes the balance of passive forces produced acting on the cell in

terms of a system energy,

H ¼
X

ð~x ;~yÞ

Jðsð~xÞ; sð~yÞÞð1 � dðsð~xÞ; sð~yÞÞÞ þ lAðA � AtargetÞ
2
þ lPðP � PtargetÞ

2
; ð6Þ

The first term describes the contact energies between cell and medium. The second term

describes an area constraint, with A and Atarget being the area and target area of the cell and,

similarly, the third term describes a perimeter constraint with P and Ptarget the perimeter and

target perimeter of the cell.

The total change in energy is given by the change in the Hamiltonian, DH due to the

attempted update in addition to the energy, DHAct coming from the Act model and DHAdh giv-

ing the energies associated with the detachment of cell-ECM substrate adhesions. The total

change in energy DHtotal ¼ DHþ DHAct þ DHAdh determines the acceptance probability of a

copy attempt,

PðDHtotalÞ ¼
1 ifDHtotal < 0

e� ðDHtotal=TÞ ifDHtotal � 0:

(

ð7Þ

Here, T controls the amount of random fluctuations in the system. Higher T will allow

more thermodynamically unfavourable copy attempts to be accepted. In the Cellular Potts

model, time progresses in Monte Carlo step (MCS), which represents a unit of time that allows

each lattice site to be updated once on average.

Cell motility—Act model

Cells move by making protrusions through actin polymerization and form cell extensions like

filopodia, pseudopodia, and lamellipodia. Actin polymerization in the CPM has previously

been modelled in a phenomenological way in the Act model by Niculescu et al. [23]. This

extension adds an extra layer to the CPM, describing the Act values of lattice sites, ranging

from 0 to maximum value MaxAct. For lattice site~x newly added to the cell, Actð~xÞ ¼ MaxAct.

At each MCS, the Act values are decreased by 1 until they reach 0. The term DHActð~x !~yÞ is

subtracted from DH, and can be interpreted as the resulting force from pushing and resistance

at the membrane element between~x and~y. In DHAct, the local geometric mean of Act-values

of both the expanding and retracting lattice sites are compared and the lattice site with the

highest mean is favoured in the following way:

DHActð~x !~yÞ ¼
lAct

MaxAct

Y

~u2Vð~xÞ

Actð~uÞ

 !1=jVð~xÞj

�
Y

~u2Vð~yÞ

Actð~uÞ

 !1=jVð~yÞj
0

@

1

A; ð8Þ

with Vð~xÞ ¼ f~u 2 NBð~xÞjsð~uÞ ¼ sð~xÞg describing the neighbourhood of lattice site~x
restricted to the same cell, and λAct is the weight given to this model component.

Adhesion to the matrix is required to fully translate actin polymerization to cell membrane

protrusion [40–42], as it transmits the polymerization force to the matrix. We add feedback

between the cell adhesions and actin polymerization, by increasing the force produced by poly-

merization upon increase in adhesion area. This is only up to a threshold adhesion area, after

which the protrusion force remains fully activated. We therefore multiply λAct with factor f
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defined as follows,

f ¼
bþ

1 � b
s

Aadh

A
if

Aadh

A
� s

1 if
Aadh

A
> s;

;

8
>>><

>>>:

ð9Þ

Here, A denotes the area of the cell, Aadh the adhesive area of the cell, b the value of f when

there are no adhesions, and s the fractional adhesive area at which f saturates.

Cell-substrate adhesions

The adhesions of a cell to the extracellular matrix are modelled as a third layer in the CPM. A

lattice site~x in this layer can either contain no adhesion (Adhð~xÞ ¼ 0), or an adhesion patch

(Adhð~xÞ ¼ 1). Adhesion dynamics are governed by four processes: de novo formation of adhe-

sions, adhesion patch expansion, adhesion patch unbinding, and rupture of adhesion through

retraction of a cell. We describe each of these processes below.

New adhesion sites. New adhesions form when the cell membrane comes in close enough

contact with the extracellular matrix such that integrins can bind to the matrix. This process is

dependent on actin polymerization, membrane protrusion and polarized distribution of integ-

rins [27–29]. We model de novo adhesion formation through a stochastic process. In each

MCS, a grid site within a cell can turn from non-adhesion to an adhesion site with probability

ps, if the local geometric mean restricted to the cell of the Act layer exceeds the value 0.75 Max-

Act, i.e.:

Pðnew adhesion at ~xÞ ¼
ps if ð

Q
y2Vð~xÞActð~yÞÞ

1
jVð~xÞj � 0:75MaxAct;

0 otherwise:

8
<

:
ð10Þ

Adhesion patch expansion. Once adhesion patches are formed, they can increase in size.

Multiple processes underlie this expansion. First, once the cell membrane is attached to the

matrix, it fluctuates less, allowing for easier attachment of new integrins [30]. Secondly, the

curvature of the cell membrane favours aggregation of integrins [63, 64].

We do not model integrin recruitment and membrane curvature, but choose to model

adhesion patch growth phenomenologically. Jacobelli et al. [17] observed that adhesion

patches grow radially, with some bias in the direction of the cell front. Hence, we model adhe-

sion patch expansion as an Eden-like growth model [31], known to give roughly circular

shapes. While updating the adhesion layer, once a lattice site containing an adhesion is selected

to be updated, we also select a random neighbour. If that neighbouring lattice site contains no

adhesion, it forms an adhesion with probability pe.

Adhesion patch unbinding. Aside from patch expansion, patch unbinding can also

occur, either spontaneously [65] or influenced by myosin-II contraction [17]. Following the

observation of concentrical patch detachment [17], an adhesion site~x in this model can spon-

taneously detach with a probability depending on the adhesion status of its neighbours.

Pð~x will unbindÞ ¼ pd �
jf~u 2 NBð~xÞ n f~xgjAdhð~uÞ ¼ 0gj

jf~u 2 NBð~xÞ n f~xggj

� �2

; ð11Þ

with NBð~xÞ the Moore neighbourhood of~x. Thus, the higher the number of non-adherent

neighbours, the higher the probability that the site loses its adhesion.

PLOS COMPUTATIONAL BIOLOGY Computational modelling of cell motility modes emerging from cell-matrix adhesion dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009156 February 14, 2022 22 / 28

https://doi.org/10.1371/journal.pcbi.1009156


Adhesion rupture through retraction. Adhesions at the cell rear can also unbind by

force. Although integrins are known to show catch-slip bond behaviour [66, 67], we simplify

the rupture of an adhesion to a constant amount of energy required to break an adhesion upon

cell retraction. This determines the term contributing to DHtotal ð~x !~yÞ:

DHAdhð~x !~yÞ ¼ ladhAdhð~yÞ; ð12Þ

with sð~xÞ 6¼ sð~yÞ and the cell sð~yÞ retracting.

Implementation

A measure of time in the CPM is the Monte Carlo Step (MCS). Within one MCS, the expecta-

tion is that the σ of each lattice site has been updated once. However, many of the proposed

neighbouring lattice site pairs share the same σ and will thus not result in a changed model

state. Therefore, we use a rejection-free algorithm that only considers attempts between neigh-

bours of different σ to speed up simulations [68, 69]. Further, the adhesion layer and Act layer

of the model are also updated during and after the σ-update. Act-values and adhesion updates

regarding the relocation of the cell are executed immediately during the σ-update: e.g., for

copy attempts that let a cell retract from a lattice site, we do directly update the Act-values and

adhesions of that site. After the σ-update, we update the adhesion layer asynchronously: we

iterate, in random order, over the lattice sites within the cell and execute the processes

described in the Cell-substrate adhesions subsection. Lastly, we update the Act-layer: every

Act-value is diminished by 1 until 0. These three updates together constitute one MCS. The

model has been implemented in Tissue Simulation Toolkit and is available in S1 Data.

Simulation parameters

During our different simulations, many parameter values were kept constant (Table 3). All

simulations were done on a 300 × 300 lattice with periodic boundaries with a single cell.

Parameter values that were not constant are shown in Table 1. For the simulations in Figs 2, 3

and 4, pd = 0.0008, and ps and λadh varied according to the figure legends. For simulations

shown in Figs 6 and 7, pd = 0.001 and again λadh varied according to the figure legends. The

Act-only simulations in Figs 3 and 7 were run with all adhesion dynamics parameters equal to

zero: i.e., λadh, ps, pe, and pd were all zero. For all simulations, λAct = 240, except for the specific

Act-only simulations in Fig 7 with λAct = 120. For the simulations in Fig 8, pe and ps were

Table 3. List of parameter values kept constant during all simulations. Values are arbitrary units, unless specified

otherwise.

Parameter Description Value

T temperature 30

Atarget target area 1000 px2

λA weight area constraint 50

Ptarget target perimeter 350 px
λP weight perimeter constraint 4

λAct weight of Act model 240

MaxAct Act lifetime 120 MCS
Jmedium,medium adhesion energy between medium 0

Jcell,medium adhesion energy between cell and medium 35

Total MCS simulation duration 25000 MCS

https://doi.org/10.1371/journal.pcbi.1009156.t003

PLOS COMPUTATIONAL BIOLOGY Computational modelling of cell motility modes emerging from cell-matrix adhesion dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009156 February 14, 2022 23 / 28

https://doi.org/10.1371/journal.pcbi.1009156.t003
https://doi.org/10.1371/journal.pcbi.1009156


varied, see figure legend. The parameters not mentioned in the figure legend are pd = 0.0004,

λadh = 60, b = 0.5, s = 0.12.

Supporting information

S1 Fig. Fürth with translational diffusion fits MSD of model better than Fürth without

translational diffusion. Log-log plot of MSD for the four scenarios in Fig 2, similar to Fig 4,

with fits of Eqs 1 and 2. Parameters are: A) λadh = 20, ps = 0.004, B) λadh = 100, ps = 0.004, C)

λadh = 20, ps = 0.02, D) λadh = 100, ps = 0.02.

(PNG)

S2 Fig. Persistence times obtained from fitting MSD with Fürth with translational diffu-

sion (Eq 2) against adhesion area for different values of ps and λadh. Parameters are the

same as in Fig 3, except that λadh has been limited to 20, 40, 60 because of bad fitting with Eq 2.

For reference, the persistence time of the Act model without the adhesion extension is plotted

as the black dot.

(PNG)

S3 Fig. MSD for initial and extended model with fits of Eqs 2 and 4. Parameters are the

same as in Fig 6, with ps being varied: (A) ps = 0.001, (B) ps = 0.004, and (C) ps = 0.0025.

(PNG)

S1 Video. Simulations of the model without adhesion-propulsion feedback. Videos corre-

sponding to Fig 2.

(MP4)

S2 Video. Simulations of the model with adhesion-propulsion feedback. Videos corre-

sponding to Fig 6.

(MP4)

S3 Video. Adhesion growth dynamics influence adhesion cluster size and localisation, cell

speed and MSD. Videos corresponding to Fig 8.

(MP4)

S4 Video. Effect of perimeter constraint, λP and cell-medium interfacial energy Jcell,medium

on cell behaviour. Parameter values are identical to the blue parameter settings in Fig 8, except

where indicated in the video.

(MP4)

S1 Text. Estimates of parameter units.

(PDF)

S1 Data. Model implementation in Tissue Simulation Toolkit. Also deposited at https://doi.

org/10.5281/zenodo.5917626.

(TGZ)

S2 Data. Interactive Model Implementation using Artistoo. To use the model, open https://

ingewortel.github.io/2021-motility-from-adhesion/. Alternatively, download the Supporting

Data File (also deposited at https://dx.doi.org/10.5281/zenodo.5914705), unzip the folder

“Artistoo” and open Artistoo/active-adhesion/index.html within a web

browser.

(TGZ)

PLOS COMPUTATIONAL BIOLOGY Computational modelling of cell motility modes emerging from cell-matrix adhesion dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009156 February 14, 2022 24 / 28

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009156.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009156.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009156.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009156.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009156.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009156.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009156.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009156.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009156.s009
https://doi.org/10.5281/zenodo.5917626
https://doi.org/10.5281/zenodo.5917626
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009156.s010
https://ingewortel.github.io/2021-motility-from-adhesion/
https://ingewortel.github.io/2021-motility-from-adhesion/
https://dx.doi.org/10.5281/zenodo.5914705
https://doi.org/10.1371/journal.pcbi.1009156


Acknowledgments

G.T. gratefully acknowledges the Indian Institute of Science to serve as Infosys visiting profes-

sor at the Centre for Ecological Sciences in Bengaluru. We thank SURFsara for the support

and computing time in using the Lisa cluster computer. Martijn de Jong is thanked for his

implementation of the rejection-free algorithm of the Cellular Potts model in the Tissue Simu-

lation Toolkit. Babette de Jong is thanked for linguistic advice.

Author Contributions

Conceptualization: Leonie van Steijn, Clément Sire, Loïc Dupré, Guy Theraulaz, Roeland M.
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Software: Leonie van Steijn, Inge M. N. Wortel, Roeland M. H. Merks.

Supervision: Clément Sire, Loïc Dupré, Guy Theraulaz, Roeland M. H. Merks.
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logical Interactions: Lévy versus Brownian Strategies. Phys Rev Lett. 2002; 88(9):4. https://doi.org/10.

1103/PhysRevLett.88.097901 PMID: 11864054

3. Tejedor V, Voituriez R, Bnichou O. Optimizing persistent random searches. Phys Rev Lett. 2012; 108

(8):088103. https://doi.org/10.1103/PhysRevLett.108.088103 PMID: 22463578

4. Volpe G, Volpe G. The topography of the environment alters the optimal search strategy for active parti-

cles. P Natl Acad Sci USA. 2017; 114(43):11350–11355. https://doi.org/10.1073/pnas.1711371114

PMID: 29073055

5. Guigas G, Weiss M. Sampling the cell with anomalous diffusion—The discovery of slowness. Biophys

J. 2008; 94(1). https://doi.org/10.1529/biophysj.107.117044 PMID: 17827216

6. Beck RJ, Bijker DI, Beltman JB. Heterogeneous, delayed-onset killing by multiple-hitting T cells: Sto-

chastic simulations to assess methods for analysis of imaging data. PLOS Comput Biol. 2020; 16(7):1–

25. https://doi.org/10.1371/journal.pcbi.1007972 PMID: 32658891

7. Khadem SMJ, Klapp SHL, Klages R. Search efficiency of discrete fractional Brownian motion in a ran-

dom distribution of targets. Phys Rev Research. 2021; 3(2). https://doi.org/10.1103/PhysRevResearch.

3.023169

8. Miller MJ, Wei SH, Cahalan MD, Parker I. Autonomous T cell trafficking examined in vivo with intravital

two-photon microscopy. P Natl Acad Sci USA. 2003; 100(5):2604–9. https://doi.org/10.1073/pnas.

2628040100 PMID: 12601158

PLOS COMPUTATIONAL BIOLOGY Computational modelling of cell motility modes emerging from cell-matrix adhesion dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009156 February 14, 2022 25 / 28

https://doi.org/10.1038/44831
http://www.ncbi.nlm.nih.gov/pubmed/10553906
https://doi.org/10.1103/PhysRevLett.88.097901
https://doi.org/10.1103/PhysRevLett.88.097901
http://www.ncbi.nlm.nih.gov/pubmed/11864054
https://doi.org/10.1103/PhysRevLett.108.088103
http://www.ncbi.nlm.nih.gov/pubmed/22463578
https://doi.org/10.1073/pnas.1711371114
http://www.ncbi.nlm.nih.gov/pubmed/29073055
https://doi.org/10.1529/biophysj.107.117044
http://www.ncbi.nlm.nih.gov/pubmed/17827216
https://doi.org/10.1371/journal.pcbi.1007972
http://www.ncbi.nlm.nih.gov/pubmed/32658891
https://doi.org/10.1103/PhysRevResearch.3.023169
https://doi.org/10.1103/PhysRevResearch.3.023169
https://doi.org/10.1073/pnas.2628040100
https://doi.org/10.1073/pnas.2628040100
http://www.ncbi.nlm.nih.gov/pubmed/12601158
https://doi.org/10.1371/journal.pcbi.1009156


9. Worbs T, Mempel TR, Bölter J, Von Andrian UH, Förster R. CCR7 ligands stimulate the intranodal motil-

ity of T lymphocytes in vivo. J Exp Med. 2007; 204(3):489–495. https://doi.org/10.1084/jem.20061706

PMID: 17325198

10. Textor J, Peixoto A, Henrickson SE, Sinn M, von Andrian UH, Westermann J. Defining the quantitative

limits of intravital two-photon lymphocyte tracking. P Natl Acad Sci USA. 2011; 108(30):12401–6.

https://doi.org/10.1073/pnas.1102288108 PMID: 21734152

11. Harris TH, Banigan EJ, Christian DA, Konradt C, Tait Wojno ED, Norose K, et al. Generalized Lévy
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