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1 Introduction

String theory on group manifolds and coset spaces supplies a rich class of models de-
scribing strings propagating on a non-trivial curved background, that are amenable to a
formulation in terms of a two-dimensional world-sheet theory, exact in string length. This
powerful feature follows from the potent combination of (super-)conformal and affine Kac-
Moody symmetries enjoyed by these theories. The world-sheet action that respects these
symmetries and describes string theory on group manifolds is given by the celebrated Wess-
Zumino-Witten (WZW) model, while its generalization to group cosets is described by the
gauged WZW (gWZW) model [1–3].

A particular class of the (g)WZW models, solvable in the limit of small string coupling
gs, yet exact in the string length `s, is given by the world-sheet models with the target space
based on the SL(2,R) and SU(2) group manifolds. An enormous technical simplification due
to such a choice of the target space group manifold is afforded by the available properties
of the SL(2,R) and SU(2) primary operators, in particular, the known structure of their
correlation functions in the exact world-sheet theory. This knowledge assists one immensely
in a calculation of various observables exact in the WZW level k that simultaneously
translates into the stringy, beyond gravity, accessibility of the large curvature regime: a
notoriously coveted goal of practitioners in the field.

One of the fruitful applications of the SL(2,R) and SU(2) based (g)WZW models is
found in the field of holographic correspondence. Original examples are given by the holo-
graphic (bulk) description of a two-dimensional conformal field theory (CFT) [4–9], and
holographic description of Little String Theory (LST) [10–23]. The former is given by the
superconformal WZW model on AdS3×S3×T4 (where AdS3 ∼ SL(2,R), and S3 ∼ SU(2)),
while the latter is described by the superconformal gWZW model on SL(2,R)

U(1) × SU(2)×R5.
In the case when microscopic description of coset models is provided by a stack of k co-
incident NS5 branes wrapping R5 or T4 × S1 and p fundamental strings (F1) along R1 or
S1, the AdS3 background found in the near-horizon limit of the F1 strings is described by
the SL(2,R) WZW model at level k, while the coset SL(2,R)/U(1) describes the linear-
dilaton background, sourced by a stack of k NS5-branes in its near-horizon limit. The
corresponding dual field theory interpolates between a CFT2, obtained by taking the de-
coupling limit of the F1-strings, and the world-volume theory of the NS5-branes, namely
LST, obtained by taking the decoupling limit of the NS5 branes. The NS5-branes source
the NS flux, equal to k, through the S3 ∼ SU(2) sphere surrounding the NS5-branes in the
ten-dimensional space-time. The radius of both AdS3 and S3 behaves as R =

√
k `s, which

defines the small-curvature semi-classical limit (amenable to the supergravity approxima-
tion) at k →∞. However, an exact solvability of the SL(2,R)×SU(2) WZW model allows
one to carry out calculations exactly in k, furnishing an exact world-sheet description.

One can construct a more complicated class of cosets describing dynamics of NS5-F1
system. Coset systems, described by the gWZW model, require one to impose anomaly-
cancellation conditions. These can be formulated as time-like or null constraints (for cosets
that include the time-like direction in target space) on the gauge parameters. Null cosets
have been extensively studied in [24–27] and shown to describe micro-state geometries
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with world-sheet control. On the other hand, time-like cosets help us understand dynam-
ics of black holes, scattering in a black hole background, and resolution of cosmological
singularities [15, 28–32].

In [31, 33] collective excitations of the LST were studied holographically, by analyzing
the pole structure of the stress-energy tensor two-point function, described in terms of the
graviton scattering amplitudes in the bulk.1 The latter were calculated exactly, in terms
of the two-point correlation functions of vertex operators on the world-sheet, describing
massless closed string states in the Neveu-Schwarz-Neveu-Schwarz (NS-NS) sector of the
supergravity multiplet. In particular, the diffusion mode was located, and its existence was
independently verified by the supergravity analysis. Additionally, in [31] a finite-density
version of this model was considered, by constructing the dual bulk configuration with a
non-trivial gauge field profile. Such a background was explicitly demonstrated in [32] to
appear in the configuration involving the near-horizon limit of a stack of NS5-branes with
a large number of fundamental strings (F1).

In this paper, our goal is to further broaden our understanding of the asymptotically
linear dilaton backgrounds, construct spectrum of string excitations on top of these back-
grounds, calculate various correlation functions of vertex operators corresponding to mass-
less string states, and comment on application of these results to holography. To this end,
we consider type-II superstring theory on SL(2,R)×SU(2)×U(1)x

U(1) × T4 ten-dimensional coset
space-time, and perform time-like gauging of the U(1) sub-group in denominator. We for-
mulate exact world-sheet action of the superconformal gWZW model on this coset, describ-
ing type-II superstring theory in the corresponding background. We then proceed to deriv-
ing the exact in k gravity background, consisting of non-trivial configurations of the metric,
dilaton, and B-field. The obtained background asymptotes to the two-dimensional linear
dilaton background times S3×S1×T4. At the same time, the obtained geometry possesses
an event horizon with non-vanishing angular velocities along two of the S3 and S1 directions.

Compactifying the U(1)x ∼ S1 direction and performing the Kaluza-Klein (KK) re-
duction, we obtain the nine-dimensional space-time with two non-trivial U(1) gauge field
profiles, non-vanishing angular velocities along two of the S3 directions, and an event hori-
zon. Such a configuration describes a holographically dual theory at finite temperature,
characterized by finite values of chemical potentials and charge densities corresponding to
two U(1) charges. We provide a complete thermodynamic description of the ten- and nine-
dimensional backgrounds, by calculating the corresponding temperature, entropy, angular
momenta, energy, grand potential, and charges. We demonstrate that for the particular
choice of the coset gauging parameters our results reproduce the known results in the lit-
erature, while largely extending those results to a more general case of a rotating charged
asymptotically linear-dilaton background with a black brane event horizon.

We subsequently discuss collective excitations of the boundary theory by inspecting
the structure of two-point correlation functions of the stress-energy tensor and the currents
corresponding to two conserved U(1) charges. These can be determined holographically in
terms of the two-point functions of the vertex operators of the world-sheet theory, describing

1See also [34] for related work.
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massless excitations of the NS-NS sector of the type-II supergravity background, involving
the metric, dilaton, B-field, and gauge fields. We construct the corresponding vertex
operators by performing the coset BRST quantization of the world-sheet theory, ensuring
the U(1) symmetry at the quantum level. In particular, we determine the tachyon vertex
operator, and study its asymptotic behavior. We then construct the most general massless
NS-NS physical states, and calculate their two-point correlation functions.

The string theory model that we study in this paper, at zero temperature, interpolates
between local AdS3 × S3 × T4 in the IR to a linear-dilaton times S3 × S1 × T4 in the UV.
The dual boundary field theory interpolates between a certain vacua of LST in the UV
to a CFT2 in the IR. This allows us to systematically study holography in asymptotically
non-AdS space-time. Furthermore, it has been argued that such models are intimately
related to solvable models in string theory that go by the name of ‘single-trace’ T T̄ de-
formation [32, 35–39]. We show that the spectrum of a single winding one long string in
the interpolating coset background under investigation, exactly matches with the spectrum
obtained in the case of T T̄ deformed CFT2 [40, 41] for the particular sign of the irrelevant
coupling that gives rise to a real-valued spectrum. For a generic winding w > 1 sector, the
spectrum agrees with the Zw twisted sector of a symmetric orbifold theory where the block
of the symmetric orbifold is obtained by T T̄ deformation of a CFT2. Using world-sheet
string theory techniques we compute the two and three-point functions of operators of the
boundary theory in momentum space. As one moves away from the IR conformal fixed
point, the operators develop a momentum dependent ambiguity in the normalization of
the operators, although it is not clear to us how to fix this normalization issue. The ‘di-
mensions’2 of the operators at a generic point on the renormalization group flow develop a
momentum dependence which resonates with the idea of momentum dependent dimensions
discussed in the context of non-local CFTs [42, 43].

The rest of this paper is organized as follows. In section 2 we review basic setup
of superstring theory on AdS3 × S3 × T4 and introduce our conventions. In section 3
we construct the main ten-dimensional coset target space-time background that we are
interested in this paper. We develop thermodynamics of this background in section 4.
In section 5 we perform the Kaluza-Klein reduction of the U(1)x circle and construct the
nine-dimensional background, characterized by two non-trivial U(1) gauge field profiles. We
construct the spectrum of physical string excitation states on top of the background fields
configuration in section 6, focusing specifically on the NS-NS sector. In section 7 we explore
the holographic interpretation of our results, by considering two-point correlation functions
of the dual boundary theory calculated in terms of the world-sheet vertex operators in the
bulk. We discuss our results and comment on future directions in section 8. Appendix A
is dedicated to review of relevant background concerning (superconformal) gauged WZW
models. Additional ancillary material is provided in appendices B, C.

2Strictly speaking, as one moves away from the conformal fixed point, there is no notion of dimension
of operators in the CFT sense. What we mean by ‘dimension’ is in the sense discussed in [42, 43].

– 4 –



J
H
E
P
0
8
(
2
0
2
2
)
2
4
4

2 Review of superstrings on AdS3 × S3 × T4

In this section, we will provide a brief summary of the type-II superstring theory on the
AdS3×S3×T4 background, focusing on the low-lying states in the Neveu-Schwarz-Neveu-
Schwarz (NS-NS) sector. In particular, we will set up conventions related to the SL(2,R)
and SU(2) Wess-Zumino-Witten (WZW) models, that we will be following for the rest
of the paper. We will also review the affine Kac-Moody symmetry algebra of the target
space-time, discuss its representation space, normalizability of the string states, and the
corresponding vertex operators. A complementary condensed glossary of our notations can
be found in appendix A. For a detailed discussion of string theory on AdS3 we refer the
reader to [4–9].

The world-sheet superstring theory on AdS3 × S3 ×T4 is given by the superconformal
WZW model on the SL(2,R) × SU(2) × U(1)4 group manifold. This world-sheet sigma-
model is constrained by the left- and right-moving SL(2,R)×SU(2) supersymmetric affine
Kac-Moody algebra, at supersymmetric level k. In the remainder of this section, we will
discuss the affine symmetry algebra and the vertex operators of the SL(2,R) ∼ AdS3 and
SU(2) ∼ S3 subspaces separately.

2.1 Symmetries and vertex operators of AdS3

In this subsection, we will discuss the SL(2,R) superconformal WZW model, describing
the world-sheet string theory on AdS3. The classical supersymmetric WZW sigma-model
consists of the bosonic sector, given by the SL(2,R)k+2 WZW model at the level k + 2,
and three pairs of free (anti)-holomorphic two-dimensional Majorana-Weyl fermions ψa,
ψ̃a a = 1, 2, 3. Bosonic degrees of freedom comprise the (anti-)holomorphic Kac-Moody
currents ja, j̃a, a = 1, 2, 3 at the level k + 2. The fermionic sector can be bosonized, and
described in terms of the SL(2,R)−2 WZW model at the level −2. Combining the bosonic
and the fermionic degrees of freedom we obtain the total bosonic Kac-Moody currents
forming the algebra at level k.

The exact (in the sense of world-sheet path integral) effective action for the bosonic
field g ∈ SL(2,R) is given by the SL(2,R)k WZW action,

Ssl[g] = k S[g] , (2.1)

where the k = 1 action S[g] is given by (A.1). The action (2.1) is invariant under the
SL(2,R)L × SL(2,R)R affine symmetry algebra. The global part of this symmetry algebra
is generated by the Kac-Moody currents ja and j̃a, a = 1, 2, 3, given by

ja = k + 2
2 Tr

(
∂gg−1 τa

)
, j̃a = k + 2

2 Tr
(
g−1∂̄g τa

)
. (2.2)

where
τ1,2 = σ1,2 , τ3 = i σ3 , (2.3)

and σa are Pauli matrices given by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.4)
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At the same time, the total Kac-Moody currents, incorporating contributions both from the
bosonic and the fermionic degrees of freedom, form the (anti-)holomorphic affine algebra
ja, j̃a, a = 1, 2, 3 at level k, with the currents defined as3

ja = ja − i

k
fabc ψ

bψc , j̃a = j̃a − i

k
fabc ψ̃

bψ̃c . (2.5)

Using the Sugawara construction, we can write the (anti-) holomorphic components
of the stress-energy tensor of the world-sheet sigma model. Focusing on the contributions
from the bosonic degrees of freedom, we obtain4

Tsl ⊃
1
k
ja ja , T̃sl ⊃

1
k
j̃a j̃a . (2.6)

The quadratic Casimir of SL(2,R)k is given by

c2 = (j3)2 + 1
2{j

+, j−}, (2.7)

where we defined
j± = j1 ± ij2. (2.8)

Representations of SL(2,R) are labeled by the number j related to the quadratic Casimir
as c2 = −j(j + 1).

The spectrum of string states on AdS3 can be constructed in terms of the unitary
representations of SL(2,R). The representations relevant for studying string theory on
AdS3 can be largely classified into two groups: the principal discrete series representation5

(lowest and highest weight) denoted by D±j and the principal continuous series represen-
tation denoted by Cαj . The lowest weight principal discrete series states (incoming states)
are built on states of the form |j, j〉 which are annihilated by j+. Thus one can write

D+
j = {|j,m〉; j ∈ R, m = j, j + 1, j + 2, . . . } , (2.9)

where m is the j3 eigenvalue of |j,m〉. The higher weight discrete series states (outgoing
states), D−j , are obtained by taking the charge conjugate of the D+

j states,

D−j = {|j,m〉; j ∈ R, m = −j,−j − 1,−j − 2, . . . } , (2.10)

Normalizability of the states requires

− 1
2 < j <

k − 1
2 . (2.11)

3See eq. (A.47) in appendix A.3 for details.
4The sign ⊃ means that the terms to the right of this sign constitute some of the contributions to the

expression to the left of this sign. In the case of (2.6), we focus on the contributions to the stress-energy
tensor from the bosonic d.o.f., and omit writing explicitly contributions due to the fermions.

5The discrete series states are often referred to in the literature as the short strings. The short strings
can be thought of as bound states of strings that are trapped deep inside the bulk of AdS3.
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The principal continuous series6 representation corresponds to states which are delta-
function normalizable, given by

Cαj =
{
|j, α,m〉; j ∈ −1

2 + iR, m = α, α± 1, α± 2, . . .
}
, (2.12)

where |j, α,m〉 are eigenstates of j3 with eigenvalue m. Without loss of generality, one can
set 0 ≤ α < 1. String theory on AdS3 also contains operators that violate the bound (2.11).
In terms of the AdS/CFT correspondence, such operators give rise to local operators of the
boundary theory (see, e.g., [8] for a detailed discussion of the normalizability of the states
in AdS3).

Next, let us review construction of the SL(2,R) primaries. The vertex operators of
SL(2,R) can always be locally decomposed into a product of vertex operators of U(1)y
and SL(2,R)

U(1) . Such a decomposition of vertex operators is known as the parafermionic
decomposition. Let us also assume that U(1)y is generated by j3 and is parametrized by
the scalar field y, satisfying the OPE y(z)y(w) ' − log(z −w). In terms of the field y, the
current j3 takes the form

j3 = −i

√
k

2∂y. (2.13)

Thus, primary operator Vj;m,m̄ of string theory on AdS3, obtained by diagonalizing j3, j̃3

with eigenvalues m, m̄ respectively, can be represented as

Vj;m,m̄ = ei
√

2
k

(my+m̄ȳ)Ψj;m,m̄ , (2.14)

where Ψj;m,m̄ is a primary vertex operator on SL(2,R)
U(1) . Using the OPE of Vj;m,m̄ with the

stress-energy tensor,

Tsl(z)Vj;m,m̄(w) ' −j(j + 1)
k

1
(z − w)2Vj;m,m̄(w) , (2.15)

one can read of the dimension of the vertex operator Vj;m,m̄ as

∆sl = −j(j + 1)
k

. (2.16)

This implies that the dimensions of Ψj;m,m̄ are given by

∆Ψ = −j(j + 1)
k

+ m2

k
, ∆̄Ψ = −j(j + 1)

k
+ m̄2

k
. (2.17)

The vertex operator Vj;m,m̄ satisfies the following OPE relations with the generators of the
SL(2,R) current algebra:

j3(z)Vj;m,m̄(w) ' m

z − w
Vj;m,m̄(w) ,

j±(z)Vj;m,m̄(w) ' m∓ j
z − w

Vj;m±1,m̄(w) .
(2.18)

6The continuous series states are often referred to in the literature as the long strings. Unlike the short
strings, the long strings form the scattering states. They live very close to the boundary of AdS3 and have
a continuous momentum.
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Switching chirality of the currents, one can write a similar set of OPE algebra of Vj;m,m̄
with the right-moving (anti-holomorphic) SL(2,R) currents.

It is often useful to transform the vertex operators from the momentum space (m, m̄) to
the position space (x, x̄). Let us denote the position space vertex operators by Φj(z, z̄;x, x̄).
Here, the position space coordinates (x, x̄) can be thought of as coordinates of the boundary
of AdS3 on which the dual CFT2 lives. The position space representations are related to
the momentum space ones via the following transformation:

Vj;m,m̄ =
∫
∂AdS3

d2x xj+mx̄j+m̄Φj(z, z̄;x, x̄) . (2.19)

One can invert the transformation (2.19) to calculate Φh(z, z̄;x, x̄):

Φh(z, z̄;x, x̄) =
∑
m,m̄

x−m−hx̄−m̄−hVh−1;m,m̄ , (2.20)

where (h, h) = (j + 1, j + 1) is the spin of Φh(z, z̄;x, x̄) under space-time SL(2,R)L ×
SL(2,R)R symmetry.

The operator Φj satisfies the following reflection symmetry:

Φj+1(z, z̄;x, x̄) = 2j + 1
π

∫
d2x′

Φ−j(z, z̄;x′, x̄′)
|x− x′|4(j+1) . (2.21)

Thus for real j one can restrict, without loss of generality, to j > −1/2, while for j =
−1/2 + is (2.21) relates wave function with s > 0 (out-going scattering waves) to those
with s < 0 (in-coming scattering waves).

In the semiclassical approximation, i.e., in the limit k →∞, the two-point function of
the operator Φh(z;x) can be determined via the world-sheet conformal invariance and the
invariance under the global SL(2,R)L × SL(2,R)R symmetry of the space-time theory [8]

〈Φh(z1;x1)Φh′(z2;x2)〉 = δ(h− h′) B(h)
|z1 − z2|4∆sl |x1 − x2|4h

, (2.22)

where

B(h) = k

π
X2h−1γ

(
1− 2h− 1

k

)
, γ(x) = Γ(x)

Γ(1− x) , (2.23)

andX is an arbitrary constant whose value can be adjusted by shifting the radial coordinate
or rescaling the transverse field theory coordinates. In the momentum basis the two-point
function takes the form

〈Vj;m,m̄(z)Vj′;−m,−m̄(w)〉= πδ(j−j′)
|z−w|4∆sl

Γ
(
1−2j+1

k

)
Γ(−2j−1)Γ(j−m+1)Γ(j+m̄+1)

Γ
(
1+2j+1

k

)
Γ(2j+2)Γ(−j−m)Γ(−j+m̄)

. (2.24)

The structure of three-point correlation function of the primary world-sheet operator
Φh is fixed by the conformal symmetry of the world-sheet and the space-time theories. For

– 8 –
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the operator Φh normalized so that its two-point function is given by (2.22), one obtains [4]

〈Φh1(z1, x1)Φh2(z2, x2)Φh3(z3, x3)〉

= Csl(h1, h2, h3)
|z12|2(∆h1+∆h2−∆h3 )|z23|2(∆h2+∆h3−∆h1 )|z31|2(∆h3+∆h1−∆h2 )

× 1
|x12|2(h1+h2−h3)|x23|2(h2+h3−h1)|x31|2(h3+h1−h2) (2.25)

where ∆h = ∆sl and zij = zi − zj and xij = xi − xj . The OPE coefficient Csl(h1, h2, h3)
can be computed from the conformal Ward identity, giving

Csl(h1, h2, h3)=− G(1−h1−h2−h3)G(h3−h1−h2)G(h3−h3−h1)G(h1−h2−h3)
2π2X(h1+h2+h3 − 1)γ

(
k+1
k

)
G(−1)G(1−2h1)G(1−2h2)G(1−2h3)

(2.26)
where

G(h) = k
h(k+1−h)

2k Γ2(−h|1, k)Γ2(k + 1 + h|, 1, k) (2.27)

with Γ2 defined as

log Γ2(x|1, ω) = lim
ε→0

∂

∂ε

 ∞∑
m,n=0

(x+ n+mω)−ε −
∞∑

m,n=0,(m,n) 6=(0,0)
(n+mω)−ε

 . (2.28)

String theory on AdS3 also contains operators obtained by a spectral flow automor-
phism of the symmetry algebra:

j3(z)→ j3(z)− kω̂

2z ,

j±(z)→ z±ω̂ j±(z) ,
(2.29)

where ω̂ ∈ Z is the spectral flow parameter. Note that since we are working in the universal
cover of SL(2,R), the left- and the right-moving spectral flow parameters are identical.
Under spectral flow automorphism the Virasoro generators, obtained by mode expansion
of the stress-energy tensor (2.6), transform as

Ln → Ln + ω̂j3
n −

kω̂2

4 δn,0 ∀n ∈ Z , (2.30)

where j3
n are the Kac-Moody modes of the current j3.

For each spectrally flowed sector ω̂ ∈ Z, string theory on AdS3 contains twist operators
given by

tω̂sl(z, z̄) = tω̂(z) t̃ω̂(z̄) = e−ω̂ (
∫

j3(z)+
∫

j̃3(z̄)) = ei ω̂
√

k
2 (y(z)+ȳ(z̄)) . (2.31)

The twist field tω̂sl acts on the spectrally un-flowed (i.e., ω̂ = 0) vertex operators (2.14) to
generate operators in the spectrally flowed sector:

tω̂sl(z, z̄)Vj;m,m̄(w, w̄) ' (z − w)−ω̂m (z̄ − w̄)−ω̂m̄ V ω̂
j;m,m̄(w, w̄)

∼ (z − w)−(m−m̄)ω̂ |z − w|2m̄ω̂ V ω̂
j;m,m̄(w, w̄) ,

(2.32)
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where
V ω̂
j;m,m̄ = ei

√
2
k [(m+ kω̂

2 ) y+(m̄+ kω̂
2 ) ȳ]Ψj;m,m̄ . (2.33)

Note that the operator Ψj;m,m̄ remains unchanged under spectral flow. In particular, its
world-sheet dimension ∆Ψ, given by (2.17), does not change under spectral flow. Demand-
ing mutual locality of the spectrally flowed vertex operators with respect to the twist fields
imposes the constraint

m− m̄ ∈ Z . (2.34)

It is easy to read off the world-sheet dimension of the vertex operator (2.33) as

∆sl = ∆Ψ −

(
m+ kω̂

2

)2

k
= −j(j + 1)

k
−mω̂ − kω̂2

4 . (2.35)

Switching the chiralities, one obtains the right-moving dimension as

∆̄sl = ∆̄Ψ −

(
m̄+ kω̂

2

)2

k
= −j(j + 1)

k
− m̄ω̂ − kω̂2

4 . (2.36)

The OPEs of the spectrally flowed vertex operator (2.33) with the SL(2,R) currents take
the form

j3(z)V ω̂
j;m,m̄(w) '

m+ kω̂
2

z − w
Vj;m,m̄(w) ,

j±(z)V ω̂
j;m,m̄(w) ' m∓ j

z − w
Vj;m±1,m̄(w) .

(2.37)

2.2 Symmetries and vertex operators of S3

Superstring theory on S3 is described by the superconformal SU(2) WZW model that is
composed of the bosonic SU(2)k−2 WZW model at level k − 2 and three pairs of free
(anti-)holomorphic fermions that can be described by SU(2)2 WZW model at level 2. The
bosonic and the fermionic sectors combine to give rise to the SU(2)k affine symmetry
algebra at level k.

For g′ ∈ SU(2), the exact effective SU(2)k WZW action is given by

Ssu = k S[g′] (2.38)

where the level-one WZW action is defined in (A.1). The action (2.38) is invariant w.r.t.
SU(2)L×SU(2)R affine symmetry algebra at level k. The global part of the SU(2)L×SU(2)R
symmetry algebra is generated by the Kac-Moody currents j′a and j̃′a, a = 1, 2, 3, given by

j′a = k

2 Tr
(
∂g′g′−1σa

)
, j̃′a = k

2 Tr
(
g′−1∂̄g′σa

)
. (2.39)

These currents get combined with contributions from the fermions, rendering the SU(2)k
Kac-Moody algebra

j′a(z) j′b(w) = k

2
δab

(z − w)2 + i εabc

z − w
j′c(w) + . . . . (2.40)

– 10 –



J
H
E
P
0
8
(
2
0
2
2
)
2
4
4

The world-sheet stress-energy tensor according to the Sugawara construction takes the
form,

Tsu ⊃
1
k
j′a j′a , T̃su ⊃

1
k
j̃′a j̃′a , (2.41)

where we omitted contributions from the fermions. The quadratic Casimir of SU(2)k is
given by

c′2 = (j′3)2 + 1
2{j

′+, j
′−} , (2.42)

where
j
′± = j′1 ± ij′2 . (2.43)

All representations of SU(2) can be parametrized by j′, that is related to the Casimir as
c′2 = j′(j′ + 1).

The group manifold SU(2)k, being compact, possesses only discrete series representa-
tion given by

D′j′ =
{
|j′;m′, m̄′〉 : j′ = 0, 1

2 , 1, . . . ,
k

2 ; m′, m̄′ = −j′, j′ + 1, . . . , j′
}
, (2.44)

where m′, m̄′ are eigenvalues of j′3 and j̃′3.
Analogously to the case of SL(2,R), the primary vertex operators of SU(2) can be de-

scribed in terms of the parafermionic decomposition into U(1)ysu and SU(2)
U(1) . The subgroup

U(1)ysu is generated by j′3 and is parametrized by a scalar field ysu, satisfying the OPE
ysu(z)ysu(w) ' − log(z − w). Thus one can write

j′3 = i

√
k

2 ∂ysu . (2.45)

The primary operators, V ′j′;m′,m̄′ , can be written as

V ′j′;m′,m̄′ = ei
√

2
k

(m′ysu+m̄′ȳsu)Ψ′j′;m′,m̄′ , (2.46)

where Ψ′j′;m′,m̄′ is a primary vertex operator on SU(2)
U(1) . The vertex operator (2.46) trans-

forms in the spin (j′, j′) representation of SU(2).
The SU(2) vertex operator V ′j′;m′,m̄′ satisfies the following OPE with the stress-energy

tensor:
Tsu(z)V ′j′;m′,m̄′(w) ' ∆su

(z − w)2Vj′;m′,m̄′(w) , (2.47)

where we defined its scaling dimension as

∆su = j(j + 1)
k

. (2.48)

It follows that the dimension of Ψ′j′;m′,m̄′ is given by

∆Ψ′ = j(j + 1)
k

− m′2

k
, ∆̄Ψ′ = j(j + 1)

k
− m̄′2

k
. (2.49)
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The OPEs of the primary vertex operator V ′j′;m′,m̄′ with the SU(2) currents are given by

j′3(z)V ′j′;m′,m̄′(w) ' m′

z − w
V ′j′;m′,m̄′(w) ,

j
′±(z)V ′j′;m′,m̄′(w) '

√
j′(j′ + 1)−m′(m′ ± 1)

z − w
V ′j′;m′±1,m̄′(w) .

(2.50)

Switching the chirality of the SU(2) currents, one can analogously write the OPE relations
of V ′j′;m′,m̄′ with the right-moving SU(2) currents.

Similarly to the vertex operators in AdS3, the SU(2) vertex operators can be equiva-
lently described in two different bases, related by

Φ′j′(z, z̄;u, ū) =
j′∑

m′,m̄′=−j′

√
Cj
′+m′

2j′ Cj
′+m̄′

2j′ uj
′+m′ ūj

′+m̄′V ′j′;m′,m̄′(z, z̄) , (2.51)

where
Cpq = q!

p! (q − p)! . (2.52)

The two-point functions of the SU(2) primaries are given by

〈Φ′j′1(z, z̄;u, ū)Φ′j′2(w, w̄; v, v̄)〉 =
δj′1j′2

|z − w|4∆su |u− v|4j′1
,

〈(V ′j′1;m′1,m̄′1
(z, z̄))†V ′j′2;m′2,m̄′2

(w, w̄)〉 =
δj′1j′2δm′1m′2δm̄′1m̄′2
|z − w|4∆su

,

(2.53)

where the conjugate operator is given by

(V ′j′;m′,m̄′)† = (−1)2j−m′−m̄′V ′j′;−m′,−m̄′ . (2.54)

The three-point function of V ′j′;m′,m̄′ is given by [44]

〈V ′j′1;m′1,m̄′1
(z1), V ′j′2;m′2,m̄′2

(z2)V ′j′3;m′3,m̄′3
(z3)〉

= Csu(j′i,m′i, m̄′i)

|z12|
2(∆j′1

+∆j′2
−∆j′3

)|z23|
2(∆j′2

+∆j′3
−∆j′1

)|z31|
2(∆j′3

+∆j′1
−∆j′2

) (2.55)

where ∆j′ = ∆su and

Csu(j′i,m′i, m̄′i) =
[
j′1 j′2 j′3
m′1 m

′
2 m

′
3

] [
j′1 j′2 j′3
m̄′1 m̄

′
2 m̄

′
3

]
ρ(j′1, j′2, j′3) (2.56)

with the first two factors are the Wigner 3j-symbols, and

ρ2(j′1, j′2, j′3)
(2j′1 + 1)(2j′2 + 1)(2j′3 + 1) =

Γ
(
k+1
k

)
Γ
(
1− 2j′1+1

k

)
Γ
(
1− 2j′2+1

k

)
Γ
(
1− 2j′3+1

k

)
Γ
(
k−1
k

)
Γ
(
1 + 2j′1+1

k

)
Γ
(
1 + 2j′2+1

k

)
Γ
(
1 + 2j′3+1

k

) (2.57)

× Π2(j′1 + j′2 + j′3 + 1)Π2(j′1 + j′2 − j′3)Π2(j′2 + j′3 − j′1)Π2(j′3 + j′1 − j′2)
Π2(2j′1)Π2(2j′2)Π2(2j′3)
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where Π denotes

Π(j′) =
j′∏
n=1

Γ
(
1 + n

k

)
Γ
(
1− n

k

) . (2.58)

String theory on S3 contains states obtained by spectral flow automorphism of the
SU(2) algebra:

j′3(z)→ j′3(z)− kω̂′

2z , j̃′3(z̄)→ j̃′3(z)− k ˆ̄ω′

2z̄ ,

j
′±(z)→ z±ω̂

′
j
′±(z) , j̃

′±(z̄)→ z̄±
ˆ̄ω′ j̃
′±(z̄) ,

(2.59)

where ω̂′, ˆ̄ω ∈ Z are the left- and right-moving SU(2) spectral flow parameters. Unlike
spectral flow automorphism of SL(2,R), the left- and the right-moving SU(2) spectral flow
parameters are different and independent of each other. Under spectral flow automorphism,
the world-sheet Virasoro generators transform as

L′n → L′n − ω̂′j
′3
n + kω̂

′2

4 δn,0 ,

L̃′n → L̃′n − ˆ̄ω′j̃′3n + k ˆ̄ω′2

4 δn,0 ,

(2.60)

where j′3n and j̃′3n are the Kac-Moody modes of the currents j′3 and j̃′3.
In the parafermionic notation, the spectrally flowed vertex operators are given by

V ′
ω̂′, ˆ̄ω′
j′;m′,m̄′ = e

i
√

2
k

[(
m′+ kω̂′

2

)
ysu+

(
m̄+ k ˆ̄ω′

2

)
ȳsu

]
Ψ′j′;m′,m̄′ . (2.61)

Its (anti-)holomorphic scaling dimensions are given by

∆su = j′(j′ + 1)
k

+m′ω̂′ + kω̂′2

4 ,

∆̄su = j′(j′ + 1)
k

+ m̄′ ˆ̄ω′ + k ˆ̄ω′2

4 .

(2.62)

The OPEs of the spectrally flowed vertex operator (2.61) with the global SU(2) gen-
erators take the form

j′3(z)V ′ω̂
′, ˆ̄ω′

j′;m′,m̄′(w) =
m′ + k

2 ω̂
′

z − w
V ′

ω̂′, ˆ̄ω′
j′;m′,m̄′ ,

j̃′3(z̄)V ′ω̂
′, ˆ̄ω′

j′;m′,m̄′(w̄) =
m̄′ + k

2
ˆ̄ω′

z̄ − w̄
V ′

ω̂′, ˆ̄ω′
j′;m′,m̄′ .

(2.63)

The OPE of V ′ω̂
′, ˆ̄ω′

j′;m′,m̄′ with j
′± and j̃

′± remain unchanged under spectral flow.

3 Coset construction

The main model we are going to work with in this paper is given by the type-II superstring
theory on the ten-dimensional space-time,

SL(2,R)× SU(2)×U(1)
U(1) ×U(1)4 , (3.1)
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given by a product of the six-dimensional coset space-time and the four-dimensional flat
compact space given by the torus T4 = U(1)4. The radii of T4 are free parameters of our
model. In particular, we can take the limit of infinite radii, and consider the theory on the
six-dimensional coset space times the R4 manifold.

Our primary interest will be the case of asymmetric anomaly-free time-like gauging
of the U(1) sub-group in the coset sub-space of (3.1). The goal of this section is to con-
struct the world-sheet action, obtain the gauge currents, and derive the corresponding
supergravity target space-time background geometry. We will demonstrate that the target
space-time geometry has a black hole horizon, while its asymptotic region is given by the
two-dimensional linear dilaton background times S3 × S1 × T4.7

We start by considering sigma-model on the group manifold

G ×U(1)4 where G = SL(2,R)× SU(2)×U(1)x , (3.2)

that is described by the action consisting of the WZW terms for the field G ∈ G and
the Polyakov terms for the abelian components. Supersymmetric version of this model
is obtained by supplementing the bosonic WZW/Polyakov sector with the free Majorana-
Weyl fermions. The latter are split into (anti-)holomorphic sectors, and are labeled by
indices in adjoint representation of the space-time symmetry group:

ψa, ψ̃a ∈ sl(2,R) , ψ′b, ψ̃′b ∈ su(2) , ψx, ψ̃x ∈ u(1)x , ψi, ψ̃i ∈ u(1)4 . (3.3)

The world-sheet fermions are then described by the action

Sf= k

2π

∫
d2z

(
ψa∂ψa+ψ̃a∂̄ψ̃a+ψ′b∂ψ′b+ψ̃′b∂̄ψ̃′b+ψx∂ψx+ψ̃x∂̄ψ̃x+ψi∂ψi+ψ̃i∂̄ψ̃i

)
(3.4)

where sums over repeated indices a = 1, 2, 3, b = 1, 2, 3, i = 1, 2, 3, 4 are implied.
As mentioned above, bosonic sector of the model is described by the sum of WZW terms

for the SL(2,R) and SU(2) sectors, plus the Polyakov terms for the U(1)x and U(1)4 sub-
spaces. Due to the nature of the coset (3.1), it is convenient to combine the group elements

g ∈ SL(2,R) , g′ ∈ SU(2) , ei
√

2
k
x ∈ U(1)x (3.5)

into one block-diagonal element of the sub-group G of (3.2), that we denote as

G = diag
[
g, g′, ei

√
2
k
x
]
. (3.6)

The WZW action for the field G on the group manifold (3.2) is then given by

SWZW[g, g′, x] = k S[g]− k S[g′] + 1
2π

∫
d2z ∂x∂̄x , (3.7)

7We will denote indices of vectors in ten-dimensional space-time with capital-case Latin letters, and in-
dices of the six-dimensional coset space-time with lower-case Greek letters. E.g., the space-time coordinates
are given by XM = (Xµ, z1, z2, z3, z4), where Xµ are coordinates of the six-dimensional coset space-time,
and zi = (z1, z2, z3, z4) are coordinates of the torus T4. Throughout this paper, we will generally as-
sume that all the coordinates are dimensionless, and therefore, e.g., the ten-dimensional metric is given by
ds2

10 = `2s GMNdX
MdXN , where `s is the string length.
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where the level-one WZW action S is defined in appendix A. In terms of the field G the
action (3.7) can be equivalently re-written as

S′WZW[G] ≡ SWZW[g, g′, x] = k

4π

∫
d2zTr

(
P G−1∂GG−1∂̄G

)
+ ik

24π

∫
B
Tr
(
P G−1dG ∧G−1dG ∧G−1dG

)
,

(3.8)

where we introduced the projection operator

P = diag [ 1, 1, −1, −1, −1 ] , (3.9)

and prime in the WZW action notation in l.h.s. of (3.8) indicates the presence of this
projection operator.

Together with the Polyakov terms for the U(1)4 sector,

ST4 = 1
2π

∫
d2z ∂zi ∂̄zi , (3.10)

total action of the supersymmetric sigma model on (3.2) is given by

S = S′WZW + ST4 + Sf . (3.11)

We view the action (3.11) as exact (in k, that also means exact in `s) effective action of
the world-sheet theory. In particular, the level k of the WZW terms that we wrote down
for the SL(2,R) and SU(2) sectors are exact in quantum theory.8

3.1 Gauging and gauge currents

Next, we are going to gauge the U(1) subgroup of the group G. Let us start with the
derivation in the bosonic sector, where an action of the gauged U(1) sub-group of the
target space symmetry group G is defined by the following transformation laws

g ∼ e
a1√
k
ξ σ3 g e

b1√
k
ξ σ3 ,

g′ ∼ ei
a2√
k
ξ σ3 g′ e

i
b2√
k
ξ σ3 ,

xL ∼ xL + a3 ξ , xR ∼ xR + b3 ξ .

(3.12)

Here ξ parametrizes the gauged U(1) group, and xL,R are (anti-)holomorphic components
of the world-sheet field x. The model is defined by the parameters a1,2,3, b1,2,3, that
in particular specify how the gauged U(1) sub-group is chosen within the group (3.2). In
what follows, we will impose anomaly cancellation conditions on a1,2,3, b1,2,3, rendering four
independent remaining parameters. These four parameters acquire a physical meaning in
terms of conserved charges of the corresponding black hole background, given by the mass
and three angular momenta, as we will demonstrate below in section 4.

8See appendix A.3 for a review of the corresponding formalism.

– 15 –



J
H
E
P
0
8
(
2
0
2
2
)
2
4
4

We are going to be working with the following parametrization of the SL(2,R) and
SU(2) group elements

g = eασ3eθσ1eβσ3 ,

g′ = eiα
′σ3eiθ

′σ1eiβ
′σ3 ,

(3.13)

in terms of which the action (3.7) is given by (see sections A.1, A.2)

SWZW[g, g′, x] = k

2π

∫
d2z

(
∂α∂̄α+ ∂β∂̄β + ∂θ∂̄θ + 2 cosh(2θ)∂̄α∂β (3.14)

+ ∂α′∂̄α′ + ∂β′∂̄β′ + ∂θ′∂̄θ′ + 2 cos(2θ′)∂̄α′∂β′ + ∂x∂̄x
)
,

while the transformations (3.12) are given by

α ∼ α+ a1√
k
ξ , β ∼ β + b1√

k
ξ , α′ ∼ α′ + a2√

k
ξ , β′ ∼ β′ + b2√

k
ξ ,

x ∼ x+ (a3 + b3)ξ , θ ∼ θ , θ′ ∼ θ′ .
(3.15)

The U(1) transformation rules (3.12) can be compactly reformulated as

G ∼ eξ TL Geξ TR , (3.16)

where the left/right-moving generators of the corresponding u(1) algebra are given by the
following block-diagonal matrices

TL = diag
[
a1√
k
σ3, i

a2√
k
σ3, ia3

√
2
k

]
,

TR = diag
[
b1√
k
σ3, i

b2√
k
σ3, ib3

√
2
k

]
.

(3.17)

Then introducing the compensator fields

U = e−uTL , V = e−v TL , (3.18)

obeying the U(1) transformation rules

u ∼ u+ ξ , v ∼ v + ξ , (3.19)

we can construct U(1)-invariant field UGV . The corresponding locally U(1)-invariant
WZW action can be written using the Polyakov-Wiegmann identity as

S′WZW[UGV ]=S′WZW[G]+S′WZW[U ]+S′WZW[V ] (3.20)

+ k

2π

∫
d2zTr

[
P
(
G−1∂̄G∂V V −1+U−1∂̄U∂GG−1+U−1∂̄UG∂V V −1G−1

)]
,

where S′WZW[G] is given by (3.7), (3.8), while

S′WZW[U ] = k

4π Tr(P T 2
L)
∫
d2z ∂u∂̄u ,

S′WZW[V ] = k

4π Tr(P T 2
R)
∫
d2z ∂v∂̄v .

(3.21)
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Using (3.17) we obtain

Tr(P T 2
L) = 2

k
(a2

1 + a2
2 + a2

3) , Tr(P T 2
R) = 2

k
(b21 + b22 + b23) . (3.22)

Notice that the action (3.20), while being invariant w.r.t. local U(1) gauge transforma-
tions (3.12), cannot be an action of the gauged WZW model. This is because it includes
Polyakov kinetic terms (3.21) for the fields u, v, making these fields dynamical rather than
auxiliary. One obvious way to eliminate these kinetic terms is given by the choice of null
gauging9

a2
1 + a2

2 + a2
3 = 0 , b21 + b22 + b23 = 0 . (3.23)

We are not going to pursue such a direction in this section. Instead we are going to consider
the time-like gauging

a2
1 + a2

2 + a2
3 = 1 , b21 + b22 + b23 = 1 , (3.24)

that ensures the anomaly-cancellation condition Tr(P T 2
L) = Tr(P T 2

R), thereby allowing to
eliminate kinetic terms for the fields u, v by considering the action

SgWZW[G] = S′WZW[UGV ]− 1
2π

∫
d2z ∂w∂̄w . (3.25)

Here we introduced the U(1)-invariant field w = u − v described by the Polyakov action
with the ‘wrong sign’. In the time-like gauging (3.24) one easily derives

S′WZW[U ] + S′WZW[V ]− 1
2π

∫
d2z ∂w∂̄w = 1

π

∫
d2z AÃ , (3.26)

where we denoted the auxiliary gauge field potentials as

A = −∂v , Ã = −∂̄u . (3.27)

Furthermore, introducing the U(1)L,R gauge currents

J = kTr
(
P TL ∂GG

−1
)
, J̃ = kTr

(
P TRG

−1 ∂̄G
)
, (3.28)

we can re-write the action (3.25) as

SgWZW[G] = S′WZW[G] + 1
2π

∫
d2z

(
AJ̃ + ÃJ + (M + 2)AÃ

)
, (3.29)

where we denoted
M = kTr

(
P TLGTRG

−1
)
. (3.30)

Eliminating the non-dynamic fields A, Ã via e.o.m., we obtain the action

SgWZW[G] = S′WZW[G]− 1
2π

∫
d2z

JJ̃

M + 2 , (3.31)

9In case of null gauging, a1 and b1 are imaginary-valued, and so are α and β parameters of the SL(2,R)
group element (3.13). Gauge-fixing, e.g., α = β = i t/2 then gives Lorentzian time t. In case of time-like
gauging, a1, b1, α, β are real-valued, but the target space-time metric of the considered gWZW model is
Lorentzian.
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and a non-trivial dilaton field

Φ = Φ0 −
1
2 log

(
M

2 + 1
)
, (3.32)

where Φ0 is the dilaton background.
Let us denote

∆ = M

2 + 1 . (3.33)

Using the parametrization (3.13) we obtain

∆ = 1 + a1b1 cosh(2θ) + a2b2 cos(2θ′) + a3b3 . (3.34)

The dilaton background (3.32) can then be determined as

Φ = Φ0 −
1
2 log

(
1 + a1b1 cosh(2θ) + a2b2 cos(2θ′) + a3b3

)
. (3.35)

For the currents (3.28) we obtain

J = 2
(
−i a1√

k
j3 − i a2√

k
j′3 + a3∂x

)
, J̃ = 2

(
−i b1√

k
j̃3 − i b2√

k
j̃′3 + b3∂̄x

)
, (3.36)

where we defined (recall that σa are Pauli matrices)

j3 = i
k

2 Tr
(
∂gg−1σ3

)
, j̃3 = i

k

2 Tr
(
g−1∂̄gσ3

)
,

j′3 = k

2 Tr
(
∂g′g′−1σ3

)
, j̃′3 = k

2 Tr
(
g′−1∂̄g′σ3

)
.

(3.37)

In the parametrization (3.13) we obtain

j3 = ik (∂α+ cosh(2θ) ∂β) , j̃3 = ik
(
∂̄β + cosh(2θ) ∂̄α

)
,

j′3 = ik
(
∂α′ + cos(2θ′) ∂β′

)
, j̃′3 = ik

(
∂̄β′ + cos(2θ′) ∂̄α′

)
.

(3.38)

We will also use the notations

jx = i ∂x , j̃x = i ∂̄x , jw = i ∂w , j̃w = i ∂̄w , ji = i ∂zi , j̃i = i ∂̄zi . (3.39)

The current components j3 and j′3, and their anti-holomorphic counterparts, belong to the
sl(2,R) and su(2) Kac-Moody algebras at levels k + 2 and k − 2, satisfying the OPEs10

ja(z) jb(w) = k + 2
2

δab

(z − w)2 + εabc

z − w
jc(w) + . . . ,

j′a(z) j′b(w) = k − 2
2

δab

(z − w)2 + i εabc

z − w
j′c(w) + . . . ,

(3.40)

10In our conventions, both j3 and j′3 have real eigenvalues. An alternative convention for the sl(2,R)
currents, related to ours by redefinitions j3 → ij3, j3 → −ij3 would result in the ηab = diag{1, 1, −1}
Cartan metric in (3.40) and its fermionic counterpart (3.45).
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where εabc is the Levi-Civita symbol, ε123 = 1, and similarly for the anti-holomorphic
components. The currents jx, ji, and jw are abelian Kac-Moody currents at levels 1, 1,
and −1 respectively,11

〈jx(z) jx(w)〉 = 1
2

1
z − w

, 〈ji(z) jj(w)〉 = 1
2

δij

z − w
, 〈jw(z) jw(w)〉 = −1

2
1

z − w
,

(3.42)
and similarly for the anti-holomorphic sector.

In the supersymmetric theory (3.11) one additionally has contributions to the gauge
U(1)L×U(1)R currents (3.36) coming from the fermionic sector. The total gauge currents
can be compactly reformulated in terms of the total bosonic currents of supersymmetric
Kac-Moody algebra,12

ja = ja + 1
k
εabc ψ

b ψc , j′a = j′a − i

k
εabc ψ

′b ψ′c , (3.43)

that in particular implies

j3 = j3 + 2
k
ψ1 ψ2 , j′3 = j′3 − 2i

k
ψ′1 ψ′2 . (3.44)

Here the sl(2,R) and su(2) fermions satisfy the OPEs

ψa(z)ψb(w) = k

2
δab

z − w
, ψ′a(z)ψ′b(w) = k

2
δab

z − w
. (3.45)

For the total bosonic currents, we have the following OPEs of the supersymmetric Kac-
Moody algebras sl(2,R) and su(2)

ja(z) jb(w) = k

2
δab

(z − w)2 + εabc

z − w
jc(w) + . . . ,

j′a(z) j′b(w) = k

2
δab

(z − w)2 + i εabc

z − w
j′c(w) + . . . ,

(3.46)

both at level k. The supersymmetric theory counterpart of (3.36) is then given by

J = −2i
(
a1√
k

j3 + a2√
k

j′3 + a3 j
x
)
, J̃ = −2i

(
b1√
k

j̃3 + b2√
k

j̃′3 + b3j̃
x
)
. (3.47)

Taking into account anomaly-cancellation conditions (3.24), we then obtain

〈J(z)J(w)〉 = −2 1
(z − w)2 , 〈J̃(z̄)J̃(w̄)〉 = −2 1

(z̄ − w̄)2 . (3.48)

Supersymmetric partners of the gauge currents (3.47) are given by the fermions

ψ = −2i
(
a1√
k
ψ3 + a2√

k
ψ′3 + a3ψ

x
)
, ψ̃ = −2i

(
b1√
k
ψ̃3 + b2√

k
ψ̃′3 + b3ψ̃

x
)
, (3.49)

11These follow from the free field OPE

〈∂x(z)∂x(w)〉 = −1
2

1
(z − w)2 , 〈∂w(z)∂w(w)〉 = 1

2
1

(z − w)2 . (3.41)

More comments on the sign of the 〈∂w∂w〉 two-point function will be given in section 6.1.
12See appendix A.3 for a review.
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Using (3.45) in combination with the OPEs

ψx(z)ψx(w) = 1
2

1
z − w

, ψ̃x(z̄)ψ̃x(w̄) = 1
2

1
z̄ − w̄

, (3.50)

we notice that the gauge fermions (3.49) that satisfy the OPEs

〈ψ(z)ψ(w)〉 = −2 1
z − w

, 〈ψ̃(z̄)ψ̃(w̄)〉 = −2 1
z̄ − w̄

. (3.51)

3.2 Supergravity background

Combining (3.14), (3.34), (3.47), (3.38) in (3.31) we can write down the full world-sheet
gauged WZW action for the considered parametrization (3.13). This action is invariant
w.r.t. gauge transformation (3.15). We can fix the associated redundancy in the degrees of
freedom by the gauge choice

α = ν

2 y , β = 1
2 y , (3.52)

where ν is an arbitrary parameter. For the sake of calculating supergravity background
geometry, we set all the fermionic d.o.f. to zero. The resulting action is then given by

SgWZW[G] = 1
2π

∫
d2z (GMN + BMN ) ∂XM ∂̄XN , (3.53)

where we defined the world-sheet field defining coordinates in ten-dimensional target space

XM = (Xµ, z1, z2, z3, z4) , Xµ =
(
y, θ, α′, θ′, β′, x

)
, (3.54)

with the non-vanishing components of the metric given by the six-dimensional coset sub-
space components

Gyy = k

4

(
1+ν2+2ν cosh(2θ)−2a1b1

∆ (ν+ cosh(2θ))(1+ν cosh(2θ))
)
,

Gyα′ = Gα′y = − k

2∆
(
a1b2 cos(2θ′)(ν + cosh(2θ)) + a2b1(1 + ν cosh(2θ))

)
,

Gyβ′ = Gβ′y = − k

2∆ (a1b2(ν + cosh(2θ)) + a2b1 cos(2θ′)(1 + ν cosh(2θ))) ,

Gyx = Gxy = −
√
k

2∆ (a3b1 + a1b3ν + (a1b3 + a3b1ν) cosh(2θ)) ,

Gθθ = Gθ′θ′ = k ,

Gα′α′ = Gβ′β′ = k

(
1− 2

∆ a2b2 cos(2θ′)
)
,

Gα′β′ = Gβ′α′ = k

∆
(
cos(2θ′)(1 + a3b3 + a1b1 cosh(2θ))− a2b2

)
,

Gα′x = Gxα′ = −
√
k

∆ (a2b3 + a3b2 cos(2θ′)) ,

Gβ′x = Gxβ′ = −
√
k

∆ (a3b2 + a2b3 cos(2θ′)) ,

Gxx = 1− 2a3b3
∆ ,

(3.55)
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as well as the components of the metric on the torus T4, given by Gz1z1 = Gz2z2 = Gz3z3 =
Gz4z4 = 1. Non-trivial components of the B-field are given by

Byα′ = −Bα′y = − k

2∆
(
a1b2 cos(2θ′)(ν + cosh(2θ))− a2b1(1 + ν cosh(2θ))

)
,

Byβ′ = −Bβ′y = − k

2∆ (a1b2(ν + cosh(2θ))− a2b1 cos(2θ′)(1 + ν cosh(2θ))) ,

Byx = −Bxy = −
√
k

2∆ (−a3b1 + a1b3ν + (a1b3 − a3b1ν) cosh(2θ)) ,

Bα′β′ = −Bβ′α′ = −k
(

cos(2θ′) + 1
∆ a2b2 sin(2θ′)2

)
,

Bα′x = −Bxα′ =
√
k

∆ (−a2b3 + a3b2 cos(2θ′)) ,

Bβ′x = −Bxβ′ =
√
k

∆ (a3b2 − a2b3 cos(2θ′)) .

(3.56)

Together with the dilaton (3.35), expressions (3.55), (3.56) represent the classical super-
gravity background, where the parameter ν is arbitrary and no physical quantities are
expected to depend on it. One can explicitly verify that provided the anomaly cancellation
conditions (3.24) are satisfied, this background obeys the classical equations of motions

RMN + 2∇M∂Nφ−
1
4 HMLRH LR

N = 0 , (3.57)

4(∂Φ)2 − 4∇M∂MΦ−R+ 1
12HMNLHMNL = 0 , (3.58)

∇LHLMN − 2∂LΦHLMN = 0 , (3.59)

that can be derived from the corresponding bulk gravity action in the string frame

S = 1
2κ2

0
VT4

∫
d6x
√
− det G e−2Φ

(
R+ 4(∂Φ)2 − 1

12 HµνλH
µνλ
)
, (3.60)

where13

Hµνλ = ∂µBνλ + ∂λBµν + ∂νBλµ , (3.62)

and the dimensionful volume of the four-dimensional compactified torus (in string frame)
is given by (here Ri are dimensionless radii of the circles of T4, where zi ∼ zi + 2π`sRi,
i = 1, . . . , 4)

VT4 = (2π`s)4
4∏
i=1

Ri . (3.63)

The corresponding metric on target space-time is given by

ds2
10 = ds2

6 + `2s

(
(dz1)2 + · · ·+ (dz4)2

)
, ds2

6 = `2s Gµν dXµ dXν , (3.64)

13Recall that the B-field is defined up to gauge transformations

δBMN = ∂MΛN − ∂NΛM , (3.61)

that leaves the tensor (3.62) invariant.
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where we restored the string length `s, taking into account that in our conventions the
space-time coordinates XM are dimensionless. The metric in Einstein frame, G̃MN , is
related to the metric in string frame, GMN , via

GMN = e
Φ−Φ0

2 G̃MN . (3.65)

In Einstein frame normalization of the gravity action is given by 1/(2κ2), where

κ = κ0e
Φ0 = (8πGN )1/2 , (3.66)

and GN is the Newton’s constant.14 Notice that due to (3.65) the volume of the four-torus
in the Einstein frame is given by ṼT4 = eΦ0−Φ VT4 .

To study the background (3.55), (3.56), (3.35) it is convenient to choose a different
coordinate frame. Let us begin by rescaling the U(1)x coordinate as follows,

x =
√
k x′ . (3.67)

Then every component of the metric and the B-field will be proportional to k, and therefore
dependence of these tensors on the WZW level can be compactly expressed through an
overall common factor. Next, we rescale the time coordinate y as follows,15

y = 2a1b1
a1 − b1ν

t . (3.68)

We also introduce a new radial coordinate ρ(θ) according to the rule (recall that ∆(θ) was
defined in (3.34))

∆ = ρ2 + 2a3b3 ⇒ θ = 1
2 cosh−1

(
1 +

ρ2 − ρ2
+

a1b1

)
, (3.69)

where we defined
ρ2
± = 1± a1b1 − a3b3 + a2b2 cos(2θ′) . (3.70)

For the choice of parameters

a1b1 > 0 ⇐ a1 =
√

1− a2
2 − a2

3 , b1 =
√

1− b22 − b23 (3.71)

the coordinate transformation (3.69) therefore implies the range of validity of the ρ coor-
dinate given by

ρ ≥ ρ+ . (3.72)

In the new coordinates we then obtain the dilaton

Φ = Φ0 −
1
2 log(ρ2 + 2a3b3) . (3.73)

14See, e.g., [45].
15While this choice of the time coordinate can appear ad hoc at this point, the rationale behind it will be

explained below, when we will show that in such a frame one obtains adjusted asymptotic value Ĝtt/k = −1.
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and the metric

ds2
6 = `2s

(
Ĝtt dt2+Gρρ dρ2+2Gρθ′ dρ dθ′+Gab (dXa+Ra dt) (dXb+Rb dt)

)
, (3.74)

Here we have defined
Xa =

(
α′, β′, x′

)
, (3.75)

and used Gab, a, b = α′, β′, x′ to denote projection of the Gµν tensor on the three-dimensional
sub-space spanned by the vector (3.75). We have also re-arranged the terms in (3.74) in
such a way that the off-diagonal metric elements Gtα′ , Gtβ′ , Gtx′ are expressed in terms of
the vector

Ra = Gab Gtb , (3.76)

where Gab is the inverse metric on the three-dimensional sub-space spanned by (3.75). We
then obtain the adjusted metric component

Ĝtt = Gtt − GabRaRb

= Gtt − Gab Gta Gtb .
(3.77)

Introducing
`2± = a2b2 cos(2θ′)− a3b3 ±

√
(a2

2 + a2
3)(b22 + b23) (3.78)

we can express

Ĝtt = −k
(ρ2 − ρ2

+)(ρ2 − ρ2
−)

(ρ2 − `2+)(ρ2 − `2−)
(3.79)

We therefore observe that ρ2 = ρ2
+ is the outer horizon of the metric. Notice that ρ2

+ ≥ `2+,
ρ2
− ≥ `2−, and `2+ ≥ `2−.16 Therefore the apparent singularities of Ĝtt at ρ2 = `2± are hidden

behind the outer horizon ρ2 = ρ2
+.

Let us define
Rα
′ = Rα′ − a2b1ν

a1 − b1ν
,

Rβ
′ = Rβ′ − a1b2

a1 − b1ν
,

Rx
′ = Rx′ − a1b3 + a3b1ν

a1 − b1ν
,

(3.80)

where we separated explicitly asymptotic values at ρ→∞, leaving us with Ra = O(1/ρ),
where

Rα′ = a2 (b22 + b23 − a3b3 + a2b2 cos(2θ′)− ρ2)
(ρ2 − `2+)(ρ2 − `2−)

,

Rβ′ = b2 (−a2
2 − a2

3 + a3b3 − a2b2 cos(2θ′) + ρ2)
(ρ2 − `2+)(ρ2 − `2−)

,

Rx′ = a3b
2
2 − b3a2

2 + (a3 − b3)(a2b2 cos(2θ′)− 2a3b3 − ρ2)
(ρ2 − `2+)(ρ2 − `2−)

,

(3.81)

16This is easiest to see by taking a1 = cosψ, b1 = cosψ′.
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By performing the change of coordinates

α′ = α̂′ + a2b1ν

a1 − b1ν
t ,

β′ = β̂′ + a1b2
a1 − b1ν

t ,

x′ = x̂′ + a1b3 + a3b1ν

a1 − b1ν
t ,

(3.82)

we can remove the off-diagonal (t, α̂′), (t, β̂′), (t, x̂′) metric elements in the asymptotic
region. In the new coordinates we obtain

ds2
6 = `2s

(
Ĝtt dt2+Gρρ dρ2+2Gρθ′ dρdθ′+Gθ′θ′dθ′2+Gab (dX̂a+Ra dt)(dX̂b+Rb dt)

)
, (3.83)

where we defined
X̂a =

(
α̂′, β̂′, x̂′

)
. (3.84)

The rest of the components of the metric are given by

1
k
Gρρ = ρ2

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
,

1
k
Gρθ = 1

k
Gθρ = ρa2b2 sin(2θ′)

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
,

1
k
Gθ′θ′ = 1− a2

2b
2
2 sin(2θ′)2

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
,

1
k
Gα̂′α̂′ = 1

k
Gβ̂′β̂′ = 1− 2a2b2 cos(2θ′)

ρ2 + 2a3b3
,

1
k
Gα̂′β̂′ = 1

k
Gβ̂′α̂′ = cos(2θ′)− a2b2(3 + cos(4θ′))

2(ρ2 + 2a3b3) ,

1
k
Gα̂′x̂′ = 1

k
Gx̂′α̂′ = −a2b3 + a3b2 cos(2θ′)

ρ2 + 2a3b3
,

1
k
Gβ̂′x̂′ = 1

k
Gx̂′β̂′ = −a3b2 + a2b3 cos(2θ′)

ρ2 + 2a3b3
,

1
k
Gx̂′x̂′ = ρ2

ρ2 + 2a3b3
.

(3.85)

Notice that dependence on the arbitrary gauge parameter ν completely disappeared. In
the asymptotic region ρ→∞ we obtain the linear dilaton background times S3 × S1

ds2
6 = k `2s

(
−dt2 + dρ2

ρ2 + ds2
S3 + dx̂′2

)
, (3.86)

where the SU(2) ∼ S3 metric is given by17

ds2
S3 = dα̂′2 + dβ̂′2 + dθ′2 + 2 cos(2θ′)dα̂′dβ̂′ . (3.88)

17By performing the change of coordinates α̂′ = (φ2 − φ1)/2, β̂′ = (φ2 + φ1)/2, we can bring this metric
to the Hopf form

ds2
S3 = dθ′2 + sin2(θ′) dφ2

1 + cos2(θ′) dφ2
2 . (3.87)
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By picking a new radial coordinate χ we can eliminate the Gχθ off-diagonal term in
the metric tensor. For instance, let us choose

χ = ρ2 − ρ2
+ + a1b1 . (3.89)

The new radial coordinate in the domain of parameters (3.71) is then defined on the interval
χ ∈ [χ+,+∞), where

χ± = ±a1b1 , (3.90)

and χ+ represents the outer black hole horizon. The interval in the new coordinates is
given by

1
k`2s

ds2
6 = −(χ− χ+)(χ− χ−)

`2
dt2 + dχ2

4(χ− χ+)(χ− χ−) + dθ′2

+ Gab
k

(dX̂a +Ra dt) (dX̂b +Rb dt) ,
(3.91)

where we defined
`2 = (χ+ 1)2 − (1− a2

1)(1− b21) . (3.92)

In the new coordinates we can also express

Rα̂′ = −a2 (χ+ b21)
`2

,

Rβ̂′ = b2 (χ+ a2
1)

`2
,

Rx̂′ = a2
1b3 − b21a3 + (b3 − a3)χ

`2
,

(3.93)

and18

Gab
k

=


1− 2a2b2 cos(2θ′)

`20

cos(2θ′)(a3b3+χ+1)−a2b2
`20

−a2b3+a3b2 cos(2θ′)
`20

cos(2θ′)(a3b3+χ+1)−a2b2
`20

1− 2a2b2 cos(2θ′)
`20

−a2b3 cos(2θ′)+a3b2
`20

−a2b3+a3b2 cos(2θ′)
`20

−a2b3 cos(2θ′)+a3b2
`20

1− 2a3b3
`20

 , (3.94)

where we denoted
`20 = χ+ 1 + a3b3 + a2b2 cos(2θ′) . (3.95)

The metric (3.91) defines a rotating black hole with the event horizon at χ ≡ χ+, θ′ ≡ const,
dX̂a = −Radt, a = α̂′, β̂′, x̂′. The latter indicates that the angular velocity at the horizon
is given by19

Ωa = −
√
kRa|χ=χ+ , a = α̂′, β̂′, x̂′ . (3.96)

Using (3.93) we then obtain

Ωα̂′ =
√
k a2b1

a1 + b1
, Ωβ̂′ = −

√
k a1b2

a1 + b1
, Ωx̂′ =

√
k
a3b1 − a1b3
a1 + b1

. (3.97)

18In Hopf coordinates (3.87) we have Gφ1φ2 = 0.
19Here the factor of

√
k originates from the fact that our time coordinate t is normalized so that the

asymptotic behavior of the metric is ds2 = −k `2s dt2 + . . .
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These can be further split into the left- and right-moving components

Ωα̂′
L =

√
k a2b1

a1 + b1
, Ωα̂′

R = 0 , Ωβ̂′

L = 0 , Ωβ̂′

R = −
√
k a1b2

a1 + b1
,

Ωx̂′
L =

√
k a3b1

a1 + b1
, Ωx̂′

R = −
√
k a1b3

a1 + b1
,

(3.98)

so that
Ωα̂′ = Ωα̂′

L + Ωα̂′
R , Ωβ̂′ = Ωβ̂′

L + Ωβ̂′

R , Ωx̂′ = Ωx̂′
L + Ωx̂′

R . (3.99)
The full metric can also be written as (recall that `0 is given by (3.95))20

Gµν
k

=



−1+ 2
`2

0
0 b2 cos(2θ′)−a2

`2
0

0 b2−a2 cos(2θ′)
`2

0

b3−a3
`2

0
0 1

4(χ2−a2
1b

2
1) 0 0 0 0

b2 cos(2θ′)−a2
`2

0
0 1− 2a2b2 cos(2θ′)

`2
0

0 cos(2θ′)(a3b3+χ+1)−a2b2
`2

0
−a2b3+a3b2 cos(2θ′)

`2
0

0 0 0 1 0 0
b2−a2 cos(2θ′)

`2
0

0 cos(2θ′)(a3b3+χ+1)−a2b2
`2

0
0 1− 2a2b2 cos(2θ′)

`2
0

−a2b3 cos(2θ′)+a3b2
`2

0
b3−a3
l2 0 −a2b3+a3b2 cos(2θ′)

`2
0

0 −a2b3 cos(2θ′)+a3b2
`2

0
1− 2a3b3

`2
0


(3.100)

The dilaton is given by
Φ = Φ0 − log `0 . (3.101)

The Ricci scalar is given by

kR = 23χ2+10(1+a3b3)(χ−a2b2 cos(2θ′))+7(a2
1(1−b23)−b22(1−a2

3))−3a2
2b

2
2 cos(2θ′)2

`40
.

(3.102)
Finally, for the independent components of the anti-symmetric B-field we obtain

1
k
Btα̂′ = a2b1ν

a1 − b1ν
+ b2 cos(2θ′) + a2

`20
,

1
k
Btβ̂′ = − a1b2

a1 − b1ν
+ a2 cos(2θ′) + b2

`20
,

1
k
Btx̂′ = a3b1ν − a1b3

a1 − b1ν
+ a3 + b3

`20
,

1
k
Bα̂′β̂′ = −a2b2 + cos(2θ′)(a3b3 + χ+ 1)

`20
,

1
k
Bα̂′x̂′ = a3b2 cos(2θ′)− a2b3

`20
,

1
k
Bβ̂′x̂′ = a3b2 − a2b3 cos(2θ′)

`20
.

(3.103)

Notice that the unphysical ν-dependent terms can be readily eliminated using the gauge
transformation Bµν → Bµν + ∂[µΛν], for the following choice of transformation parameters

Λα̂′ = −k a2b1ν

a1 − b1ν
t , Λβ̂′ = k

a1b2
a1 − b1ν

t , Λx̂′ = −k a3b1ν − a1b3
a1 − b1ν

t , (3.104)

20Setting a1 = cosψ, a3 = sinψ, b1 = 1, a2 = b2 = b3 = 0, changing the radial coordinate to χ =
2 e2r cosψ − 1, and performing Kaluza-Klein reduction of the x coordinate we recover the metric of two-
dimensional charged black hole in string frame, ds2 = k`2s

(
−f(r)dt2 + dr2/f(r) + ds2

S3

)
, where f(r) =

1−e−2r secψ+ 1
4e
−4r tan2 ψ. The dilaton is then given by Φ = Φ0− 1

2 log(2 cosψ)−r, in agreement with [30].
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with the other components being trivial, Λi = 0, i 6= α̂′, β̂′, x̂′.21 Finally, anomaly-free
conditions (3.71) need to be imposed on the derived expressions (3.100), (3.101), (3.103)
for the metric, dilaton, and the B-field.

3.3 Conserved charges

The black brane background (3.100), (3.101), (3.103) possess symmetries associated with
translations in time t, angular coordinates α̂′, β̂′ of the S3 and compact coordinate x̂′ of
the S1. In this subsection, we are going to derive the corresponding expressions for the
conserved energy and angular momenta.

Angular momenta components are defined via the 1-forms

kG(a) = Gaµ dXµ , kB(a) = Baµ dXµ , a = α̂′, β̂′, x̂′ , (3.105)

by the Komar formula (see, e.g., [46, 47]) in string frame

J (G,B)
a = 1

κ2
0
VT4 `3s

∫
?(dkG,B(a)) e−2φ , a = α̂′, β̂′, x̂′ , (3.106)

as the linear combinations

J (L,R)
a = J

(G)
a ± J (B)

a

2 . (3.107)

In (3.106) the star denotes the usual Hodge dual of a p-form,

dkG,B(a) =k
G,B(a)
bc dX̂b∧dX̂c , k

G,B(a)
bc =∂[bk

G,B(a)
c] = 1

2 (∂b(G,B)ca−∂c(G,B)ba) , (3.108)

?(dkG,B(a))= 1
4!
√

detGεa1a2a3a4a5a6Ga5b5Ga6b6k
(a)G,B
b5b6

dXa1∧dXa2∧dXa3∧dXa4 ,

and ετχα̂′θ′β̂′x̂′ = 1. In (3.106) the integral is performed over the asymptotic boundary
S3 × S1, which selects the corresponding component (α̂′θ′β̂′x̂′) of the 4-form ?(dka). We
then obtain

J Gα̂′ = J Bα̂′ = 4π2

κ2 k `2s VT4 VS1 a2 ,

J G
β̂′

= −J B
β̂′

= −4π2

κ2 k `2s VT4 VS1 b2 ,

J Gx̂′ = 4π2

κ2 k `2s VT4 VS1 (a3 − b3) , J Bx̂′ = 4π2

κ2 k `2s VT4 VS1 (a3 + b3) .

(3.109)

For the energy/mass we can analogously use the Komar formula

E = − 1
2κ2

0
VT4 `3s

∫
?(dkG(t)) e−2φ , (3.110)

where kG(t) = Gtµ dXµ, which gives22,23

E = 4π2

κ2 k
3
2 `2s VT4 VS1 . (3.111)

21In general, adding constants to the components of the B-field cannot affect supergravity equations of
motion, that depend on the B-field via the tensor H = dB.

22Here the factor of
√
k is due to our choice of normalization of the time coordinate, which is dual to the

energy E , according to which ds2 = −k `2s dt2 + . . . in the asymptotic region.
23Recall that relation between κ and κ0 is given by (3.66).
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In the next section, we will demonstrate that the derived expressions for energy and angular
momenta are consistent with the first law of thermodynamics.

4 Thermodynamics

In this section, we are going to study thermodynamics of the back-
ground (3.100), (3.101), (3.103). This background describes a black brane, rotating
with non-vanishing angular velocities along two of the S3 as well as the S1 directions. We
are going to determine the temperature and derive the associated Bekenstein-Hawking
entropy. Using expressions for the energy, angular velocities, and angular momenta calcu-
lated in the previous section, we will derive the free energy, and demonstrate explicitly
the first law of thermodynamics. Additionally, by explicit calculation of the regularized
on-shell action, we will demonstrate that the free energy vanishes, in agreement with the
general expectation for an asymptotically linear dilaton space-time.

The near-horizon limit of the metric (3.91) can be taken by expanding

χ = χ+ (1 + r2) . (4.1)

around r = 0. This gives

ds2
6=`2s

(
k

(
1
2

(
dr2− 4a2

1b
2
1

(a1 + b1)2 r
2dt2

)
+dθ′2

)
+Gab (dX̂a+Ra dt) (dX̂b+Rb dt)

)
. (4.2)

The null interval at the horizon is then defined by

χ = χ+ , dθ′ = 0 , dX̂a = −Radt , (4.3)

while regularity at the horizon requires that Euclidean time has the period expressed in
terms of the black hole temperature as τ ∼ τ + 1/T . Recall that our Lorentzian time
coordinate t is normalized so that the asymptotic metric at the boundary is determined by
ds2 = −k `2s dt2 + . . . . Then the temperature is given by

T = 1
π`s
√
k

a1b1
a1 + b1

. (4.4)

The temperature (4.4) takes values in the range 0 ≤ T ≤ TH , where TH = 1
2π
√
k `s

is the
Hagedorn temperature of two-dimensional black hole. The zero-temperature limit, T = 0,
is achieved for the choice of parameters a1b1 = 0, in which case we obtain χ+ = χ−. In
the limit a1 → 1, b1 → 1 we get T → TH , which corresponds to sending the outer horizon
to asymptotic linear dilaton region of space-time.

At the outer horizon we obtain for the Einstein frame metric

ṼT4

√
det ||G̃ij || = e2(Φ0−Φ) VT4

√
det ||Gij ||

∣∣∣∣∣
χ=χ+

= k2`4s (a1 + b1)VT4 sin(2θ′) , (4.5)

where i, j = α̂′, θ′, β̂′, x̂′, and Gij is projection of the metric on the associated sub-space, and
we substituted expression (3.101) for the dilaton. The horizon area, obtained by integrating
over θ′ ∈

[
0, π2

]
, α′ ∈ [0, π], β′ ∈ [0, 2π] is therefore given by

A = 2π2 k2`3s (a1 + b1)VS1 VT4 , (4.6)
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where we also denoted dimensionful length of the U(1)x circle (in string frame) as

VS1 = 2π`sRx , (4.7)

following from the periodicity condition for the dimensionless coordinate x ∼ x + 2πRx.
The Bekenstein-Hawking entropy is therefore given by24

S = A
4GN

= 2πA
κ2 = 4π2

κ2
1
T
k

3
2 `2s VS1 VT4 a1b1 . (4.10)

Now let us proceed to calculation of the Euclidean on-shell action

S = S0 + SGHY + Sc.t. , (4.11)

where S0 is obtained by plugging in the background solution into the bulk action (3.60),
SGHY is the Gibbons-Hawking-York (GHY) boundary term, and Sc.t. is the counter-term
action. Let us start with the former. Using (3.58) we can re-write (3.60) on shell as25

S0 = − 2
κ2

0
`4s VT4

∫
d6x
√

detG e−2Φ (∇µ∂µΦ− 2 ∂µΦ∂µΦ)

= − 2
κ2

0
`4s VT4

∫
d6x ∂µ

(√
detG e−2Φ ∂µΦ

)
.

(4.12)

Using the Stokes’s theorem, we obtain

S0 = − 2
κ2

0
`4s VT4

∫
d5x

√
det γ e−2Φ nµ ∂

µΦ , (4.13)

where
γij = Gij , i, j = t, α̂′, θ′, β̂′, x̂′ , (4.14)

is the metric on the boundary χ = Λ,26 and nµ, given by (B.7), is the outward-pointing
unit vector normal to the boundary. We can then re-write (4.13) as

S0 = − 2
κ2

0
`4s VT4

∫ 1/(
√
k `s T )

0
dτ

∫
d4x
√

detG e−2Φ Gχχ ∂χΦ
∣∣∣∣∣
χ=Λ

, (4.15)

where, as before, detG is determinant of the six-dimensional metric. Using (3.100), (3.101),
we obtain for any χ,

√
detG e−2Φ = k3

2 sin(2θ′) e−2Φ0 . (4.16)

24One can parametrize the asymmetric gauging of the U(1) sub-group as (see [32] and references therein)

a1 = cos(χ− ψ) , b1 = cosχ , a2 = b2 = 0 , (4.8)

i.e., decoupling the SU(2) sub-group. Taking the same limit in (4.10), we can compare it with the entropy
of rotating black string following from the expressions for the metric Gxx and dilaton Φ− Φ0 given by eq.
(3.36) in [32]. It suffices to point out that the horizon area is given by

A = e2(Φ0−Φ) 2π2 k2`3s VT4 VS1
√
Gxx =

√
(1 + cosψ)(1 + cos(2χ− ψ)) , (4.9)

that after a simple manipulation one can see to coincide with (4.6) for the parameters (4.8).
25In the second line we have applied

√
detG ∇µAµ = ∂µ

(√
detGAµ

)
to Aµ = ∂µ(e−2Φ).

26The corresponding contribution from the lower limit of integration χ = χ+ vanishes.
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Combining this with

Gχχ ∂χΦ|χ=Λ = −2Λ + 2(1 + a2b2 cos(2θ′) + a3b3) +O
( 1

Λ

)
, (4.17)

and integrating over θ′ ∈ [0, π/2], etc., we obtain

S0 = 4π2

κ2 k
3
2 `2s

1
T
VS1 VT4 (Λ− 1− a3b3) . (4.18)

We can remove the divergence with the following counter-term,

Sc.t. = − 2
κ2

0
`4s VT4

∫
χ=Λ

d5x
√

det γ e−2Φ = −4π2

κ2 k
3
2 `2s

1
T
VS1 VT4 Λ (4.19)

without affecting the finite part.
The GHY term at the boundary χ = Λ in string frame is given by (B.10),

SGHY = 1
κ2

0
`4s VT4

∫
χ=Λ

d5x
√

det γ e−2ΦK . (4.20)

In (4.20) we used the induced metric (4.14) on the boundary χ = Λ. At the same time,
K = ∇µnµ is trace of the extrinsic curvature tensor, defined by the normalized outward-
pointing unit vector (B.7) normal to the surface χ = Λ. We then evaluate

√
det γ K = 2k2

(
χ− (χ− χ+)(χ− χ−)

`20

)
sin(2θ′) , (4.21)

that finally gives

SGHY = 4π2

κ2 k
3
2 `2s

1
T
VT4 VS1 (1 + a3b3) . (4.22)

The free energy
F = T (S0 + SGHY + Sc.t.) (4.23)

can be calculated by combing (4.18), (4.19), (4.22), giving

F = 0 , (4.24)

consistently with the Hagedorn growth of density of states, and in agreement with analogous
result for the two-dimensional charged black hole [48–50].

On the other hand, the free energy is given by

F = E − T S − Ω · J , (4.25)

where we introduced short-hand notation

Ω · J = Ωα̂′
L J Lα̂′ + Ωα̂′

R J Rα̂′ + Ωβ̂′

L J
L
β̂′

+ Ωβ̂′

R J
R
β̂′

+ Ωx̂′
L J Lx̂′ + Ωx̂′

R J Rx̂′ , (4.26)

where components of the angular velocity have been derived in (3.98), and angular mo-
menta are given by (3.109). Using these expressions and taking into account the anomaly-
cancellation constraints, we derive

Ω · J = 4π2

κ2 k
3
2 `2s VT4 VS1 (1− a1b1) . (4.27)
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Combining expressions for the entropy (4.10), angular velocities and momenta (4.27), and
mass (3.111) in the expression for the free energy (4.25) we can explicitly reproduce that
the free energy vanishes, in agreement with (4.24).

We can also verify that the first law of thermodynamics is satisfied,

dE − T dS − Ωα̂′
L dJ Lα̂′ − Ωβ̂′

R dJ
R
β̂′
− Ωx̂′

L dJ Lx̂′ − Ωx̂′
R dJ Rx̂′ = 0 . (4.28)

This identity can be demonstrated for arbitrary da1,2, db1,2 by substituting Ωα̂′
R = Ωβ̂′

L = 0,
using dE = 0, and taking into account that anomaly cancellation conditions imply

da3 = −a1da1 + a2da2
a3

, db3 = −b1db1 + b2db2
b3

. (4.29)

Lastly, we notice that the four independent parameters defining the gauging of the U(1)
sub-group that remain after the anomaly-cancellation conditions have been imposed on
a1,2,3, b1,2,3, can be expressed in terms of the temperature and angular momenta.

5 Two-charge background

In section 3.2, we derived the metric, dilaton, and B-field ten-dimensional background con-
figuration (3.100), (3.101), (3.103) for string theory on the coset space (3.1). This back-
ground possesses an event horizon, that rotates with the angular velocities given by (3.97)
in the directions of α̂′, β̂′, x̂′. It asymptotes to a static linear dilaton two-dimensional
space-time times S3 × S1 × T4.

In this section, we are going to construct the nine-dimensional background obtained
from (3.100), (3.101), (3.103) by compactifying the U(1)x coordinate x̂′. To be precise, due
to the non-vanishing angular velocity Ωx̂′ at the horizon, we first need to perform a change
of coordinates x̂′ → x̃′, defined by27

x̂′ = x̃′ + Ωx̂′ t/
√
k , (5.1)

such that the new coordinate x̃′ is not rotating at the horizon. By performing the KK
reduction of x̃′, from the ten-dimensional background GMN , BMN , Φ, we can derive the
nine-dimensional background

Gmn = Gmn −
Gx̃′m Gx̃′n
Gx̃′x̃′

, Bmn = Bmn , Φ9 = Φ− 1
4 log(Gx̃′x̃′) ,

Am = Gx̃
′m

Gx̃′x̃′
, Bm = 1

k
Bx̃′m ,

(5.2)

where we chose indices m, n to label coordinates of the nine-dimensional non-compact
background. This background features two U(1) gauge fields Am, Bm, that are sourced
by the corresponding charges QA, QB at the chemical potentials µA, µB that we will
calculate below.

27An extra factor of 1/
√
k is due to our conventions of separating an explicit common factor of k in

expression for the interval ds2.
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We can write the five-dimensional coset sub-space metric of the nine-dimensional back-
ground in the form analogous to (3.91),

1
k`2s

ds2
5 = −(χ− χ+)(χ− χ−)

`2
dt2 + dχ2

4(χ− χ+)(χ− χ−) + dθ′2

+ Grs

k
(dX̃r + R̃r dt) (dX̃s + R̃s dt) ,

(5.3)

where indices r, s take values α̂′, β̂′, the two-dimensional metric Grs is given by

Gα̂′α̂′ = `2 + b22(1− a2
1) sin(2θ′)2

`20(`20 − 2a3b3)
,

Gα̂′β̂′ = `2 cos(2θ′)− a2b2(χ+ 1) sin(2θ′)2

`20(`20 − 2a3b3)
,

Gβ̂′β̂′ = `2 + a2
2(1− b21) sin(2θ′)2

`20(`20 − 2a3b3)
,

(5.4)

and we have defined

R̃α̂′ = −a2(χ+ b21)
`2

, R̃β̂′ = b2(χ+ a2
1)

`2
. (5.5)

In the asymptotic region χ → ∞ we have a static background, R̃r = O(1/χ), while the
metric Grs approaches

Grs =
(

1 cos(2θ′)
cos(2θ′) 1

)
+O

( 1
χ

)
. (5.6)

The nine-dimensional background then asymptotes to a static linear dilaton two-
dimensional space-time times S3 × T4.

We can calculate angular velocities at the horizon according to Ωr = −
√
k R̃r|χ=χ+ ,

r = α̂′, β̂′, analogously to (3.96), yielding

Ωα̂′ =
√
k a2b1

a1 + b1
, Ωβ̂′ = −

√
k a1b2

a1 + b1
. (5.7)

in agreement with (3.97). We can determine the corresponding angular momenta J (G,B)
r ,

r = α̂′, β̂′ using (3.106) applied to the nine-dimensional background, rendering

J Gα̂′ = J Bα̂′ = 4π2

κ2 k `2s VT4 a2 ,

J G
β̂′

= −J B
β̂′

= −4π2

κ2 k `2s VT4 b2 ,

(5.8)

in agreement with (3.109).
One can see that at the horizon the time-like components of the gauge fields in co-

rotating reference frame vanish, Ãt|χ=χ+ = 0, B̃t|χ=χ+ = 0, up to a gauge transformation.
Recall that since the horizon is rotating in the directions of α̂′, β̂′, we actually need to
calculate gauge fields in the co-rotating coordinates

α̂′ = α̃′ + Ωα̂′ t/
√
k , β̂′ = β̃′ + Ωβ̂′ t/

√
k , (5.9)
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resulting in the transformation laws

Ãt = At + Ωα̂′ Aα̂′ + Ωβ̂′ Aβ̂′ , B̃t = Bt + Ωα̂′ Bα̂′ + Ωβ̂′ Bβ̂′ . (5.10)

This gives
Ãt = (a3b1 − a1b3)(χ− χ+)

(a1 + b1)(`20 − 2a3b3)
,

B̃t = (a3b1 + a1b3)(χ− χ+)
(a1 + b1)`20

,

(5.11)

where we have also performed a constant shift

B̃t → B̃t + a3b1 + a1b3
a1 + b1

. (5.12)

The remaining non-trivial components of the gauge fields are given by

Ãα̂′ = −a2b3 + a3b2 cos(2θ′)
`20 − 2a3b3

, Ãβ̂′ = −a3b2 + a2b3 cos(2θ′)
`20 − 2a3b3

,

B̃α̂′ = a2b3 − a3b2 cos(2θ′)
`20

, B̃β̂′ = −a3b2 + a2b3 cos(2θ′)
`20

.

(5.13)

From asymptotic behavior of the gauge potentials we can read off the chemical potential

µA =
√
k
a3b1 − a1b3
a1 + b1

, µB =
√
k
a3b1 + a1b3
a1 + b1

, (5.14)

that we can subsequently split into the left-moving and right-moving components as

µL = µA + µB
2 =

√
k

a3b1
a1 + b1

, µR = µA − µB
2 = −

√
k

a1b3
a1 + b1

. (5.15)

Expressions for the chemical potential (5.15) agree with their angular velocities counter-
parts Ωx̂′

L,R before compactification, given by (3.98),

µL,R = Ωx̂′
L,R . (5.16)

The corresponding charges QL,R can be found analogously to [51, 52]. We first calculate

QG,B = − 1
κ2

0

2π2`2s√
k

VT4 VS1 lim
χ→∞

√
− det G e−2Φ9 Gx̂′x̂′ FχtG,B , (5.17)

where the field strength tensors are defined as F rsG = ∂rAs − ∂sAr, F rsB = ∂rBs − ∂sBr,
obtaining

QG = 4π2

κ2 k `2s VT4 VS1 (a3 − b3) , QB = 4π2

κ2 k `2s VT4 VS1 (a3 + b3) . (5.18)

Notice that these expressions match the angular momenta J G,Bx̂′ of the ten-dimensional
background (3.109). The corresponding left- and right-moving charges can then be found
according to

QL = QG +QB
2 = 4π2

κ2 k `2s VT4 VS1 a3 ,

QR = QG −QB
2 = −4π2

κ2 k `2s VT4 VS1 b3 .

(5.19)
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The free energy of the nine-dimensional background is given by expression analogous
to its ten-dimensional counterpart (4.25), except that now we have rotations only in α̂′, β̂′

directions, as well as two U(1) charges,

F = E − T S − Ωα̂′
L J Lα̂′ − Ωβ̂′

R J
R
β̂′
− µLQL − µRQR . (5.20)

Here we can calculate

Ωα̂′
L J Lα̂′ + Ωβ̂′

R J
R
β̂′

+ µLQL + µRQR = 4π2

κ2 k
3
2 `2s VT4 VS1 (1− a1b1) , (5.21)

in agreement with (4.27). The values for temperature T , entropy S, energy E , and grand
potential F of the nine-dimensional background are the same as for the ten-dimensional
background, and are given by (4.4), (4.10), (4.24), (3.111). Finally, one can explicitly verify
that the first law of thermodynamics is satisfied,

dE − T dS − Ωα̂′
L dJ Lα̂′ − Ωβ̂′

R dJ
R
β̂′
− µL dQL − µR dQR = 0 . (5.22)

6 Spectrum

In this section, we will discuss construction of spectrum of type-II superstring theory on the
coset space (3.1). As we will review below, physical states of superstring theory satisfy the
super-Virasoro constraints, ensuring superconformal invariance of quantum theory on the
world-sheet. Additionally, physical states of the coset sigma-model satisfy gauge-invariant
conditions, that can be formulated via the BRST formalism [53].28 We will derive the
corresponding constraints in section 6.1.

It is important to emphasize that our conventions in this section are to use the coset
BRST formalism to impose the U(1)L × U(1)R gauge symmetry in the spectrum of quan-
tum theory. At the same time, we will use the covariant quantization approach (without
employing the superconformal BRST formalism) to ensure superconformal invariance of
the spectrum in terms of the (super-)Virasoro constraints.

We are mostly interested in the bosonic excitations of the NS-NS sector, in particular,
the lowest tachyon state, and the massless states composing the gravity multiplet of the
type-II supergravity. Therefore the distinction between type-IIA and type-IIB superstrings,
originating from the choice of space-time chirality of the fermionic states in the R-NS and
NS-R sectors, will not play a role in most of the subsequent discussion. We will also not con-
sider bosonic excitations coming from the R-R sector, leaving these topics for future work.

6.1 Coset BRST constraints

In this subsection, we are going to derive the coset BRST constraints, that have to be
satisfied by the physical states on the coset (3.1). These constraints impose the U(1)L ×
U(1)R symmetry on the states of the physical spectrum of the coset theory. (We stress
once again, that in this paper the superconformal BRST formalism is not used to impose
superconformal symmetry on the physical states.)

28See [31, 32] for a recent discussion.
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To lighten up the discussion, we will begin by performing derivation of the BRST
constraints for the six-dimensional coset subspace of the target space-time (3.1), working
in the purely bosonic sector. We will subsequently formulate the supersymmetric version of
the obtained constraints. Partition function of the gauged WZW model (3.29) is given by

Z =
∫

[dG][dA][dÃ] e−SgWZW[G,A,Ã] . (6.1)

Using (3.25), (3.27), we can re-write it as

Z =
∫

[dG][du][dv] det ∂ det ∂̄ e−S′WZW[UGV ]+SP[w] , (6.2)

where
SP[w] = 1

2π

∫
d2z ∂w∂̄w (6.3)

is the Polyakov action for the field w = u− v. Introducing anti-commuting ghost fields b,
c, b̃, c̃, one can express the functional determinants in (6.2) as

det ∂ det ∂̄ =
∫

[Db][Dc][Db̃][Dc̃] e−
1

2π

∫
d2z (b∂̄c+b̃∂c̃) . (6.4)

Ghost fields satisfy the following non-trivial OPEs

c(z)b(w) ' 1
z − w

, c̃(z̄)b̃(w̄) ' 1
z̄ − w̄

. (6.5)

The ghosts b and c are conformal primaries of dimensions 1 and 0 respectively [16, 54],29

with the following expansions in integer modes,

b(z) =
∑
n

bn
zn+1 , c(z) =

∑
n

cn
zn
, b̃(z̄) =

∑
n

b̃n
z̄n+1 , c̃(z̄) =

∑
n

c̃n
z̄n
. (6.6)

Due to the OPEs (6.5), these modes satisfy the anti-commutation relations

{cn, bm} = δmn , {c̃n, b̃m} = δmn . (6.7)

Conformal dimensions of the ghosts can also be reproduced from their the stress-energy
tensor,

Tbc(z) = b(z) ∂c(z) , (6.8)

where the product in the r.h.s. is normally-ordered.
Finally, let us change integration variables u→ u+w, G→ U−1GV −1 and divide the

partition function (6.2) by the constant factor of
∫

[Dv], rendering

Z =
∫

[dG][dw][Db][Dc][Db̃][Dc̃] e−Sq , (6.9)

29As a side note, in the BRST quantization approach to superstring theory one employs the superconfor-
mal ghosts comprised of the fermions b, c, and bosons β, γ. Dimensions of these pairs of ghosts are (2, 1)
and (3/2,−1/2), respectively. In particular, this is reflected in contributions of b, c to the stress-energy
tensor, Tbc = −2 b ∂ c+c ∂ b, which is manifestly different from its coset BRST ghosts counterpart (6.8). We
do not perform superconformal BRST quantization of superstring theory, and therefore the superconformal
ghosts b, c, β, γ do not appear in our derivation of the spectrum.
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where the full action of the model is given by

Sq = S′WZW[G]− SP[w] + 1
2π

∫
d2z (b∂̄c+ b̃∂c̃) . (6.10)

Notice that from the action (6.10) it follows that the two-point correlation function of the
field w has the ‘wrong’ sign

〈∂w(z1)∂w(z2)〉 = 1
2

1
(z1 − z2)2 . (6.11)

This does not pose a problem, since the physical state (coset BRST) conditions will elimi-
nate the corresponding negative norm states from the spectrum. These conditions are de-
rived as follows. Consider the holomorphic BRST transformation defined by the fermionic
parameter η, with the non-trivial variations given by [55]

δG = iη c TLG , δw = iη c , δb = iη (J + 2∂w) , (6.12)

where the gauge current J is given by (3.28). Using (A.12) we can derive the corresponding
variation of the action (6.10) as

δSq = − 1
2π

∫
d2z

(
kTr

(
P ∂GG−1∂̄(δGG−1)

)
+ 2∂w ∂̄δw − δb∂̄c

)
= − i

2π

∫
d2z ∂̄η c (J + 2∂w) .

(6.13)

Analogous calculation can be done for the anti-holomorphic BRST transformation,

δG = −iη c̃ GTR , δw = iη c̃ , δb = iη (−J̃ + 2∂̄w) , (6.14)

giving variation of the action

δSq = − i

2π

∫
d2z ∂η c̃

(
−J̃ + 2∂̄w

)
. (6.15)

For a global parameter η the transformations (6.12), (6.14) are therefore a symmetry of the
action (6.10). Choosing a local parameter η we obtain the coset BRST currents JBRST =
c J (0), J̃BRST = c̃ J̃ (0), where we denoted the corresponding null currents as30

J (0) = i J + 2jw , J̃ (0) = −i J̃ + 2j̃w . (6.16)

Let us now switch to discussion of the full supersymmetric model. To begin with,
recall that the U(1)L × U(1)R currents J , J̃ of the purely bosonic sector, given by (3.28),
are to be replaced with their supersymmetric theory counterparts J, J̃, given by (3.47).
These total bosonic gauge currents incorporate contributions from the fermions in adjoint
representation of the sl(2,R) and su(2) algebras. The corresponding null currents in the
supersymmetric coset theory are then given by

J(0) = i J + 2jw , J̃(0) = −i J̃ + 2j̃w . (6.17)
30Here we have taken the defiinitions (3.39) into account.
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Indeed, combining (3.48), (6.11) we recover the BRST null conditions

〈J(0)(z)J(0)(w)〉 = 0 , 〈J̃(0)(z̄)J̃(0)(w̄)〉 = 0 . (6.18)

The associated BRST charges

QBRST = 1
2πi

∮
dz JBRST , Q̃BRST = 1

2πi

∮
dz J̃BRST , (6.19)

of the currents JBRST = c J(0), J̃BRST = c̃ J̃(0) are therefore nilpotent, Q2
BRST = 0, Q̃2

BRST =
0. Physical states in the spectrum of the coset model (6.10) are to be closed w.r.t. these
charges,

QBRST|phys〉 = 0 , Q̃BRST|phys〉 = 0 , (6.20)

and are defined up to the BRST-exact states. Expanding the null currents (6.17),

J(0)(z) =
∑
n

J(0)
n

zn+1 , J̃(0)(z̄) =
∑
n

J̃(0)
n

z̄n+1 , (6.21)

the physical state conditions are expressed as

J(0)
n |phys〉 = 0 , J̃(0)

n |phys〉 = 0 , n ≥ 0 , (6.22)

while the BRST exact states are obtained as J(0)
−1|0〉, J̃(0)

−1|0〉, where |0〉 is the physical
vacuum. Using (6.18) we also obtain the commutation relations

[J(0)
m , J(0)

n ] = 0 , [J̃(0)
m , J̃(0)

n ] = 0 . (6.23)

The (anti-)holomorphic superpartners of the gauge currents J, J̃ are given by the
fermions (3.49). At the same time, the superpartners of the bosonic currents jw, j̃w are
given by the fermions ψw, ψ̃w, such that31

ψw(z)ψw(w) = −1
2

1
z − w

, ψ̃w(z)ψ̃w(w) = −1
2

1
z̄ − w̄

. (6.24)

We can use these to write down the fermionic null currents superpartners [56]32

ψ(0) = i ψ + 2ψw , ψ̃(0) = −i ψ̃ + 2 ψ̃w , (6.25)

that satisfy the null conditions

〈ψ(0)(z)ψ(0)(w)〉 = 0 , 〈ψ̃(0)(z̄)ψ̃(0)(w̄)〉 = 0 . (6.26)

Physical states in the spectrum of NS states of the supersymmetric coset theory should
satisfy the constraints

ψ(0)
r |phys〉 = 0 , ψ̃(0)

r |phys〉 = 0 , r = 1
2 ,

3
2 , . . . , (6.27)

31Notice that the sign of these correlation functions is opposite to the sign of the two-point functions
of physical fermions (3.50). This is analogous to having opposite signs of physical and auxiliary bosonic
currents (3.42). Unphysical w polarization is eliminated from the spectrum by the BRST constraints.

32The fermionic sector possesses its own ghosts, which are bosonic counterparts of b and c. We skip
detailed discussion of this formalism.
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where we defined the NS sector mode expansion amplitudes as

ψ(0) =
∑

r∈Z+ 1
2

ψ
(0)
r

zr+
1
2
, ψ̃(0) =

∑
r∈Z+ 1

2

ψ̃
(0)
r

z̄r+
1
2
, (6.28)

where r is half-integer in the NS sector. Using (6.26) we obtain

{ψ(0)
r , ψ(0)

s } = 0 , {ψ̃(0)
r , ψ̃(0)

s } = 0 . (6.29)

6.2 Virasoro constraints

In section 6.1, we used the coset BRST formalism to derive the U(1)L×U(1)R null physical
state constraints J(0)

n |phys〉 = 0, n ≥ 0, ψ(0)
r |phys〉 = 0, r = 1/2, 3/2, . . ., that are satisfied

by the states in the spectrum of the coset theory (3.1). At the same time, the physical states
are defined up to the exact states, J(0)

−n |0〉 and ψ
(0)
−r |0〉 where |0〉 is the physical vacuum.

Besides these constraints, the physical states of superstring theory have to satisfy
the (super-)Virasoro constraints. These constraints reflect superconformal invariance of
the quantum world-sheet theory. The superconformal transformations are generated by
the stress energy tensor T (z), and the super-current G(z), and their anti-holomorphic
counterparts T̃ (z̄), G̃(z̄). These currents form (anti-)holomorphic affine superconformal
algebra, that we briefly review in appendix A.3.

Components of the stress-energy tensor of the coset world-sheet theory (3.1) are given
by

T = 1
k
jaja + 1

k
j′aj′a + jxjx − jwjw + Tf + TT4 + Tghosts,

T̃ = 1
k
j̃aj̃a + 1

k
j̃′aj̃′a + j̃xj̃x − j̃w j̃w + T̃f + T̃T4 + T̃ghosts ,

(6.30)

where TT4 , T̃T4 are the components of the world-sheet stress-energy tensor with target
space T4 parametrized by coordinates zi, i = 1, 2, 3, 4,

TT4 =
4∑
i=1

ji ji , T̃T4 =
4∑
i=1

j̃i j̃i . (6.31)

We have also denoted contributions from the fermionic sector as

Tf = −1
k
ψa∂ψa − 1

k
ψ′a∂ψ′a − ψi∂ψi + ψw∂ψw , (6.32)

and similarly for the anti-holomorphic sector, while contributions from coset BRST ghosts,
Tghosts comes from the ghosts sector, that includes Tbc given by (6.8), and its supersym-
metric counterpart.

The (anti-)holomorphic supercurrents G(z), G̃(z̄) are fermionic operators. We are
mostly interested in the NS sector, and therefore the fermions are expanded in half-integer
modes. Specifically, expanding the stress-energy tensor and the supercurrent, we obtain

T (z) =
∑
n∈Z

Ln
zn+2 , T̃ (z̄) =

∑
n∈Z

L̃n
z̄n+2 ,

G(z) =
∑

r∈Z+1/2

Gr

zr+
3
2
, G̃(z̄) =

∑
r∈Z+1/2

G̃r

z̄r+
3
2
.

(6.33)
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The physical state conditions in terms of the corresponding mode expansion amplitudes
are given by33(

Ln −
1
2 δn,0

)
|phys〉 = 0 ,

(
L̃n −

1
2 δn,0

)
|phys〉 = 0 , n = 0, 1, 2, . . .

Gr|phys〉 = 0 , G̃r|phys〉 = 0 , r = 1
2 ,

3
2 ,

5
2 , . . . .

(6.34)

Additionally, the physical states are defined up to exact states L−n |0〉 = 0, G−r |0〉 = 0,
and similarly for the anti-holomorphic sector.

6.3 Ground state vertex operator

We now proceed to construction of the primary vertex operator of the (3.1) coset model.
This operator describes the ground state of the model, that we write as

V (0)Ṽ (0) = W (0)(z, z̄)V (0)
T4 (z, z̄) , (6.35)

where W (0)(z, z̄) is the ground-state vertex operator of the six-dimensional coset sub-space
of (3.1), while34

V
(0)
T4 = ei`s

∑4
i=1(piLz

i
L+piRz

i
R) . (6.36)

is due to the four-dimensional flat sub-space T4 = U(1)4.
The corresponding ground state V (0)Ṽ (0)|0〉 should satisfy physical conditions, that

include the coset BRST constraints and the superconformal super-Virasoro constraints. In
this subsection we will focus on the former.

We start by expressing the coset ground state vertex operator W (0)(z, z̄) as a product
of the SL(2,R), SU(2), U(1)x, and U(1)w35 primary operators,

W (0)(z, z̄) = V ω̂
j;m,m̄(z, z̄)V ′ ω̂

′, ˆ̄ω′
j;m′,m̄′(z, z̄) ei`s(pLxL(z,z̄)+pRxR(z,z̄)) ei`sκw , (6.37)

where ω̂ ∈ Z is the SL(2,R) spectral flow parameter and ω̂′, ˆ̄ω′ ∈ Z are the SU(2) left-
and right-moving spectral flow parameters. The left- and right-moving momenta on the
compact U(1)x circle with radius Rx are given by

pL,R = n

Rx
± wRx

`2s
, (6.38)

where n and w are the momentum and winding numbers respectively.
Recall that the SL(2,R) and SU(2) primary operators satisfy (2.37), (2.63)

j3(z)V ω̂
j;m,m̄(0) =

m+ k
2 ω̂

z
V ω̂
j;m,m̄ , j̃3(z̄)V ω̂

j;m,m̄(0) =
m̄+ k

2 ω̂

z̄
V ω̂
j;m,m̄ ,

j′3(z)V ′ ω̂
′, ˆ̄ω′

j′;m′,m̄′(0) =
m′ + k

2 ω̂
′

z
V ′ ω̂

′, ˆ̄ω′
j′;m′,m̄′ , j̃′3(z̄)V ′ ω̂

′, ˆ̄ω′
j′;m′,m̄′(0) =

m̄′ + k
2

ˆ̄ω′

z̄
V ′ ω̂

′, ˆ̄ω′
j′;m′,m̄′ ,

(6.39)

33In terms of the vertex operator V corresponding to the state |phys〉, one calculates, e.g., Ln · V(0) '
1

2πi

∮
zn T (z)V(0) and sets it to zero.

34Recall that in our conventions all the coordinates are dimensionless. At the same time, we will define
all the momenta to be dimensionful.

35The U(1)w is non-compact, and therefore κL = κR = κ.
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while for the U(1)x, U(1)w primary operators one finds

jx(z) ei`s(pLxL(0)+pRxR(0)) = `spL
2z ei`s(pLxL+pRxR) , jw(z) ei`sκw(0) = −`sκ2z ei`sκw

j̃x(z̄) ei`s(pRxL(0)+pRxR(0)) = `spR
2z̄ ei`s(pLxL+pRxR) , j̃w(z̄) ei`sκw(0) = −`sκ2z̄ ei`sκw .

(6.40)

Using (3.47), (6.17) we then obtain

J(0)(z)W (0)(0) = 2
( 1√

k

[
a1

(
m+ k

2 ω̂
)

+a2

(
m′+ k

2 ω̂
′
)]

+ `spLa3
2 − `sκ2

)
W (0)

z
, (6.41)

J̃(0)(z̄)W (0)(0) = 2
(
− 1√

k

[
b1

(
m̄+ k

2 ω̂
)

+b2

(
m̄′+ k

2
ˆ̄ω′
)]
− `spRb32 − `sκ2

)
W (0)

z̄
,

which is consistent with m, m̄ ∈ R, m′, m̄′ ∈ R. The BRST constraints (6.22) therefore
take the form

1√
k

[
a1

(
m+ k

2 ω̂
)

+ a2

(
m′ + k

2 ω̂
′
)]

+ `spLa3
2 − `sκ

2 = 0 ,

1√
k

[
b1

(
m̄+ k

2 ω̂
)

+ b2

(
m̄′ + k

2
ˆ̄ω′
)]

+ `spRb3
2 + `sκ

2 = 0 .
(6.42)

Combining the constraints (6.42) we obtain
1√
k

[
a1

(
m+ k

2 ω̂
)

+ a2

(
m′ + k

2 ω̂
′
)

+ b1

(
m̄+ k

2 ω̂
)

+ b2

(
m̄′ + k

2
ˆ̄ω′
)]

+`spLa3
2 + `spRb3

2 = 0 .
(6.43)

6.4 Asymptotic behavior of vertex operators

In this subsection, we are going to explore asymptotic behavior of vertex operators de-
scribing string excitation modes. We begin with the ground state vertex operator (6.37).
Specifically, we are interested in the plane-wave behavior in the asymptotic region, that
allows one to read off energy of the string excitation mode. In fact, the same energy char-
acterizes any string excitation obtained by acting with the creation operators on the given
ground state vertex operator.

In the SL(2,R) parametrization given by (3.13), the asymptotic region is found by tak-
ing the limit θ →∞. The SL(2,R) ground state vertex operator in this limit behaves as [28]

V ω̂
j;m,m̄(θ →∞) ' eiy[(m+ kω̂

2 )ν+(m̄+ kω̂
2 )] [e2θj + (−1)−(2j+1)R(j;m, m̄)e−2θ(j+1)

]
, (6.44)

where (this coincides with the coefficient in (2.24))

R(j;m, m̄) =
Γ
(
1− 2j+1

k

)
Γ(j + 1−m)Γ(j + 1 + m̄)Γ(−2j − 1)

Γ
(
1 + 2j+1

k

)
Γ(−j −m)Γ(−j + m̄)Γ(2j + 1)

. (6.45)

In the parafermionic decomposition one represents locally SU(2) ∼ SU(2)
U(1) × U(1)y, that

allows one to re-write the SU(2) ground state vertex operator as

V ′
ω̂′, ˆ̄ω′
j′;m′,m̄′ = e

i

[(
m′+ kω̂′

2

)
ysu+

(
m̄+ k ˆ̄ω′

2

)
ȳsu

]
Ψj′;m,m̄′ , (6.46)

where Ψj′;m,m̄′ is the SU(2)/U(1) vertex operator.
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Combining expressions (6.44), (6.46) for the SL(2,R) and SU(2) ground state vertex
operators in the expression (6.37) for the ground vertex operator of the coset sub-space
of (3.1) and focusing on the plane-wave phase in the asymptotic region, we obtain

W (0) ' e
i

[
((m+ kω̂

2 )ν+(m̄+ kω̂
2 ))y+

(
m′+ kω̂′

2

)
ysu+

(
m̄+ k ˆ̄ω′

2

)
ȳsu+`s(pLxL+pRxR+κw)

]
. (6.47)

Here we can substitute expressions for m, m̄, obtained by solving the BRST con-
straints (6.42), which after some re-arrangement gives

W (0) ' e
i

[√
k κt+

(
m′+ kω̂′

2

)
ŷsu+

(
m̄′+ k ˆ̄ω′

2

)
ˆ̄ysu+`s(pLx̂L+pRx̂R+κw)

]
, (6.48)

where we defined the time coordinate t

y = 2a1b1t

a1 − b1ν
, (6.49)

as well as the moving frame coordinates

x̂L = xL −
a3b1ν

√
k t

a1 − b1ν
, x̂R = xR −

a1b3
√
k t

a1 − b1ν
,

ŷsu = ysu −
2a2b1ν t

a1 − b1ν
, ˆ̄ysu = ȳsu −

2a1b2 t

a1 − b1ν
.

(6.50)

Notice that the time coordinate change (6.49) and the moving frame coordinates
change (6.50) agree with the corresponding expressions (3.68), (3.82) obtained by ana-
lyzing the asymptotic region in derivation of the coset background geometry.36

Defining time as t → t√
k
− `sw, we conclude from the asymptotic plane-wave expres-

sion (6.48) for the vertex operator W (0) that the frequency of the excited string state
defined by this vertex operator is given by κ. Notice that this is true regardless of whether
we consider a spectrally flowed sector.

6.5 Mass-shell condition and spectrum

In subsection 6.3, we constructed ground state vertex operator (6.35) of the coset
model (3.1), and derived coset BRST physical state constraints (6.42) that such an op-
erator needs to satisfy. In subsection 6.2 we wrote down the (super-) Virasoro constraints
that need to be satisfied by the (NS sector) states of superstring theory on the coset (3.1).
Only a finite number of non-trivial constraints, depending on the string excitation number,
need to be imposed for each state, with the rest of infinitely many constraints satisfied au-
tomatically. However, every state needs to satisfy the lowest Virasoro L0, L̃0 constraints,
known as the mass-shell condition. In this subsection we will derive the mass-shell condition
for string states on the coset (3.1).

Let us denote the (anti-)holomorphic superstring vertex operator at the level (N̄) N as
(Ṽ (N̄)) V (N). It is obtained by acting on the ground state vertex operator V (0)Ṽ (0) (that

36The relative factor of
√
k in the transformation laws for x = xL + xR is due to the relation between x

and x′ given by (3.67).
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corresponds to N = N̄ = 0) with the product (α̃N̄ ) αN of creation operators such as (ψ̃M−r,
j̃L−n) ψM−r, jL−n, r > 0, n > 0,

V (N) = αN V
(0) , Ṽ (N) = α̃N̄ Ṽ

(0) , (6.51)

such that37

[L0, αN ] = N αN , [L̃0, α̃N̄ ] = N̄ α̃N̄ . (6.52)

Using (6.52) together with the OPE of the ground state vertex operator (6.35) with
the stress-energy tensor, we derive

L0 · V (N) =
(

∆sl + ∆su + `2sp
2
L

4 − `2sκ
2

4 +N + ∆T4

)
V (N),

L̃0 · Ṽ (N̄) =
(

∆̄sl + ∆̄su + `2sp
2
R

4 − `2sκ
2

4 + N̄ + ∆̄T4

)
Ṽ (N̄) ,

(6.53)

where N, N̄ = 1, 2, . . . are the string excitation numbers,

∆sl = −j(j + 1)
k

−mω̂ − kω̂2

4 , ∆̄sl = −j(j + 1)
k

− m̄ω̂ − kω̂2

4 ,

∆su = j′(j′ + 1)
k

+m′ω̂′ + kω̂′2

4 , ∆̄su = j′(j′ + 1)
k

+ m̄′ ˆ̄ω′ + k ˆ̄ω′2

4

(6.54)

are scaling dimensions of spectrally-flowed ground state vertex operators of the SL(2,R)
and SU(2) WZW models (see (2.35), (2.36), (2.62)), and

∆T4 = `2s
2

4∑
i=1

(piL)2 , ∆̄T4 = `2s
2

4∑
i=1

(piR)2 (6.55)

are scaling dimensions of the ground state vertex operator (6.36) on T4. The mass-shell
condition, given by the L0, L̃0 Virasoro constraints of (6.34), then reads

`2sκ
2

4 = ∆sl + ∆su + `2sp
2
L

4 + ∆T4 +N − 1
2 ,

`2sκ
2

4 = ∆̄sl + ∆̄su + `2sp
2
R

4 + ∆̄T4 + N̄ − 1
2 .

(6.56)

In section 6.4 we established that the energy of string state, defined by the plane-
wave behavior of the vertex operator in the asymptotic region,38 is given by κ. The
L0, L̃0 Virasoro constraints (6.56) then have the physical interpretation of the mass-shell
conditions, with the terms in the r.h.s. of these expressions given by the sum of the momenta
(on SL(2,R) and SU(2) the role of momenta are played by the representation numbers j,

37See (A.65) for commutation relations of the Virasoro amplitudes with the super-Kac-Moody currents.
38The plane-wave calculation is true for any excitation numbers N = N̄ , and is determined only by

asymptotic behavior of the ground state vertex operator W (0).
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m, j′, m′) and oscillator numbers N − 1/2, N̄ − 1/2. Substituting (6.54) in (6.56) and
imposing the BRST constraints (6.42) to eliminate m, m̄, one obtains39

(
κ− (a1−b1)

√
k

2a1b1`s
ω̂

)2

=
(
n

Rx

)2
+
(wRx

`2s

)2
+ 2
`2s

(
−2j(j+1)−j′(j′+1)

k

+ kω̂2

8

[( 1
a1
− 1
b1

)2
+4
]

+(m′ω̂′+m̄′ ˆ̄ω′)+ k

4 (ω̂′2 + ˆ̄ω′2)

+ a2ω̂

a1

(
m′+ kω̂′

2

)
+ b2ω̂

b1

(
m̄′+ k ˆ̄ω′

2

)

+
√
k`sω̂

2a1b1

(
(a3b1 +a1b3) n

Rx
+(a3b1−a1b3)wRx

`2s

)
+

+∆T4 +∆̄T4 +
(
N− 1

2

)
+
(
N̄− 1

2

))
.

(6.57)

For the ground state vertex operator (6.35) in the NS-NS sector we have N = N̄ = 0.40

The state is then tachyonic, κ2 < 0, at zero momenta. Such a state is removed from
the physical spectrum by the GSO projection. The first excited states of the NS sector,
with (N̄ = 1

2) N = 1
2 defined by the (anti-)holomorphic vertex operators (Ṽ ( 1

2 )) V ( 1
2 ) are

massless, and represent the lowest-lying state in the physical spectrum of string excitation.
Irreducible representations of tensor product of these states form the NS-NS sector of the
supergravity multiplet, and will be studied below in section 6.6.

6.6 Massless states

Massless states of the type-II superstring theory form the type-II supergravity multiplet.
Half of its bosonic degrees of freedom are contained in the NS-NS sector, and form a gravity
multiplet, consisting of the graviton, dilaton, and B-field. In section 3, we have derived
background values of these fields, (3.100), (3.101), (3.103), for superstring theory on the
coset (3.1), exactly in k.

In this subsection, we are interested in excitations of the massless NS-NS fields on top of
the background (3.100), (3.101), (3.103). Performing the KK reduction on the U(1)x circle,
one can also describe excitations on top of the nine-dimensional background (5.2). These
excitations can be obtained by first separately constructing (anti-)holomorphic massless
vertex operators in the NS sectors of the (right-) left-moving string states, and then taking
the direct product of these vertex operarors. Finally, the resulting closed string states
can be grouped into irreducible representations of the target space-time symmetry group,
rendering the graviton, dilaton, and B-field excitations.

The massless holomorphic vertex operator V ( 1
2 ) in the NS sector on the coset (3.1) is

obtained by acting with the creation operators ψM−1/2 on the tachyon ground state vertex
operator (6.35). For the most general polarizations ξM in the target space-time we obtain

39Recall that the parameters a1,2,3, b1,2,3 need to satisfy the anomaly-free conditions (3.24).
40Also setting spectral flow parameters and the U(1)x winding number to zero, ω̂ = ω̂′ = ˆ̄ω′ = w = 0.
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the state

V ( 1
2 ) =

[
ξ+ ψ

+
− 1

2
j−0 + ξ− ψ

−
− 1

2
j+

0 + ξ ψ
(0)
− 1

2
(6.58)

+ ξ′+ ψ
′+
− 1

2
j′−0 + ξ′− ψ

′−
− 1

2
j′+0 + ξ′3 ψ

′3
− 1

2
+ ξw ψ

w
− 1

2
+ ξx ψ

x
− 1

2
+

4∑
i=1

ξi ψ
i
− 1

2

]
V (0) ,

where we introduced linear combinations of the sl(2,R) and su(2) fermions

ψ± = ψ1 ± iψ2 , ψ′± = ψ′1 ± iψ′2 . (6.59)

In (6.58) we have chosen to replace the basis target space direction ψ3 with the null spinor
ψ(0) given by (6.25). Physical state conditions, that include the coset BRST constraints and
super-Virasoro constraints, and remove the pure-gauge exact states, restrict the allowed
polarizations ξM , rendering eight independent polarizations.

Due the coset BRST constraints, the state (6.58) needs to be closed w.r.t. the null
spinor ψ(0), given by (6.25). In terms of the amplitudes (6.28) this condition imposes

ψ
(0)
1
2
V (0) = 0 . (6.60)

In terms of the basis fermionic operators, this can be written explicitly as(
a1√
k
ψ3

1
2

+ a2√
k
ψ′31

2
+ a3 ψ

x
1
2

+ ψw1
2

)
V (0) = 0 . (6.61)

The BRST constraint (6.61) can be solved as

ξw = a3 ξx + a2
√
k ξ′3 . (6.62)

The most general massless holomorphic BRST closed state is then given by

V ( 1
2 ) =

[
ξ+ ψ

+
− 1

2
j−0 + ξ− ψ

−
− 1

2
j+

0 + ξ ψ
(0)
− 1

2
+

4∑
i=1

ξi ψ
i
− 1

2
(6.63)

+ ξ′+ ψ
′+
− 1

2
j′−0 + ξ′− ψ

′−
− 1

2
j′+0 + ξ′3 (ψ′3− 1

2
+ a2
√
k ψw− 1

2
) + ξx (ψx− 1

2
+ a3 ψ

w
− 1

2
)
]
V (0) .

Here the polarization ξ is un-physical, and represents a pure-gauge exact state on the coset.
After imposing the coset BRST physical state conditions, the vertex operator (6.63) then
possesses ten independent polarizations.

Next, let us discuss the super-Virasoro constraints (6.34). For the massless state, V ( 1
2 ),

the only non-trivial constraints are given by(
L0 −

1
2

)
V ( 1

2 ) = 0 , G 1
2
V ( 1

2 ) = 0 , (6.64)

and its counterparts in the anti-holomorphic sector. The L0 constraint is simply (6.56)
with N = N̄ = 1/2, giving the mass-shell condition for the massless state. The
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super-Virasoro G1/2 constraint restricts allowed physical polarizations. First, us-
ing (6.39), (6.40), (A.66), (6.42) we obtain

{G 1
2
, ψ

(0)
− 1

2
}V (0) = 0 , (6.65)

and therefore the BRST-exact state ψ(0)
− 1

2
V (0) in (6.63) automatically satisfies the super-

Virasoro G1/2 constraint. Using (2.37), (2.50) we obtain

j∓0 j±0 Vj;m,m̄ = (m∓ j)(m± 1± j)Vj;m,m̄ ,
j′∓0 j′±0 V ′j′;m′,m̄′ = (j′(j′ + 1)−m′(m′ ± 1))V ′j′;m′,m̄′ .

(6.66)

Then using (A.66) we arrive at

G 1
2
V ( 1

2 )=
[
ξ̂++ξ̂−+ξ̂′++ξ̂′−+ξ′3

(
m′−a2`s

√
k κ

2

)
+`s

2

(
ξx (pL−a3κ)+

4∑
i=1

ξi p
i
L

)]
V ( 1

2 )

(6.67)
where we denoted

ξ̂+ = (m+ j)(m− 1− j) ξ+ , ξ̂− = (m− j)(m+ 1 + j) ξ− ,
ξ̂′+ = (j′(j′ + 1)−m′(m′ − 1)) ξ′+ , ξ̂′− = (j′(j′ + 1)−m′(m′ + 1)) ξ′− .

(6.68)

Taking into account the BRST constraints (6.42), that we solve for κ, the Virasoro con-
straint following from (6.67) then reads

ξ̂+ + ξ̂− + ξ̂′+ + ξ̂′− +m′ ξ′3 + `s
2

(
ξx pL +

4∑
i=1

ξi p
i
L

)

=
(
ξ′3 a2

√
k + ξx a3

) (`s pL a3
2 + ma1 +m′ a2√

k

)
.

(6.69)

We can solve this for ξ̂± simply as

ξ̂± = ± ξ̂ − 1
2

(
ξ̂′+ + ξ̂′− +m′ ξ′3 + `s

2

(
ξx pL +

4∑
i=1

ξi p
i
L

)

+
(
ξ′3 a2

√
k + ξx a3

) (`s pL a3
2 + ma1 +m′ a2√

k

))
.

(6.70)

The most general massless holomorphic physical vertex operator is then given by (6.63)
with polarizations satisfying (6.70). It is also defined up to the Virasoro exact massless
null state, given by

G− 1
2
V (0) =

[
2
k

(
ψa− 1

2
ja0 + ψ′a− 1

2
j′a0

)
+ ψx− 1

2
jx0 − ψw− 1

2
jw0 +

4∑
i=1

ψi− 1
2
ji0

]
V (0) , (6.71)

therefore rendering a massless string state with eight independent physical polarizations.
In preparation for discussion of holography in section 7, we are now going to consider

(anti-)holomorphic massless vertex operators polarized along the direction of propagation
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of excitations, as well as along the U(1)x circle. Without loss of generality, we can define
the former to be the coordinate z1 on the torus T4, p1

L = p1
R = p, setting the rest of the

momenta on the torus to zero, piL,R = 0, i = 2, 3, 4. We are also going to perform the KK
reduction on the U(1)x circle, setting the corresponding momenta to zero, pL = pR = 0.
(Anti-)holomorphic vertex operators polarized along the U(1)x circle will then be found
as constituents of the gauge field vertex operators of type-II superstring theory in the
nine-dimensional space-time.

In other words, we will be looking for the physical massless vertex operators of the
form Ψ1

− 1
2
V (0) and Ψx

− 1
2
V (0), with Ψ1

− 1
2

= ψ1
− 1

2
+ . . . and Ψx

− 1
2

= ψx− 1
2

+ . . . , where
we will fill in the missing terms accordingly with the expression for the physical vertex
operator (6.63), (6.70). Specifically, in the former case we set ξ1 = 1, ξx = 0, while in the
latter case we set ξx = 1, ξ1 = 0. We also set ξ2,3,4 = 0, ξ′± = 0, ξ′3 = 0, ξ̂ = 0 everywhere.
For convenience, we will denote

Ψi = ψi , Ψ̃i = ψ̃i , i = 2, 3, 4 . (6.72)

In general, physical massless states can then be defined as

V ( 1
2 ) = ξm Ψm

− 1
2
· V (0) , Ṽ ( 1

2 ) = ξ̃m Ψ̃n
− 1

2
· V (0) . (6.73)

With such a convention, physical massless states are constructed using creation opera-
tors Ψm

− 1
2
, Ψ̃m
− 1

2
, that automatically take into account the coset BRST and super-Virasoro

constraints. Using (6.63), (6.70), we then obtain

Ψ1
− 1

2
= ψ1

− 1
2
− `s p

4(m+ j)(m− 1− j) j−0 ψ
+
− 1

2
− `s p

4(m− j)(m+ 1 + j) j+
0 ψ
−
− 1

2
, (6.74)

Ψx
− 1

2
= ψx− 1

2
− (ma1 +m′ a2) a3

2
√
k (m+j)(m−1−j)

j−0 ψ
+
− 1

2
− (ma1 +m′ a2) a3

2
√
k (m−j)(m+1+j)

j+
0 ψ
−
− 1

2
, (6.75)

and similarly for the anti-holomorphic components.
Using (6.66), (A.67), we obtain the two-point correlation functions

〈Ψ1
1
2
Ψ1
− 1

2
〉0 =

(
1
2 + k `2s p

2

16 Fj;m

)
〈V (0)V (0)〉 ,

〈Ψx
1
2
Ψx
− 1

2
〉0 =

(
1
2 + (ma1 +m′ a2)2 a2

3
4 Fj;m

)
〈V (0)V (0)〉 , (6.76)

〈Ψx
1
2
Ψ1
− 1

2
〉0 = 〈Ψ1

1
2
Ψx
− 1

2
〉0 = (ma1 +m′a2)a3`sp

√
k

8 Fj;m 〈V (0)V (0)〉 ,

where we have denoted

Fj;m = 1
(m− j)(m+ 1 + j) + 1

(m+ j)(m− 1− j) , (6.77)

and used a short-hand notation 〈· · · 〉0 for averages in the state V (0)Ṽ (0)|0〉. Analogous
correlation functions can be written down in the anti-holomorphic sector. The tachyon two-
point function 〈V (0)V (0)〉 is given by a product of the two-point functions of its constituent
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vertex operators (6.35), (6.37). For the full state, including both the anti-holomorphic and
the holomorphic sectors, we obtain

〈V (0)V (0)〉〈Ṽ (0)Ṽ (0)〉 = 〈Vj;m,m̄Vj;m,m̄〉〈V ′j′;m′,m̄′V ′j′;m′,m̄′〉 × flat space correlators , (6.78)

where one should substitute (2.24), (2.53) for the two-point functions of the SL(2,R) and
SU(2) ground state vertex operators. Notice that zero of (2.24) at m = −j cancels out
the simple pole of (6.77) at m = −j. At the same time, Fj;m has a simple pole at m = j,
which is inherited by all the correlation functions (6.76). Similarly, the anti-holomorphic
sector has a simple pole at m̄ = −j, while exhibiting regular behavior at m̄ = j.

6.7 Spectrum of single-trace T T̄ -deformed symmetric product CFT

We will end this section with a discussion of the spectrum of the long strings in the coset
model (3.1), and its relation to the spectrum obtained by a deformation of CFT2 by the T T̄
operator. As it turns out, the spectrum of a single long string in the sector with the unit
winding number, w = 1, corresponds to the spectrum of the double-trace T T̄ deformed
CFT [32]. For a detailed review of the single-trace T T̄ deformation of string theory in
AdS3, and its relation to the long strings, we refer the reader to [37].

Let us begin by reviewing certain aspects of the theory on a single long string in AdS3.
Via the AdS/CFT correspondence, string theory in AdS3 × N7 is dual to a CFT2 living
on the boundary of AdS3.41 Here N7 stands for a seven-dimensional compact space, e.g.,
N7 = S3×T4. In the presence of pure NS-NS flux in the bulk, the space-time theory has an
SL(2,C)-invariant vacuum. This is either an NS vacuum, that corresponds to global AdS3
in the bulk, or an R vacuum, that corresponds to a massless BTZ (denoted by BTZM=J=0).
The NS sector contains states that belong to the discrete as well as the continuous series
representation of SL(2,R). The continuous series representation starts above a gap of order
k/2. The R sector, on the other hand, contains a continuum of long strings above a gap of
order 1/k. In the rest of the discussion of the spectrum of long strings in this section, we
will consider only the long string states in the R sector.

On the AdS3 × N7 with pure NS-NS flux, the theory on a single long string is given
by the product of the N = 2 Liouville theory Rφ and the compact SCFT on N7 [57]

M(L)
6k = Rφ ×N7 , (6.79)

where cM = 6k is the central charge ofM(L)
6k and the theory on Rφ has a dilaton linear in

the radial direction of AdS3 denoted by φ with the slope

Q(L) = (k − 1)
√

2
k
. (6.80)

The effective coupling on the long strings is given by

g(L) ' eQ(L)φ (6.81)
41In section 7 we will discuss holographic description of a 4 + 1 dimensional boundary field theory, with

the spatial coordinates spanned by the T4.
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implying that for k > 1, the long strings become strongly coupled as they move towards the
boundary. But there is a wide range of positions along the radial direction where they are
weakly coupled. The effective theory of N such long strings is described by the symmetric
product [37, 58]

(M(L)
6k )N

SN
. (6.82)

Let us now proceed to discussion of long strings on the coset (3.1). Recall that the
value of κ is equal to the energy of a string excitation mode propagating in the coset
background. The long strings in that background belong to the continuous representation
of SL(2,R), for which we define, due to (2.12),

j = −1
2 + is , s ∈ R . (6.83)

For a non-vanishing winding w around the U(1)x-circle, the energy E of such a long string
in the spectrally un-flowed sector (i.e., ω̂ = ω̂′ = ˆ̄ω′ = 0), above the BPS configuration is
given by

E = κ− wRx
`2s

, (6.84)

where due to (6.57) we have

κ2 =
(
n

Rx

)2
+
(wRx

`2s

)2
+ 2
`2s

(
−2 j(j + 1)− j′(j′ + 1)

k
+ ∆T4 + ∆̄T4 +N + N̄ − 1

)
.

(6.85)
Due to the dispersion relation of the long strings in the winding w sector in

BTZM=J=0 × S3 × T4 that is given by [59]

EL = 1
w

[
−j(j + 1)

k
+ j′(j′ + 1)

k
+ ∆T4 +N − 1

2

]
,

ER = 1
w

[
−j(j + 1)

k
+ j′(j′ + 1)

k
+ ∆̄T4 + N̄ − 1

2

]
,

(6.86)

expression (6.85) can be written as

κ2 =
(
n

Rx

)2
+
(wRx

`2s

)2
+ 2 w

`2s
(EL + ER) . (6.87)

Expression (6.86) also gives the spectrum of the Zw twisted sector of the symmetric
product CFTMN/SN where the block CFTM is the CFT with central charge [58]

cM = 6k (6.88)

living on a single long string with winding one. This is not surprising because the effective
theory on the long strings are well described by a symmetric product (6.82) at weak cou-
pling [58]. Spectrum of operators of dimension hw in the Zw twisted sector of the symmetric
product CFT in the Ramond sector above the Ramond vacuum is given by [58, 60]

EL = hw −
kw
4 , ER = h̄w −

kw
4 . (6.89)
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For every operator of dimension h1 in the untwisted sector there exists an operator in the
Zw twisted sector whose dimension is related to h1 as [60]

hw = h1
w + k

4

(
w− 1

w

)
, h̄w = h̄1

w + k

4

(
w− 1

w

)
. (6.90)

Next we solve (6.84) for κ in terms of E, and we also substitute (6.90) into (6.89). Plugging
the result into (6.87) one obtains [32, 35–37](

E + wRx
`2s

)2
−
(wRx

`2s

)2
= 2
`2s

(
h1 + h̄1 −

k

2

)
+
(
n

Rx

)2
, (6.91)

and
h̄1 − h1 = n. (6.92)

In the untwisted sector corresponding to w = 1, (6.91) takes the form [40, 41]

E = −Rx
`2s

+

√√√√(Rx
`2s

)2
+ 2
`2s

(
h1 + h̄1 −

cM
2

)
+
(
h1 − h̄1
Rx

)2

, (6.93)

which is the spectrum of a CFT2 on a cylinder of radius Rx deformed by an irrelevant
operator δL = −t T T̄ with t = `2s > 0. For w > 1, (6.91) is the spectrum of the Zw twisted
sector of single trace T T̄ deformation of a symmetric product CFT [61].

7 Holography

In this section, we are going to derive various two-point correlation functions of the field
theory holographically dual to the bulk string theory on the coset (3.1). We are going to ex-
plore different regimes of the holographic correspondence, and calculate various correlation
functions in the NS-NS sector of string theory in the bulk.

In subsection 7.1, we will consider the bulk configuration, derived in section 5, obtained
by compactification of the U(1)x circle of the coset (3.1). This background is characterized
by a rotating black brane geometry with an event horizon, finite temperature, and two in-
dependent non-trivial U(1) gauge field profiles. We will study massless excitations modes
described by the metric, B-field, dilaton, and gauge field, on top of this bulk configuration.
The corresponding holographic dual 4 + 1 dimensional field theory in the asymptotic re-
gion is a finite-temperature system, with two conserved U(1) charges having non-vanishing
vacuum expectations. We are interested in gapless collective excitations in this system,
that we determine via holographic world-sheet calculation of two-point functions of the
stress-energy tensor and charge currents.

In subsection 7.2, we compactify the T4 sub-space of the coset (3.1), which allows us
to study the 1 + 1 dimensional boundary field theory. The resulting expressions that we
obtain for the two-point correlation functions in momentum space interpolate between the
well-known CFT2 expressions in the IR, calculated within the AdS3/CFT2 correspondence,
and non-local expressions for LST in the UV.
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7.1 Collective excitation modes

In section 6.6, we constructed the (anti-)holomorphic vertex operators (Ṽ ( 1
2 )) V ( 1

2 ) describ-
ing massless NS (right-) left-moving string states. The NS-NS states of closed type-II super-
string are obtained by taking a direct product of the (anti-)holomorphic states. The corre-
sponding vertex operator V ( 1

2 )⊗Ṽ ( 1
2 ) can then be split into irreducible representations of the

target space symmetry group, rendering the graviton, B-field, and dilaton vertex operators,
and forming the NS-NS bosonic degrees of freedom of the type-II supergravity multiplet.

These operators describe excitation on top of the metric, B-field, and dilaton ten-
dimensional background configuration (3.100), (3.103), (3.101) that we derived in sec-
tion 3.2, as well as the nine-dimensional two-charge background (5.2) derived in section 5.
An excitation mode is characterized by the energy κ, and momentum p. Without loss of
generality, we can align the momentum with the direction z1 on the torus T4, p1

L = p1
R = p,

setting the rest of the momenta to zero, piL,R = 0, i = 2, 3, 4.
In this section, we are going to discuss holographic interpretation of string excitations

in the bulk in terms of the dual 4 + 1 dimensional field theory on the boundary.42 Recall
that the field theory dual of a charged black brane describes matter at finite density.43 In
particular, we are interested in the corresponding collective excitation modes, that we can
compare with the hydrodynamic theory. These appear as poles of two-point correlation
functions of the stress-energy tensor. In general, these correlation functions also include
conserved charge current, and form correlation matrices. Correspondingly, the bulk holo-
graphic dual of the stress-energy tensor is given by the fluctuating metric field, which is
coupled to fluctuations of the gauge fields, B-field, and dilaton.44

For the space-like polarizations m,n = x, i, where i = 1, 2, 3, 4, along the circle U(1)x
and the torus sub-space T4, we write down the NS-NS type-II supergravity vertex operators

gmn =
(

Ψm
− 1

2
Ψ̃n
− 1

2
+ Ψn

− 1
2

Ψ̃m
− 1

2

)
V (0) Ṽ (0) ,

bmn =
(

Ψm
− 1

2
Ψ̃n
− 1

2
−Ψn

− 1
2

Ψ̃m
− 1

2

)
V (0) Ṽ (0) ,

ϕ = Ψm
− 1

2
Ψ̃m
− 1

2
V (0) Ṽ (0) .

(7.1)

Performing the Kaluza-Klein reduction on the U(1)x circle, we set pL = pR = 0, and derive
the gauge fields vertex operators

am =
(

Ψx
− 1

2
Ψ̃m
− 1

2
+ Ψm

− 1
2

Ψ̃x
− 1

2

)
V (0) Ṽ (0) ,

bm =
(

Ψx
− 1

2
Ψ̃m
− 1

2
−Ψm

− 1
2

Ψ̃x
− 1

2

)
V (0) Ṽ (0) .

(7.2)

These vertex operators can be further split into three groups, defined by the spin rota-
tion properties in the sub-space α, β = 2, 3, 4 transverse to the direction z1 of propagation

42This is to be contrasted with discussion in section 6.7, where we compactify T4 and study 1 + 1
dimensional field theory on the boundary.

43See, e.g., [62, 63] and references therein.
44See [31, 33] for analogous calculation in coset theories involving SL(2,R)/U(1) and SL(2,R)×U(1)/U(1).
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of excitations:
spin-0 sound channel: g11, a1, b1 ,

spin-1 shear channel: g1α, b1α, aα, bα ,

spin-2 scalar channel: gαβ , bαβ , ϕ .

(7.3)

Notice that due to rotation symmetry, operators from different groups do not couple to
each other.

Furthermore, the B-field excitations and the b gauge field mix with the graviton exci-
tations and the a gauge field. These can be decoupled from each other into the left-moving
and right-moving sectors as follows:

spin-0 sound channel:


W 1 = 1

2 (a1 + b1), g11

U1 = 1
2 (a1 − b1)

spin-1 shear channel:


Wα = 1

2 (aα + bα), S1α = 1
2(g1α + b1α)

Uα = 1
2 (aα − bα), R1α = 1

2(g1α − b1α)

spin-2 scalar channel:


Sαβ = 1

2(gαβ + bαβ)

Rαβ = 1
2(gαβ − bαβ)

(7.4)

Here we have (recall that m, n = 1, 2, 3, 4, and α, β = 2, 3, 4)

Wm = Ψx
− 1

2
Ψ̃m
− 1

2
V (0) Ṽ (0) , Um = Ψm

− 1
2

Ψ̃x
− 1

2
V (0) Ṽ (0) , (7.5)

Smn = Ψm
− 1

2
Ψ̃n
− 1

2
V (0) Ṽ (0) , Rmn = Ψn

− 1
2

Ψ̃m
− 1

2
V (0) Ṽ (0) . (7.6)

Non-trivial two-point correlation functions in the sound channel are then given by

〈W 1W 1〉0 = 〈Ψ̃1
1
2
Ψ̃1
− 1

2
〉0 〈Ψx

1
2
Ψx
− 1

2
〉0 ,

〈g11W 1〉0 = 〈Ψ1
1
2
Ψx
− 1

2
〉0 〈Ψ̃1

1
2
Ψ̃1
− 1

2
〉0 ,

〈g11g11〉0 = 〈Ψ1
1
2
Ψ1
− 1

2
〉0 〈Ψ̃1

1
2
Ψ̃1
− 1

2
〉0 ,

(7.7)

and
〈U1U1〉0 = 〈Ψ̃x

1
2
Ψ̃x
− 1

2
〉0 〈Ψ1

1
2
Ψ1
− 1

2
〉0 . (7.8)

Similarly, the shear channel non-vanishing correlation functions are given by

〈WαW β〉0 = 〈Ψ̃α
1
2
Ψ̃β

− 1
2
〉0 〈Ψx

1
2
Ψx
− 1

2
〉0 ,

〈S1αS1β〉0 = 〈Ψ1
1
2
Ψ1
− 1

2
〉0 〈Ψ̃α

1
2
Ψ̃β

− 1
2
〉0 ,

〈WαS1β〉0 = 〈Ψ̃α
1
2
Ψ̃β

− 1
2
〉0 〈Ψx

1
2
Ψ1
− 1

2
〉0 ,

(7.9)

and
〈UαUβ〉0 = 〈Ψα

1
2
Ψβ

− 1
2
〉0 〈Ψ̃x

1
2
Ψ̃x
− 1

2
〉0 ,

〈R1αR1β〉0 = 〈Ψ̃1
1
2
Ψ̃1
− 1

2
〉0 〈Ψα

1
2
Ψβ

− 1
2
〉0 ,

〈UαR1β〉0 = 〈Ψα
1
2
Ψβ

− 1
2
〉0 〈Ψ̃x

1
2
Ψ̃1
− 1

2
〉0 .

(7.10)
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In these expressions we have 〈Ψα
1
2
Ψβ

− 1
2
〉0 = 1

2 δ
αβ , 〈Ψ̃α

1
2
Ψ̃β

− 1
2
〉0 = 1

2 δ
αβ , while the rest of the

two-point functions are given by (6.76) and its anti-holomorphic counterparts. These cor-
relation functions were shown in section 6.6 to possess simple poles at j = m and j = −m̄.

Let us locate the gapless shear diffusion mode. At zero propagation velocity, for the
mass M , pressure P , volume V , and viscosity η, we have (for the dimensionless ω, p,
measured in units of string length)

ω = − iη

(M + P )/V p2 . (7.11)

Defining entropy density s = S/V , taking into account that due to (4.24) the pressure
vanishes, P = F = 0, and using expressions for the mass M = E given by (3.111), and
entropy S given by (4.10), we obtain45

η

s
= E
S

ω

−ip2 = 1
π
√
k (a1 + b1)

ω

−i `s p2 . (7.12)

At the same time, the mass-shell condition (6.56) at N = N̄ = 1/2 gives

`2s κ
2

4 = j(j + 1)− j′(j′ + 1)
k

+ `2s p
2

4 (7.13)

while the BRST constraints (6.42) impose

`s κ

2 = ma1 +m′ a2√
k

= −m̄ b1 + m̄′ b2√
k

. (7.14)

Using results of section 6.4 and performing Wick rotation, we obtain κ = −iω. From (7.14)
we can therefore express

m = − 1
a1

(
i
`s
√
k ω

2 +m′ a2

)
, m̄ = 1

b1

(
i
`s
√
k ω

2 + m̄′ b2

)
, (7.15)

while from (7.13) we derive

j = 1
2

(
−1 +

√
1 + 4j′(j′ + 1)− k `2s (p2 + ω2)

)
. (7.16)

As discussed above, excitation modes are located at j = m and j = −m̄, coming from
the holomorphic and the anti-holomorphic sector respectively. At j′ = 0, m′ = 0, these
give rise to the modes

ωL = −i
√
k a1
2 `s p

2 , ωR = −i
√
k b1
2 `s p

2 , (7.17)

Using this in (7.12) we obtain

ηL
s

= a1
2(a1 + b1)π ,

ηR
s

= b1
2(a1 + b1)π . (7.18)

Analogous systems of two decoupled liquids has been found in [31].
45We hope that recycling the same letter η, used before as a parameter of BRST transformation (6.12),

does not cause a confusion.
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7.2 Correlation functions on two-dimensional boundary

In this subsection, we will compute correlation functions of operators in momentum space
of the space-time theory dual to string theory on the coset (3.1) in the pure NS-NS sector.
Unlike the previous section, we will work with the setup where the sub-space T4 has been
compactified. The dual boundary theory is therefore two-dimensional.

Since the space-time theory is not a local field theory,46 it is not immediately clear
if there exist local operators on the boundary theory. To get around this issue, we re-
strict ourselves to correlation functions of operators in momentum space. One can, of
course, Fourier-transform the momentum space correlation function to position space but
the interpretation of such position space two-point correlation function is not clear.

To start with, let us review the computation of two-point correlation function of local
operators in CFT2 dual to superstring theory in AdS3 × S3 × T4. A large class of scalar
observables of string theory in AdS3 × S3 × T4 in the (−1,−1) picture is given by the
expression [8]

O(x, x̄) =
∫

Σ
d2z e−ϕ−ϕ̄ Φh(z, z̄;x, x̄)Vsu(z, z̄)VT4(z, z̄) , (7.19)

where x, x̄ are coordinates of the space-time theory, z, z̄ are coordinates of the world-
sheet Riemann surface Σ, ϕ, ϕ̄ are the world-sheet superconformal ghosts, Φh is the usual
non-normalizable vertex operator of the world-sheet theory on AdS3 with world-sheet di-
mensions (∆h, ∆̄h) where

∆h = ∆̄h = −h(h− 1)
k

, (7.20)

Vsu is theN = 1 superconformal primary of the CFT on S3 with dimensions (∆su, ∆̄su), and
VT4 is the N = 1 superconformal primary of the CFT on T4 with dimensions (∆T4 , ∆̄T4).
The local operator O(x, x̄), given by (7.19), of the space-time theory dual to string theory
in AdS3 has dimensions (h, h). For simplicity let us assume ∆su = ∆̄su and ∆T4 = ∆̄T4 .

The onshell condition of the operator (7.19) reads

− h(h− 1)
k

+ ∆su + ∆T4 = 1
2 . (7.21)

The vertex operators Vsu and VT4 are normalized so that

〈Vsu(z1)Vsu(z2)〉 = 1
|z1 − z2|4∆su

, 〈VT4(z1)VT4(z2)〉 = 1
|z1 − z2|4∆T4

, (7.22)

while the world-sheet operators Φh(z;x) are normalized so that

〈Φh(z1;x1)Φh′(z2;x2)〉 = δ(h− h′) B(h)
|z1 − z2|4∆h |x1 − x2|4h

, (7.23)

where the coefficient B(h) is given in (2.23). Taking the Fourier transform in x, x̄ one
recovers the correlation function in momentum space p, p̄,

〈Φh(z1; p)Φh′(z2;−p)〉 = δ(h− h′)πB(h)γ(1− 2h)
(
p2

4

)2h−1 1
|z1 − z2|4∆h

, (7.24)

46The space-time theory is non-local (LST) in the sense that it asymptotes to a linear dilaton background
and the UV behavior of the boundary theory is not described by a fixed point.
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where γ(x) is defined in (2.23) and p2 = pp̄. Thus the two point function of the operator
O(p) of the space-time theory takes the form

〈O(p, p̄)O(−p,−p̄)〉 = π(2h− 1)B(h)γ(1− 2h)
(
p2

4

)2h−1

. (7.25)

Fourier transforming (7.25) back to position space, one obtains

〈O(x1)O(x2)〉 ' 1
|x1 − x2|4h

. (7.26)

Next let us focus on computation of two-point function of operators in momentum
space of the boundary theory dual to string theory in the background (3.1). As stated
earlier, the boundary field theory is not conformal because the bulk space-time does not
asymptote to AdS3. One can write the (−1,−1) picture operators in momentum space in
the coset construction as

O(p) =
∫
d2z e−ϕ−ϕ̄ Φhp(z; p)Vsu(z) eilspxx ei`sκw VT4(z) . (7.27)

The onshell condition is given by

− hp(hp − 1)
k

+ ∆su + `2s(p2
x − κ2)
4 + ∆T4 = 1

2 , (7.28)

where (hp, hp)47 is the space-time dimension of Φhp , and h = lim|p|→0 hp. (Additionally,
the BRST constraints (6.42) need to be satisfied.) Then from (7.28) we derive

2hp − 1 =
√

(2h− 1)2 + `2skp
2 , (7.29)

where the momentum of the space-time theory is given by

p2 = p2
x − κ2 . (7.30)

Notice that, as before, the Φhp , Vsu and VT4 are vertex operators of the CFT on AdS3,
SU(2), and T4 with the two-point functions given by (7.24) (with h replaced by hp),
and (7.22). Thus, for string theory on (3.1), the two-point function of the dual space-
time theory is given by

〈O(p, p̄)O(−p,−p̄)〉 = π(2hp − 1)B(h)γ(1− 2hp)
(
p2

4

)2hp−1

. (7.31)

This matches exactly with the two-point function computed in similar coset backgrounds
that asymptotes to a linear-dilaton background [32, 64]. As expected, in the deep IR,
i.e., |`sp| � 1, one recovers the CFT2 correlation function (7.25). In the deep UV,

47One can interpret (hp, hp) as the dimension of the operator O(p) in the space-time theory dual to
string theory in the coset (3.1) (see [42, 43] on related discussion on the momentum dependent dimension
of operators in non-local CFTs).
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i.e., |`sp| � 1, the two-point function (7.31), however, behaves as |p|2
√
k`s|p| which is a

highly non-local behavior.
The normalization of the two-point function of primary operators in a CFT (7.25) can

be changed by rescaling the operators by an arbitrary analytic function of their dimen-
sions. Physics remains invariant due to such a rescaling of the operators. In the coset
theory, however, it seems that the two-point function depends on the normalization of the
operators due the momentum dependence of hp. At this point, it is unclear how to fix the
normalization of the operators of the space-time theory.

Let us end this section by giving a brief sketch of the general structure of the three-point
correlation function of the operator (7.27) on the boundary theory in momentum space, in
the un-spectrally flowed sector. Analogously to calculation of the two-point function, we
determine

〈O1(p1)O2(p2)O3(p3)〉 = C̃(hp1 , hp2 , hp3)Csl(hp1 , hp2 , hp3)Csu(j′i,m′i, m̄′i) (7.32)

where OPE coefficients due to SL(2,R) and SU(2) factors are given by (2.26), (2.56), and

C̃(h1,h2,h3)=(2π)2δ2(p1+p2+p3)
∫
d2x1d

2x2
e−ip1.x1e−ip3.x3

|x12|2(h1+h2−h3)|x2|2(h2+h3−h1)|x1|2(h3+h1−h2) ,

(7.33)
where

2hpi − 1 =
√

(2hi − 1)2 + `2skp
2
i . (7.34)

8 Discussion

In this paper, we have investigated type-II superstring theory on the coset space (3.1). It
is described by the superconformal gWZW model at level k, such that R =

√
k `s is the

characteristic length scale of the target space-time. We have derived an exact (in k) ten-
dimensional target space-time background configuration of the NS-NS fields, including the
metric, B-field, and dilaton. This background interpolates between local AdS3 × S3 × T4

in the IR and linear dilaton times S3 × S1 × T4 in the UV. It possesses an event horizon,
with non-vanishing angular velocities along two of the S3 directions, as well as along the
S1 circle. We have calculated the corresponding temperature, entropy, energy, conserved
angular momenta, and free energy. Whenever applicable, our results reproduce the known
expressions for thermodynamics of (charged) black brane backgrounds obtained in the near-
horizon limit of the NS5-F1 systems, and described by coset models that can be found as
particular cases of (3.1).

We have also constructed a nine-dimensional background obtained by performing the
KK reduction of the ten-dimensional background on the U(1)x circle S1. Such a background
is particularly relevant in the context of holographic description of strongly-coupled systems
at finite density. This is due to the fact that KK reduction on S1 generates non-trivial
profiles of gauge fields, that furnish holographic dual of non-vanishing densities of conserved
U(1) charges of the boundary field theory. In our case, the role of the boundary theory is
played by LST found in the asymptotic linear-dilaton region of the bulk space-time, and
characterized by non-vanishing vacuum expectations of two independent U(1) charges.
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Due to exact solvability of the corresponding gWZW model, the bulk theory enjoys
an exact in k world-sheet control, going beyond the effective supergravity approximation
R/`s � 1. In particular, it allows one to access the regime of dual field theory characterized
by a finite number of degrees of freedom, determined by k. We take advantage of this
power of exact world-sheet theory to calculate two-point correlation functions of massless
NS-NS vertex operators describing the graviton, B-field, and dilaton excitations on top
of the constructed background. Holographically, these give us correlation matrices of the
stress-energy tensor and two U(1) currents of the dual field theory. These correlation
matrices manifest a rich structure of collective density excitations, that include gapless
diffusion modes. We derive the corresponding dispersion relations and comment on their
hydrodynamic interpretation.

We also derived the two- and three-point correlation functions of the scalars in the
1 + 1-dimensional boundary theory in momentum space. The expressions for the correla-
tion functions take the form of CFT2 correlation functions with the dimensions h being
replaced by hp (7.29). (In fact, such a prescription seem to hold for higher-order correlation
functions as well.) At low energies we recover the CFT2 correlators, but at high energies
the correlators seem to develop highly non-local behavior. This is in harmony with the fact
the short-distance physics is governed by LST rather than a local fixed point. However, the
correlation functions at an arbitrary point on the RG flow seem to depend on the normal-
ization of the operators at the IR fixed point. In this paper we do not provide a recipe to fix
the normalization ambiguity in studying holography in non-AdS backgrounds. It would be
nice to see if the Ward identities of the theory at a generic point on the RG flow can impose
constraints in the normalization. It would also be interesting to perform an LSZ reduction
on the correlators and keep only contributions that give rise to physical onshell particles.
This may shed some light on the normalization of the operators of the boundary theory.

One of the questions left unanswered in this paper concerns microscopic interpretation
of the obtained background in terms of extended string theory objects. Particularly, we
expect that the background configuration that we constructed in this paper can be found
in the near-horizon limit of a certain system involving separated rotating NS5-brane in
the double-scaling limit [65, 66] and fundamental F1-strings with non-trivial momentum
quantum numbers. We believe this question can be resolved in a manner analogous to [32]
that recently provided an embedding of the (SL(2,R)×U(1))/U(1) target-space background
as a near-horizon limit of a certain NS5-F1 system. We would like to have an exact map
between the gauge-invariant operators of the boundary theory and the world-sheet theory
and identify the operators in the chiral ring algebra of the boundary theory.

The supergravity background obtained in this paper is characterized by asymptotically
linear dilaton geometry. In order to describe this background as a near-horizon limit of
NS5-F1 system, it would be helpful to embed it into asymptotically flat space-time. We
expect that such an embedding can be done in the spirit of [67] which considered D1-D5
system. We leave this for future work.

Our work paves the avenue for various future research. In section 7.2 we computed the
correlation function of scalar operators in the momentum space. It would be an interesting
to check if the same correlation functions are recoverable from the supergravity analysis.
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As stated earlier, the boundary field theory is a certain vacua of LST that flows to a CFT2
in the IR. At a generic point on the RG flow, the boundary field theory is not local. It
has been shown before [68, 69] that in similar non-local setups, the Ryu-Takayanagi curve
develops non-local features below a certain scale (non-locality scale proportional to `s).
It would be interesting to understand the non-local features of boundary theory through
the lenses of holographic entanglement entropy. In the same spirit it is worth computing
the holographic complexity where we expect to observe exotic divergences reflecting the
non-local features of LST. It would also be nice to set up a computation of holographic
Wilson-loop to understand the potential energy between a probe quark-anti-quark pair in
the boundary theory [70]. From the analytic structure of the quark-anti-quark potential
energy, one may expect to understand the various phases of the theory.
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A Conventions and review

In this appendix, we review some well-known facts about the WZW models that are rele-
vant for this paper. We parametrize the two-dimensional Euclidean string world-sheet by
complex coordinates z = σ1 + iσ2, z̄ = σ1− iσ2. The world-sheet metric in the σ1,2 coordi-
nate frame is given by hab = δab, a, b = 1, 2, while in the complex coordinates z, z̄ frame we
have hzz̄ = hz̄z = 1/2, hzz̄ = hz̄z = 2. Consider the field g(z, z̄), taking values on the group
manifold G. The WZW action for this field, at the level k = 1, is given by the expression

S[g] = Sσ[g] + SWZ[g] , (A.1)

where the sigma-model action is given by

Sσ[g] = 1
4π

∫
d2zTr

(
g−1∂gg−1∂̄g

)
, (A.2)

while the Wess-Zumino (WZ) term is defined by

SWZ[g] = i

24π

∫
B
Tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
, (A.3)

and the trace Tr is taken in the given representation of G. We define the measure of
integration as d2z ≡ dσ1dσ2. The integral in (A.3) is taken over a three-dimensional
compact space B with the boundary given by the string world-sheet.

By taking a variation δg of the field g we derive from (A.2)

δSσ = − 1
4π

∫
d2zTr

(
g−1δg

(
∂(g−1∂̄g

)
+ ∂̄

(
g−1∂g

))
. (A.4)
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At the same time, from the WZ action (A.3) we derive

δSWZ = i

24π

∫
B

3Tr
(
(−g−1δgg−1dg + g−1dδg) ∧ g−1dg ∧ g−1dg

)
, (A.5)

Performing cyclical permutation under the trace, while taking into account anti-symmetric
property of the wedge product, we can re-arrange the first term in the r.h.s. of (A.5),
obtaining as a result

δSWZ = i

8π

∫
B
Tr
(
−g−1dg ∧ g−1δgg−1dg ∧ g−1dg + g−1dδg ∧ g−1dg ∧ g−1dg

)
. (A.6)

Using
d(g−1dg ∧ g−1dg) = 0 , (A.7)

we can subsequently re-write (A.6) as

δSWZ = i

8π

∫
B
dTr

(
g−1δg g−1dg ∧ g−1dg

)
= i

8π

∫
Tr
(
g−1δg g−1dg ∧ g−1dg

)
. (A.8)

Substituting here dg = ∂g dz + ∂̄g dz̄, and using

dz ∧ dz̄ = −2i dσ1 ∧ dσ2 ≡ −2i d2σ ≡ −2i d2z , (A.9)

we obtain
δSWZ = 1

4π

∫
d2zTr

(
g−1δg (g−1∂gg−1∂̄g − g−1∂̄gg−1∂g)

)
, (A.10)

that we finally re-write as

δSWZ = 1
4π

∫
d2zTr

(
g−1δg (∂̄(g−1∂g)− ∂(g−1∂̄g)

)
. (A.11)

Combining (A.4), (A.11), we obtain variation of the WZW action (A.1) determined by the
expression

δS = − 1
2π

∫
d2zTr

(
g−1δg ∂(g−1∂̄g)

)
. (A.12)

In particular, for the variation determined by a single local parameter ξ(z, z̄) and the
generators TL,R belonging to a u(1) sub-algebra of the group algebra of G,

δg(z, z̄) = ξ(z, z̄) (TLg + gTR) , (A.13)

we obtain
δS = − 1

2π

∫
d2z ξ

(
∂J̃ + ∂̄J

)
, (A.14)

where we have defined the (anti-)holomorphic U(1) currents at the level k = 1 as

J = Tr
(
TL ∂gg

−1
)

J̃ = Tr
(
TR g

−1∂̄g
)
. (A.15)

Using (A.13) we derive the following gauge transformations of these currents,

δJ =
(
Tr(T 2

L) + Tr(TLgTRg−1)
)
∂ξ , δJ̃ =

(
Tr(T 2

R) + Tr(TLgTRg−1)
)
∂̄ξ . (A.16)
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From expression (A.12) one can see that it is possible to gauge the corresponding U(1)
sub-group of G parametrized by ξ. To that end, introduce auxiliary (non-dynamical) gauge
fields A, Ã, that transform as

δA = −∂ξ , δÃ = −∂̄ξ (A.17)

under the infinitezimal gauge transformation, and define the gauged WZW action as

Sg = S + 1
2π

∫
d2z

(
AJ̃ + ÃJ +M′AÃ

)
, (A.18)

whereM′ is a gauge-invariant function of g to be determined below. Algebraic equations
of motion for the gauge fields A, Ã that follow from the action (A.18) are given by

J +M′A = 0 , J̃ +M′ Ã = 0 . (A.19)

Demanding that the equations (A.19) are invariant w.r.t. the gauge transformation, and
using (A.16), (A.17), we recover the anomaly cancellation condition Tr(T 2

L) = Tr(T 2
R), as

well as the gauge-invariant object M′ = Tr(T 2
L) + Tr(TRg−1TLg). It is convenient to use

the following normalization of the u(1) generators

Tr(T 2
L) = Tr(T 2

R) = 2 , (A.20)

and define
M′ =M+ 2 , M = Tr(TRg−1TLg) . (A.21)

Gauge transformations (A.16) can then be re-written as

δJ = (2 +M) ∂ξ , δJ̃ = (2 +M) ∂̄ξ . (A.22)

Since we have explicitly established that e.o.m. (A.19) are gauge-invariant, variation of
non-WZW terms in the action (A.18) can be obtained either before or after integrating out
non-dynamical fields A, Ã. Let us integrate these out, arriving at

Sg = S− 1
2π

∫
d2z

J J̃
M+ 2 . (A.23)

Using (A.14), (A.22), we then observe that the action (A.23) is indeed gauge-invariant.

A.1 WZW model on SU(2)

Consider the following parametrization of SU(2) group element,48

g = eiασ3eiθσ1eiβσ3 , (A.24)

where α ∈ [0, π], θ ∈
[
0, π2

]
, β ∈ [0, 2π] are real-valued parameters, and the Pauli matrices

are given by
σ1 =

(0
1

1
0

)
, σ2 =

(0
i

−i
0

)
, σ3 =

(1
0

0
−1

)
. (A.25)

48Performing a constant shift of parameters α → α − π/4, β → β + π/4 in (A.24) we obtain g =
eiασ3eiθσ2eiβσ3 as another parametrization of SU(2).
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This can also be written as
g =

(
a+ ib

ic+ d

ic− d
a− ib

)
, (A.26)

where the SU(2) ∼ S3 manifold a2 + b2 + c2 + d2 = 1 is parametrized by

a = cos θ cos γ+ , b = cos θ sin γ+ , c = sin θ cos γ− , d = sin θ sin γ− , (A.27)

for γ± = α± β. After a straightforward calculation we obtain

Sσ[g] = 1
2π

∫
d2z Gµν∂X

µ∂̄Xν , (A.28)

where we denoted the target-space coordinate as Xµ = (α, θ, β), and defined the corre-
sponding background metric as

Gµν = k

 −1 0 − cos(2θ)
0 −1 0

− cos(2θ) 0 −1

 (A.29)

For the representation (A.24) we also obtain

Tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
= 6d (cos(2θ) dα ∧ dβ) , (A.30)

and therefore the Wess-Zumino term induces the background B-field via

SWZ[g] = 1
2π

∫
d2z Bµν∂X

µ∂̄Xν , (A.31)

where we denoted

Bµν = k

 0 0 cos(2θ)
0 0 0

− cos(2θ) 0 0

 (A.32)

We conclude this section by writing down expression for the volume of the unit 3-
sphere. Using negative of the metric (A.29), which is achieved by selecting the level k = −1,
we obtain

VS3 =
∫ 2π

0
dα

∫ π

0
dβ

∫ π
2

0
dθ
√
− detG =

∫ 2π

0
dα

∫ π

0
dβ

∫ π
2

0
dθ sin(2θ) = 2π2 . (A.33)

A.2 WZW model on SL(2,R)

Consider the following parametrization of SL(2,R) group element,

g = eασ3eθσ1eβσ3 , (A.34)

where α, θ, β are real-valued parameters, and Pauli matrices are as in (A.25). After a
straightforward calculation we obtain

Sσ[g] = 1
2π

∫
d2z Gµν∂X

µ∂̄Xν , (A.35)
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where we denoted the target-space coordinate as Xµ = (α, θ, β), and defined the corre-
sponding background metric as

Gµν = k

 1 0 cosh(2θ)
0 1 0

cosh(2θ) 0 1

 (A.36)

For the representation (A.34) we also obtain

Tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
= −6d (cosh(2θ) dα ∧ dβ) , (A.37)

and therefore the Wess-Zumino term induces the background B-field via

SWZ[g] = 1
2π

∫
d2z Bµν∂X

µ∂̄Xν , (A.38)

where we denoted

Bµν = k

 0 0 − cosh(2θ)
0 0 0

cosh(2θ) 0 0

 (A.39)

A.3 Effective action and superconformal WZW model

We have reviewed the classical (gauged) WZWmodels describing bosonic string theory with
the target space given by the group manifold G. In particular, we considered examples
of G = SL(2,R) and G = SU(2), and derived the corresponding classical target space
background. The latter is generally specified by the metric, dilaton, and B-field.

The WZW model is characterized by the level k, such that the classical action of the
WZW model is given by S = k S, where the k = 1 action S is given by (A.1). Perturbative
corrections to the classical theory, due to the world-sheet path integral expansion, therefore
behave as 1/k. The semi-classical limit is then achieved in the limit of large k.

In terms of the target space theory, the semi-classical limit translates into the small
curvature or, equivalently, the large length scale limit. Indeed, from our discussion in
sections A.1, A.2, one can see that the target space metric scales as k, that sets the
characteristic length scale of the semi-classical geometry to be

√
k `s.

Similar observations can be made when one considers gauged WZW models. In par-
ticular, integrating out auxiliary gauge fields, via their equations of motion, in the classical
WZW action on a coset space renders a classical sigma-model. Classical background fields,
including the metric, dilaton and B-field, can be read off from the sigma-model action.

We now proceed to reviewing how classical results get modified when 1/k corrections,
due to expansion of the world-sheet path integral, are taken into account. It is illustrative
to follow two different perspectives, that ultimately are shown to render consistent results.
The first perspective involves the (anti-) holomorphic symmetry argument and the affine
algebra relations for the corresponding currents, while the second one involves calculation
of the effective action for the WZW model [71–73].
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Recall that the WZW model at level k on the group manifold G enjoys the GL ×GR

Kac-Moody symmetry. The corresponding affine currents ja, j̃a satisfy the OPE (similar
OPE can be written down for the anti-holomorphic current components j̃a)

ja(z)jb(w) ' k

2
kab

(z − w)2 + ifabc j
c(w)

z − w
, (A.40)

where the index a takes values in the adjoint representation of G, kab is the Cartan metric
in the algebra space, and fabc are the algebra structure constants. Indices are raised and
lowered with the tensor kab.

The WZW model also enjoys conformal symmetry, with the generators given by the
(anti-)holomorphic stress-energy tensor components T , T̃ . These can be determined in
terms of the Kac-Moody currents via the Sugawara expression as

T = 1
k + cG

ja ja , (A.41)

where the dual Coxeter number cG is defined via49

fabcf
bc

d = cG ηad . (A.42)

In quantum theory the product of currents in the r.h.s. of (A.41) is normally-ordered. The
overall prefactor of the r.h.s. is determitned from the requirement that ja is a primary field
of dimension one,

T (z)ja(w) ' ja(w)
(z − w)2 + ∂ja(w)

z − w
, (A.43)

or, equivalently, that the stress-energy tensor satisfies the Virasoro OPE

T (z)T (w) ' c/2
(z − w)4 + 2T (w)

(z − w)2 + ∂T (w)
z − w

. (A.44)

Expression (A.41) for the stress-energy tensor is exact in quantum world-sheet theory
for all values of the level k. All of the 1/k corrections of the world-sheet perturbation
theory are accounted for in the difference between the semi-classical expression T = 1

k j
aja,

and the full quantum expression (A.41). The same conclusion can be arrived at from
the perspective of the effective WZW action in quantum theory [72, 73]. A non-trivial
functional determinant appearing in the Legendre transform calculation of the effective
action via the world-sheet path integral can be reformulated as e−cG S[g]. The effective
action of the WZW model is then given by

Γ[g] = (k + cG) S . (A.45)

This is simply the original classical WZW action with the shifted level, k → k + cG. The
level k + cG in the effective action results in the prefactor 1/(k + cG) in the expression for

49Recall that cSL(2,R) = −2 and cSU(2) = 2. While the structure constants fabc = εabc, given by the
Levi-Civita symbol, are the same for both algebras, the difference between the values of the dual Coxeter
numbers can be seen to originate from the kab = diag{1, 1, −1} Lorentzian metric of the sl(2,R), versus
the kab = diag{1, 1, 1} Euclidean metric of the su(2).
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the stress-energy tensor, in agreement with (A.41), manifesting consistency of the effective
action and the symmetry perspectives [72, 73].

Let us now proceed to discussion of supersymmetric WZW models. Analogously to
the case of bosonic WZW models, the symmetry and the effective action perspectives can
be considered [72–74].

The (anti-) holomorphic Kac-Moody symmetry and the conformal symmetry of the
bosonic WZW model get upgraded to the super Kac-Moody algebra and the superconfor-
mal symmetry in the supersymmetric WZW model. To start with, the bosonic degrees
of freedom represented by the affine currents ja, j̃a acquire superpartners, given by the
Majorana-Weyl fermions ψa, ψ̃a, where index a = 1, . . . , dim(G) takes values in the adjoint
representation of the group G. The fermions are free, in particular, their OPEs with the
bosonic currents ja, j̃a are non-singular. At the same time, we have

ψa(z)ψb(w) ' k

2
kab

z − w
, (A.46)

and similarly for the anti-holomorphic sector fermions ψ̃a.
The Kac-Moody currents of supersymmetric WZW model then acquire contributions

both from the bosonic degrees of freedom g ∈ G, via the purely bosonic currents ja, j̃a, as
well as from the fermions ψa, ψ̃a, resulting in the total affine currents

ja = ja − i

k
fabc ψ

bψc , (A.47)

where the product of fermions in the second term in the r.h.s. is normally-ordered. The
total bosonic currents ja satisfy the Kac-Moody OPE at level k,

ja(z)jb(w) ' k

2
kab

(z − w)2 + ifabc jc(w)
z − w

. (A.48)

This implies that the purely bosonic Kac-Moody current components ja satisfy the OPE
at level k = k − cG,

ja(z)jb(w) ' k − cG
2

kab

(z − w)2 + ifabc j
c(w)

z − w
. (A.49)

The currents ja, ja are primary operators of dimension 1,

T (z)ja(w) ' ja(w)
(z − w)2 + ∂ja(w)

z − w
, (A.50)

While the purely bosonic currents ja are decoupled from the fermions ψa,

ja(z)ψb(w) = O(z − w) , (A.51)

the total bosonic currents ja satisfy non-trivial OPEs with the fermions ψa,

ja(z)ψb(w) ' ψa(z)jb(w) ' ifabc j
c(w)

z − w
. (A.52)
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Combining everything together, relations (A.46), (A.49), (A.52) define the super Kac-
Moody affine algebra.

The stress-energy tensor in supersymmetric WZW model is given by

T (z) = 1
k
jaja − 1

k
ψa∂ψa , (A.53)

where products of fields in r.h.s. are normally-ordered. A couple of comments are in order
here. First of all, we have contributions to (A.53) coming from the free fermionic sector,
such that the field ψa is a primary of dimension 1/2,

T (z)ψa(w) ' 1
2

ψa(w)
(z − w)2 + ∂ψa(w)

z − w
. (A.54)

At the same time, the first term in r.h.s. of (A.53), coming from the bosonic sector, is
similar to the stress-energy tensor (A.41) of the bosonic WZW model, except that the
overall prefactor is 1/k. This is due to the bosonic currents ja in the supersymmetric
theory satisfying the OPE relation (A.49) at the level k = k − cG; to be contrasted with
the OPE relation (A.40) at level k for such currents in the bosonic WZW model. The
rest of the calculation is the same as in the bosonic WZW model: the classical prefactor
1/k in expression for the stress-energy tensor in supersymmetric WZW model changes as
1/k→ 1/(k + cG) = 1/k in quantum theory.

Conformal symmetry of the bosonic WZW model gets upgraded to superconformal
symmetry. The conformal symmetry generators T , T̃ become supplemented with the su-
persymmetry generators G, G̃. The latter are conformal primaries of dimension 3/2,

T (z)G(w) ' G(z)T (w) ' 3
2

G(w)
(z − w)2 + ∂G(w)

z − w
. (A.55)

The other non-trivial OPE is satisfied by the supersymmetric generators G themselves,

G(z)G(w) ' 2c/3
(z − w)3 + 2T (w)

z − w
. (A.56)

Together, (A.44), (A.55), (A.56) define the N = 1 superconformal algebra.
As a supercurrent that determines supersymmetry transformations, the operator G

transforms bosonic degrees of freedom via fermionic ones, and vice versa. This is expressed
in the OPEs

G(z)ja(w) ' ψa(w)
(z − w)2 + ∂ψa(w)

z − w
,

G(z)ψa(w) ' ja(w)
z − w

.

(A.57)

Notice that the bosonic superpartner of the fermion ψa is given by the full current ja rather
than by its bosonic-sector component ja. In components, the supercurrent is represented
by the expression

G(z) = 2
k

(
ψa ja − i

3k fabc ψ
a ψb ψc

)
= 2
k

(
ψa ja + 2i

3k fabc ψ
a ψb ψc

)
, (A.58)

where the products in r.h.s. are normally-ordered.

– 64 –



J
H
E
P
0
8
(
2
0
2
2
)
2
4
4

Let us now turn to the discussion of effective action in supersymmetric WZW models.
The starting point is supersymmetric action k Ssusy[g, χa, χ̃a] at level k. By performing a
change of fermionic degrees of freedom, we can reformulate the theory in terms of decoupled
free fermions ψa, ψ̃a, discussed above. This is a chiral transformation, that produces a non-
trivial functional determinant that can be reformulated as ecG S[g]. The total action is then
given by k S[g] + k Sf [ψ, ψ̃], where Sf [ψ, ψ̃] is the action of free two-dimensional Majorana-
Weyl fermions ψa, ψ̃a at level k = 1 [72, 73]. Consistently with our discussion above, we
recognize the shifted level k = k − cG, that appeared in the OPE (A.49) of the bosonic
sector Kac-Moody currents ja.

Since the fermions ψa, ψ̃a are free and decoupled, the rest of derivation of the ef-
fective action proceeds similarly to the bosonic WZW case. Analogously to the effective
action (A.45), going from classical supersymmetric WZW action to the effective action of
supersymmetric WZW model, the level k gets shifted as k→ k + cG = k. In other words,
starting with the action k Ssusy[g, χa, χ̃a] at level k, first the fermionic determinant due to
the change of variables χ, χ̃→ ψ, ψ̃ shifted the level k prefactor of the bosonic sector action
by −cG, that subsequently was offset by the +cG shift in calculation of the effective action,
yielding at the end the total effective action

Γsusy[g, ψ, ψ̃] = k S[g] + k Sf [ψ, ψ̃] . (A.59)

Notice that the prefactor k in front of S[g] in r.h.s. of (A.59) is consistent with the nor-
malization 1/k of the jaja terms in the stress-energy tensor expression (A.53). Of course
the fermionic action k Sf [ψ, ψ̃] at the level k reproduces the fermionic sector contribution
to (A.53).

In the main text, whenever we write down action of (gauged) WZW model, we usually
have in mind supersymmetric model, considered at level k, and write down the exact world-
sheet effective action thereof. This becomes important, for instance, when we write down
the action on the coset (3.1), that combines contributions from the SL(2,R) and SU(2)
sectors. Due to the ±cG cancellations between the level k shifts, the effective action of
supersymmetric model on (3.1) is at level k both in the SL(2,R) and SU(2) sectors. While
such 1/k corrections are unimportant in the semiclassical limit k → ∞, our results are
therefore in fact exact at finite k in the full quantum world-sheet theory.

A.4 Some (anti-)commutation relations

In this appendix we collect various (anti-)commutation relations satisfied by the amplitudes
of the superconformal and the super-Kac-Moody currents. Specifically, we are interested in
the NS sector of superstring states, and therefore all the fermionic operators are expanded
in the half-integer modes.
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From the N = 1 superconformal algebra OPEs (A.44), (A.55), (A.56) one obtains the
(anti-)commutation algebra relations,

[Lm, Ln] = (m− n)Lm+n + c

12 m(m2 − 1) δm+n, 0 , (A.60)

{Gr, Gs} = 2Lr+s + c

12 (4r2 − 1) δr+s, 0 , (A.61)

[Lm, Gr] = m− 2r
2 Gm+r . (A.62)

Expanding the total Kac-Moody currents as50

jM =
∑
n

jMn
zn+1 , jw =

∑
n

jwn
zn+1 , (A.63)

and the fermions as

ψM =
∑

r∈Z+ 1
2

ψMr

zr+
1
2
, ψw =

∑
r∈Z+ 1

2

ψwr

zr+
1
2
, (A.64)

where M = a, a′, i labels the SL(2,R) polarizations a = 1, 2, 3, SU(2) polarizations a′ =
1, 2, 3, and T4 polarizations zi, i = 1, 2, 3, 4, one obtains from the OPEs (A.50), (A.54)

[Lm, jMn ] = −n jMm+n , [Lm, jwn ] = −n jwm+n ,

[Lm, ψMr ] = −m+ r

2 ψMm+r , [Lm, ψwr ] = −m+ r

2 jwm+n ,
(A.65)

and from the OPEs (A.57) we obtain

{Gr, jMn } = −nψMn+r , {Gr, jwn } = −nψwn+r ,

{Gr, ψMs } = jMr+s , {Gr, ψws } = jwr+s .
(A.66)

Using the OPE expressions (3.45), (3.50), (6.24), we obtain (here δ+− = δ−+ = 2)

{ψar , ψbs} = k

2 δ
abδr+s, 0 , {ψ′ar , ψ′bs } = k

2 δ
abδr+s, 0 ,

{ψxr , ψxs } = 1
2δr+s, 0 , {ψwr , ψws } = −1

2δr+s, 0 ,
(A.67)

and similarly for the anti-holomorphic sector.

B GHY term in string frame

In this appendix, we are going to derive the GHY boundary term in string frame, that needs
to be added to the action (3.60). To derive it, we first re-write the action (3.60) in Einstein
frame, and identify the boundary terms necessary to allow for a well-defined variational
principal. We will identify two contributing boundary terms: the usual GHY action in
Einstein frame, and the extra term necessary to offset the boundary contributions due to

50For abelian currents the total Kac-Moody current coincides with its purely bosonic theory version,
jx = jx, jw = jw, ji = ji, i = 1, 2, 3, 4.
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the dilaton total derivative term. Finally, we will combine these two terms and re-write
them in terms of metric in string frame.

Expressing the Ricci scalar R̃ in the Einstein frame in terms of its counterpart R in
the string frame for the general transformation Gµν = e2Ω G̃µν we obtain in D-dimensional
space-time

R = e−2Ω
(
R̃− 2(D − 1)∇2Ω− (D − 2)(D − 1)(∂Ω)2

)
. (B.1)

Fixing D = 10, Ω = (Φ− Φ0)/4, we obtain

S = 1
2κ2

∫
d6x ṼT4

√
− det G̃

(
R̃− 9

2 (∂Φ)2 − 9
2 ∇̃

2Φ− 1
12 e

Φ−Φ0 HµνλHµνλ
)
, (B.2)

where now contraction of indices is done with the Einstein metric tensor, and tilde on top
of the covariant derivative indicates that it is calculated in Einstein frame. Here we can
extract the pure boundary term, at χ = Λ, using the Stokes’s theorem,

S ⊃ − 9
4κ2

∫
d5x

√
− det γ̃ ñM ∂MΦ |χ=Λ , (B.3)

where γ̃µν is the boundary metric in Einstein frame, and

ñM =
(

0,
√
G̃χχ, 0, 0, 0, 0, 0, 0, 0, 0

)
(B.4)

is an outward-pointing vector normal to the boundary. The gravity action in string frame
is to be supplemented with the GHY boundary term,

SGHY = 1
κ2

∫
d5x ṼT4

√
− det γ̃ ∇̃M ñM , (B.5)

The GHY term in Einstein frame needs to be supplemented with an extra contribution, to
compensate for (B.3). In total, we obtain the boundary term in Einstein frame

Sb = 1
κ2

∫
d5x

√
− det γ̃ ṼT4

(
∇̃M ñM + 9

4 ñ
χ ∂χΦ

)
|χ=Λ . (B.6)

On the other hand, in string frame we the outward-point unit normal to the boundary

nM =
(
0,
√
Gχχ, 0, 0, 0, 0, 0, 0, 0, 0

)
= e

Φ0−Φ
4 ñM . (B.7)

Using the relation between Christoffel symbols,

ΓMMχ = Γ̃MMχ + 5
2 ∂χΦ , (B.8)

we obtain
∇MnM = e

Φ0−Φ
4

(
∇̃M ñM + 9

4 ñ
χ∂χΦ

)
(B.9)

Introducing the boundary metric in string frame, γµν = e
Φ−Φ0

2 γ̃µν , and combining every-
thing together, we can re-write the total boundary term (B.6) as

Sb = 1
κ2

0

∫
d5x e−2Φ√− det γ VT4 ∇MnM . (B.10)

The action (B.10) therefore gives the GHY term in string frame. In the main text we will
denote (B.10) as SGHY, having in mind that it is the full boundary term in the string frame.
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C Thermodynamics of SL(2,R) × U(1)/U(1)

In this appendix, we are going to demonstrate that our new results for thermodynamics of
the coset geometry (3.1) reproduce the known results for the

SL(2,R)×U(1)
U(1) × SU(2)× T4 (C.1)

background, that corresponds to the limit of un-gauged SU(2) sub-group.51 According
to (3.12), this limit can be obtained by setting a2 = b2 = 0. The anomaly-free condi-
tions (3.24) then impose two constraints a2

1 + a2
3 = 1, b21 + b23 = 1 on the four parameters

of the model, a1,3, b1,3. The remaining two independent parameters can be expressed in
terms of the angles ψ ∈ [0, π/2], χ ∈ [0, π/2], as follows [51]

a1 = cos(χ− ψ) , b1 = cosχ , a3 = sin(χ− ψ) , b3 = sinχ . (C.2)

The same parameters ψ, χ are also used in the conventions of [32]. In the particular case
of [30, 31, 50] one sets χ = 0.52

We begin by writing down expression for the temperature (4.4) for the choice of pa-
rameters (C.2),

T = 1
π
√
k `s

cosχ cos(χ− ψ)
cosχ+ cos(χ− ψ) . (C.3)

In particular, setting χ = 0, (C.3) is seen to agree with the known result for the coset (C.1),
that can be found, e.g., in eq. (2.26) of [50].

The entropy of (C.1) can be found in eq. (3.31) of [51]53

S = π
√
k `s

(√
M2 −Q2

L +
√
M2 −Q2

R

)
, (C.4)

where M is the ADM mass, and the U(1)L,R charges are given by (C.16) of [51],54

QL = M sin(ψ − χ) , QR = M sinχ . (C.5)

Combining (C.3), (C.4), (C.5), we then obtain

T S = M cosχ cos(χ− ψ) . (C.6)

This agrees with (4.10) for the choice of parameters (C.2), provided M = 4π2

κ2 k
3
2 `2s VS1 VT4 .

The latter indeed matches our result for the energy, (3.111).
51See [38, 75] for discussion of related thermodynamic systems with microscopic description of NS5-F1 sys-

tem and single-trace T T̄ deformation. See also the seven-parameter black hole solution in [76] with λ± = 0.
52In conventions of [50] one also sets α→ ψ.
53The extra factor of 1/

√
2 relative to that equation is necessary once we relax the convention of α′ =

`2s = 2.
54In particular, in case of χ = 0, we recover (2.30) of [50], with QL = Q, QR = 0. In the latter, we

substitute the mass M and charge Q of the black hole, determined by eqs. (34), (36) of [30]. Specifically,
one plugs M = me−2φ0 , Q = qe−2φ0 into S = π

√
k `s(M +

√
M2 −Q2), where m = 1

2
1+p2

1−p2 , q = p
1−p2 ,

p = tan(ψ/2), and φ0 = Φ0 + 1
2 log 1+p2

2(1−p2) , expressed in terms of asymptotic value of the flat space dilaton
Φ0 = log(gs) via (29), (35) of [30].
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The free energy is determined by

F = M − TS − µLQL − µRQR , (C.7)

where µL,R are the left- and right-moving components of the chemical potential. As pointed
out in [50], the free energy of the theory (C.1) vanishes, which is in agreement with our
result (4.24) for (3.1) obtained independently of the choice of the anomaly-free gauging
parameters ai, bi. We can in fact match expressions for the free energy term by term. We
have already matched M and T S with our results in the limit of un-gauged SU(2). Now
let us match µLQL + µRQR. The chemical potential can be found from the asymptotic
behavior of the gauge field components55

AG,Bt = ±
√

2µG,B + . . . , (C.8)

where the gauge fields can be found in eq. (C.9) of [51]. Using eq. (C.9) of [51], we
first determine the relation y = t

√
2

secχ+sec(χ−ψ) between the time coordinate y, used in that
equation, and the time coordinate t, featuring asymptotic behavior of the metric gtt = −1.
We then obtain µG = sec

(
χ− ψ

2

)
sin
(
ψ
2

)
, µB = cosχ tan

(
ψ
2

)
− sinχ. Consequently

µL = µG + µB
2 = −1

2 cos(χ) sec
(
ψ

2

)
sin(χ− ψ) sec

(
χ− ψ

2

)
,

µR = µG − µB
2 = 1

2 sin(χ) sec
(
ψ

2

)
cos(χ− ψ) sec

(
χ− ψ

2

)
.

(C.9)

We then obtain
µLQL + µRQR = M

2 (2− cos(2χ− ψ)− cosψ) . (C.10)

At the same time, from (4.27), using (3.111), (C.2) we obtain

Ω · J = E(1− cos(χ− ψ) cosχ) , (C.11)

that indeed agrees with (C.10) for E = M . This completes the term-by-term match of
our result for the free energy for the choice of parameters (C.2) with the known result for
the (C.1).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

55Again, the factor of 1/
√

2 appears when we relax the convention of α′ = `2s = 2→ `s =
√

2 used in [51].
This in turn rescales the time coordinate measured in units of `s by the factor of 1/

√
2.
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