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2, Stéphane SanchezID

3, Clément SireID
4,

Zhangang Han1, Guy TheraulazID
2*

1 School of Systems Science, Beijing Normal University, Beijing, China, 2 Centre de Recherches sur la
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Abstract

In moving animal groups, social interactions play a key role in the ability of individuals to

achieve coordinated motion. However, a large number of environmental and cognitive fac-

tors are able to modulate the expression of these interactions and the characteristics of the

collective movements that result from these interactions. Here, we use a data-driven fish

school model to quantitatively investigate the impact of perceptual and cognitive factors on

coordination and collective swimming patterns. The model describes the interactions

involved in the coordination of burst-and-coast swimming in groups of Hemigrammus rho-

dostomus. We perform a comprehensive investigation of the respective impacts of two inter-

actions strategies between fish based on the selection of the most or the two most influential

neighbors, of the range and intensity of social interactions, of the intensity of individual ran-

dom behavioral fluctuations, and of the group size, on the ability of groups of fish to coordi-

nate their movements. We find that fish are able to coordinate their movements when they

interact with their most or two most influential neighbors, provided that a minimal level of

attraction between fish exist to maintain group cohesion. A minimal level of alignment is also

required to allow the formation of schooling and milling. However, increasing the strength of

social interactions does not necessarily enhance group cohesion and coordination. When

attraction and alignment strengths are too high, or when the heading random fluctuations

are too large, schooling and milling can no longer be maintained and the school switches to

a swarming phase. Increasing the interaction range between fish has a similar impact on col-

lective dynamics as increasing the strengths of attraction and alignment. Finally, we find that

coordination and schooling occurs for a wider range of attraction and alignment strength in

small group sizes.
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Author summary

In fish schools, social interactions allow individuals to coordinate their movements and

their modulation shape the emergent patterns of collective behavior. Here, we use a data-

driven fish school model to investigate the impact of perceptual and cognitive factors on

collective swimming patterns in the rummy-nose tetra (H. rhodostomus). In this species,

fish only pay attention to one or two neighbors that exert the largest influence on their

behavior and the interactions consist for a fish to be attracted and aligned with these

neighbors. We show that there must exist a minimum level of alignment and attraction

between fish to maintain group cohesion and allow the emergence of schooling and mill-

ing. Moreover, increasing the interaction range has a similar impact on collective dynam-

ics as increasing the strength of social interactions. However, when the intensity of these

interactions becomes too strong, fish can no longer coordinate their swimming and the

school adopts a swarming behavior. Our results also show that a moderate level of behav-

ioral fluctuations in fish can induce spontaneous transitions between schooling and mill-

ing. Finally, in this species that performs burst-and-coast swimming, we find that

coordination occurs for a wider range of interaction strengths only in small group sizes.

1 Introduction

Many organisms living in groups or societies, from bacteria to vertebrates, are able to collec-

tively coordinate their movements [1, 2]. These collective behaviors have important functional

consequences for group members. For instance, coordinated movements of fish improve the

foraging efficiency of individuals [3, 4], increase their survival under predation risk [3, 5], and

in some cases allow them to save energy [5–10]. Analyzing the behavioral and cognitive mech-

anisms that govern these coordination phenomena in different species is a crucial step to

understand the evolution of sociality and more generally the evolution of biological complexity

[11–15].

For a long time, studies on the collective movements in animals groups mainly relied on the

construction and analysis of mathematical models often without a direct link with experimen-

tal observations, due to the difficulty of acquiring precise data on these phenomena and trans-

late them into faithful mathematical models [16–22]. Several phenomenological models based

on specific rules can qualitatively reproduce the collective motion of real fish schools. How-

ever, the main problem remains the lack of experimental validation of the hypotheses these

models are based on, and particularly those concerning the behavioral rules and interactions

at the individual scale. In fact, very different rules can produce similar collective states.

In recent years, the development of new computerized methods based on learning algo-

rithms has enabled the automated tracking of the behavior of animals moving in groups [23–

28]. These techniques have been used in particular for the analysis of the collective movements

of swarms of locusts and midges [29, 30], schools of fish in experimental tanks [31, 32], flocks

of starlings [33, 34], flocks of sheep [35, 36], or human crowds [37, 38]. By improving the

amount and accuracy of the data available on social interactions and their effects on individual

behavior [39–42], these techniques have also paved the way for the development of models of

collective movements that can be both quantitative and predictive [31, 43, 44].

One crucial step to develop such models requires knowing the social interactions that are

involved in the coordination of movements. We have recently introduced a general method to

extract from individuals’ trajectories the social interaction functions between two individuals

that are required to achieve coordinated motion [45]. Using large sets of tracking data, we
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used this method to reconstruct and model the social interactions between individuals in

rummy-nose tetra (H. rhodostomus) and zebra fish (D. rerio). These species perform a burst-

and-coast type of swimming characterized by sequences of sudden increase in speed followed

by a mostly passive gliding period. This particular type of swimming makes it possible to ana-

lyze individual trajectories as series of discrete behavioral decisions in time and space. These

decisions correspond to significant variations in fish heading that occur exactly at the onset of

the bursting phase. The effect of social interactions on a fish heading can then be precisely

measured. In particular, one can quantify the strength of attraction, repulsion, and alignment

behavior resulting from these interactions as a function of the distance between fish and their

relative positions and orientations.

These analyses revealed that the range of the social interactions and the individuals’ percep-

tion of their environment were quite different in these two species. In particular, we found that

in D. rerio, not only the range of the attraction and alignment interactions was much shorter

but also the perception was strongly reduced in front of a fish, both features contributing to a

much weaker coordination of motion in pairs of fish in this species in comparison with H. rho-
dostomus. Certain characteristics of the natural environment in which fish swim, such as water

turbidity [46–48] or light intensity [49], can also affect the perception of individuals and, con-

sequently, the social interactions. Studies have shown that, as turbidity increases, fish form and

maintain groups less efficiently, inter-fish distance increases, and groups are less able to coor-

dinate their collective behavior [46–48]. All these results show that the sensory perception

characteristics of individuals have a deep impact on their ability to coordinate their move-

ments which in turn conditions the way information propagates within a group [50, 51] and

the emergence of other groups level properties such as collective sensing [52, 53].

The limited attention capacity of individuals is another fundamental cognitive constraint

on the coordination processes [54]. Several studies have shown that animals may focus their

attention on a small subset of their neighbors, typically one or two, whose identity regularly

changes with time [55–59]. The analysis of individual trajectories combined with the tech-

niques used to reconstruct and model interactions between individuals also make it possible to

measure at each moment the respective influence exerted by the neighbors of an individual on

its movements within a group. Using this technique, Lei et al. have shown that in small groups

of rummy-nose tetra, individuals typically interact with their two most influential neighbors,

i.e., the ones that have the strongest contribution to their heading variation [60]. Focusing the

attention on those neighbors reduces significantly the amount of information that needs to be

processed by a fish and avoids cognitive overload. However, the consequences of such infor-

mation filtering at the individual level on collective states in fish species with a burst-and-coast

swimming mode remains largely unknown.

Here, we study the impact of these individual perceptual and cognitive factors on fish coor-

dination and on the collective phases that emerge at the group level from social interactions

between fish. To do that, we use the data-driven computational model developed by Calovi

et al. (2018) [44] and Lei et al. (2020) [60] that describes the interactions involved in the coor-

dination of burst-and-coast swimming in groups of H. rhodostomus. With this model, we per-

form a comprehensive investigation of the respective impacts of two interactions strategies

based on the selection of the most or the two most influential neighbors, of the range and

intensity of social interactions, of the intensity of individual random fluctuations, and of the

group size, on the ability of groups of 100 fish swimming in an unbounded space to coordinate

their movements. We then construct the corresponding phase diagrams of the model that

allows us to clearly identify the different phases resulting from interactions between fish, and

investigate the impact of the parameters of the model on these collective states.
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2 Materials and methods

2.1 Computational model

2.1.1 Individual burst-and-coast swimming. H. rhodostomus displays a “burst-and-

coast” mode of swimming characterized by sequences of sudden accelerations called “kicks”

followed by a quasi-passive deceleration period during which the fish glides along a near

straight line until the next kick. Consecutive kicks of a single fish do not necessarily have the

same length, the same duration, nor the same speed [61]. When swimming in groups, kicks of

different fish are asynchronous and of different length, duration and speed.

These features are explicitly considered in our model, where we assume that individual fish

makes the decision of changing direction precisely at the onset of each kick, and kicks charac-

teristics are randomly sampled from distributions extracted directly from our experimental

observations [44]. Note that the burst-and-coast swimming mode of H. rhodostomus was

found to be directly responsible for the fact that the fish were most often swimming along the

walls of the circular tanks considered in [44].

We denote by tni the instant of time at which the n-th kick of fish i starts, and by tni and lni
the duration and the length of this kick, respectively. The position and velocity of fish i at this

kicking time are~u n
i ¼ ðx

n
i ; y

n
i Þ and~v n

i ¼ vn
i ðcos �

n
i ; sin �

n
i Þ respectively, where vn

i ¼ k~v
n
i k is

the speed at the beginning of the kick and �
n
i is the angle that the velocity vector forms with

the horizontal line, which remains unchanged all along the gliding phase of the kick. Positive

angles are defined in the counter-clockwise direction, with respect to the positive semiaxis of

abscissas of the global system of reference centered in (0, 0). The angle �
n
i thus determines fish

heading, and heading changes are denoted by d�
n
i [44]. See Fig 1A.

Fig 1B shows the n-th kick of fish i. The fish arrives at~u n
i at time tni with a velocity~v n

i .

Then, the fish collects the information of its instantaneous relative position and heading with

Fig 1. State variables of fish and burst-and-coast swimming mode. (A) Individual state variables (red) of fish i and social state variables (black) of fish

i with respect to fish j at the instant tni when fish i performs its n-th kick:~un
i and~vn

i are the position and velocity vectors of fish i, yn
i and �

n
i are the angles

that these respective vectors form with the horizontal line,~vn
j is the velocity vector of fish j at the instant of time of the n-th kick of fish i, dn

ij is the

distance between fish i and fish j, cn
ij is the angle with which fish j is perceived by fish i, and �

n
ij ¼ �

n
j � �

n
i is the heading difference between both fish.

(B) Description of the n-th kick performed by fish i, moving from~un
i at time tni to~unþ1

i at time tnþ1
i . Kick length is denoted by lni . Orange lines represent

the fish trajectory, black wide arrows denote velocity vector, and curved arrows denote angles. The variation of the heading angle of fish i at time tni is

d�
n
i . The fish heading during its n-th kick is �

nþ1

i ¼ �
n
i þ d�

n
i . Red angles are the heading variation at the kicking instants tni and tnþ1

i .

https://doi.org/10.1371/journal.pcbi.1009437.g001
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respect to the other agents, and selects the length lni and duration tni of its n-th kick, and its

change of direction, d�
n
i . During its n-th kick, the heading angle �

nþ1

i ¼ �
n
i þ d�

n
i remains

unchanged until the onset of the next kick.

The state of fish i at the end of its n-th kick, at time tnþ1
i , is given by

tnþ1
i ¼ tni þ t

n
i ; ð1Þ

~u nþ1
i ¼ ~un

i þ lni ~e ð�
nþ1

i Þ; ð2Þ

�
nþ1

i ¼ �
n
i þ d�

n
i ; ð3Þ

where~e ð�nþ1

i Þ is the unitary vector pointing in the heading direction �
nþ1

i .

Kick lengths and durations lni and tni are sampled from bell-shaped distributions obtained

in the experiments, where the mean values l = 7 cm and τ = 0.5 s were found [44], as well as

the speed maxima measured right after a kick, whose mean is v0 = 14 cm/s. During the gliding

phase of the kick, fish speed decreases quasi-exponentially with a relaxation time measured to

be τ0� 0.8 s, so that vðtÞ ¼ v0e� t=t0 until the next kicking instant. All these features are imple-

mented in the model [44]. Heading angle changes at the kicking instants result from the addi-

tive combination of the behavioral reaction induced by the social interaction with other fish,

denoted by d�
n
S;i, and the spontaneous fluctuations in the motion of the fish, reproduced by a

random Gaussian white noise d�
n
R;i:

d�
n
i ¼ d�

n
S;i þ d�

n
R;i: ð4Þ

2.1.2 Social interactions between fish. We assume that social influence is mediated by

pairwise interactions, and that, in the case of several fish swimming together, the resulting

effect is given by the sum of the pairwise interactions among a certain number of neighbors k.

The function δϕij depends only on the relative state of fish j with respect to the focal fish i. This

state is determined by the triplet (dij, ψij, ϕij), where dij is the distance between fish, ψij = θij − ϕi

is the angle with which fish i perceives fish j, where θij is the angle that the vector going from i
to j forms with the horizontal line, and ϕij = ϕj − ϕi is the relative heading, which is a measure

of the alignment between fish i and j (see Fig 1A). Thus:

d�
n
S;i ¼

Xk

j¼1

d�
n
ijðd

n
ij;c

n
ij; �

n
ijÞ: ð5Þ

The derivation of the shape and intensity of the functions δϕij and δϕR,i is based on physical

principles of symmetry of the angular functions and on a reconstruction procedure from tra-

jectory data which is detailed in Calovi et al. (2018) [44] for the case of H. rhodostomus and in

Escobedo et al. (2020) [45] for the general case of moving animal groups. In these works, we

found that the effect of pairwise interactions δϕij consists of the sum of two contributions, an

attraction force and an alignment force, each one described by the product of decoupled func-

tions of the state variables:

d�ijðdij;cij; �ijÞ ¼ d�Attðdij;cij; �ijÞ þ d�Aliðdij;cij; �ijÞ; ð6Þ

with

d�Att ðdij;cij; �ijÞ ¼ FAttðdijÞOAttðcijÞEAttð�ijÞ; ð7Þ

d�Aliðdij;cij; �ijÞ ¼ FAliðdijÞ EAliðcijÞ OAlið�ijÞ; ð8Þ
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where F stands for the intensity of the interactions, and O and E for the odd or even symmetry

in the angular dependence respectively.

We also found that the stochastic heading variation can be described by

d�
n
R;i ¼ gR gn

i ; ð9Þ

where γR is the noise intensity and gn
i is a random number sampled at time tni for this specific

kick of the fish i from a standard normal distribution (zero mean, unit variance).

2.1.3 Social interaction strategy. In the model, the social interaction strategy determines

how many neighbors and which ones are selected by the focal fish to interact with. Our recent

results obtained with the model above presented have shown that only two neighbors, the most
influential ones, are required to reproduce real fish behavioral patterns swimming in circular

tanks [60].

The influence I ijðtÞ that fish j exerts on fish i at time t is defined as the absolute value of the

contribution of fish j to the instantaneous heading change of fish i:

I ijðtÞ ¼ jd�ijðtÞj: ð10Þ

In a group of more than 2 fish, the most influential neighbor is the fish having the highest

influence on the focal fish heading variation, i.e., the highest value of I ij. The influence of fish j
on fish i can change from one kick to another; the identity of the most influential neighbor of

fish i changes accordingly.

This influence takes into account not only the distance to the neighbors, but also the anisot-

ropy of the field of perception induced by the relative position of the influential fish and the

degree of alignment between both fish.

For H. rhodostomus, the pairwise interaction functions are [60]:

FAttðdÞ ¼ gAtt
d=dAtt � 1

1þ ðd=lAttÞ
2
; ð11Þ

OAttðcÞ ¼ 1:395 sinðcÞð1 � 0:33 cosðcÞÞ; ð12Þ

EAttð�Þ ¼ 0:9326ð1 � 0:48 cosð�Þ � 0:31 cosð2�ÞÞ; ð13Þ

FAliðdÞ ¼ gAli
d
dAli
þ 1

� �

exp �
d
lAli

� �2
" #

; ð14Þ

EAliðcÞ ¼ 0:9012½1þ 0:6 cosðcÞ � 0:32 cosð2cÞ�; ð15Þ

OAlið�Þ ¼ 1:6385 sinð�Þð1þ 0:3 cosð2�ÞÞ; ð16Þ

where γAtt = 0.12 and γAli = 0.09 are the dimensionless intensity of attraction and alignment

respectively, lAtt = 20 cm and lAli = 20 cm are the respective interaction ranges, dAtt = 3 cm is

the critical distance below which attraction becomes repulsion (preventing collisions between

fish whose typical body length is 3 cm), and dAli = 6 cm.

Fig 2A shows the three most influential neighbors acting on fish i. Although fish 2 is close

and in front of fish i, fish 1, located to the right of fish i, has a higher influence on fish i
(I i1 > I i2) because of the particular shape of the interaction functions: the fish in front is such

that ψi2 is small, so OAtt is almost zero (see Fig 2C), while the fish to the right is at ψi1� 100

degrees, which is where OAtt reaches its maximum value. As the other state variables are simi-

lar, di1� di2 and ϕi1� ϕi2, the influence is determined by the angle of perception, making

fish 1 the most influential fish acting on fish i. See S1 Video, showing the identity of the most
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Fig 2. Social influence and interaction functions between fish. (A) Example of simulated fish trajectories for a few time steps highlighting the 3 most influential

neighbors of fish i (red) according to their respective influence Iij as determined by the model, from the most influential (dark blue) to the least influential one (light

blue). (B) Intensity of the attraction FAtt (red) and the alignment FAli (blue) for different interaction ranges lAtt = 0.16, 0.2, 0.24, 0.28 and 0.32 m, and lAli = 0.16, 0.2,

0.24, 0.28 and 0.32 m, from light to dark color intensity. Wider red and blue lines correspond to the values extracted from the experiments with H. rhodostomus in

[44], lAtt = lAli = 0.2 m. The upper subpanel shows the long range of attraction in dij 2 [0, 2] m. (CD) Normalized angular functions OAtt(ψij) (odd, in red) and EAtt(ϕij)

(even, in orange) of the attraction interaction, and OAli(ϕij) (odd, in blue) and EAli(ψij) (even, in violet) of the alignment interaction between fish i and j, as a function of

the angle of perception ψij and the relative heading ϕij.

https://doi.org/10.1371/journal.pcbi.1009437.g002
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influential fish, identified with respect to a fixed focal fish during swimming dynamics, and S2

Video, with the two most influential neighbors.

2.2 Quantification of collective behavior

We characterize the collective patterns by means of three observables quantifying the behavior

and the spatial distribution of the school: 1) the group cohesion, measured by the dispersion of

individuals with respect to the barycenter of the group, 2) the group polarization, measuring

how much fish are aligned, and 3) the milling index, measuring how much the fish turn

around their barycenter in a vortex formation [62].

1. Group dispersion D(t) is defined in terms of the distance of each fish to the barycenter of

the group, k~ui � ~uBk:

DðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

k~ui � ~uB k
2

s

: ð17Þ

High values of D(t) correspond to groups of spatially dispersed individuals, while low values

of D(t) correspond to highly cohesive groups. Values of D(t) can be arbitrarily high when

fish are in a dispersion regime because the distance between fish depends on the duration

of the simulation time.

The x-coordinates of the position and velocity vectors of the barycenter B are

xBðtÞ ¼
1

N

XN

i¼1

xiðtÞ; vB
xðtÞ ¼

1

N

XN

i¼1

vi
xðtÞ; ð18Þ

with similar expressions for yB(t) and vB
y ðtÞ. The heading angle of the barycenter is given by

its velocity vector, �B ¼ ATAN2ðvB
y ; v

B
xÞ.

2. Group polarization P(t) 2 [0, 1] measures the level of alignment of fish independently of

the intensity of the speed:

PðtÞ ¼
1

N

XN

i¼1

~eiðtÞ

�
�
�
�
�

�
�
�
�
�
; ð19Þ

where~ei ¼~vi=k~vik ¼ ðcos�i; sin�iÞ is the unit vector characterizing fish heading.

Values of P close to 1 mean that the N individual headings are aligned and point in the

same direction. Values of P close to 0 mean that the N vectors point in different directions,

but can also mean that vectors are collinear and with opposite direction so that they cancel

each other (e.g., half of the vectors pointing North and the other half pointing South).

When headings are uncorrelated, the polarization index is such that P � 1=
ffiffiffiffi
N
p

, which

becomes small only for large group size N, but which is markedly lower than 1 for any

N� 5. For N = 100, a value of P� 0.1 would mean that the group is not polarized.

3. The milling index M(t) 2 [0, 1] measures how much the fish are turning in the same direc-

tion around their barycenter B,

MðtÞ ¼
1

N

XN

i¼1

sinð�y i
wðtÞÞ

�
�
�
�
�

�
�
�
�
�
; ð20Þ

where �y i
wðtÞ ¼ ��i �

�y i. Variables with a bar are defined in the barycenter system of reference:

�xi ¼ xi � xB, �vi
x ¼ vi

x � vB
x (similar expressions for the y-components). Then, the relative
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position angle and heading of fish i with respect to B are respectively �y i ¼ ATAN2ð�yi; �xiÞ and

��i ¼ ATAN2ð�vi
y; �v

i
xÞ. Note that �� i 6¼ �i � �B.

Fish rotating counterclockwise (resp. clockwise) around B contribute to make the sum

between bars in Eq 20 to tend to 1 (resp. −1). The milling index M(t) indicates how intense is

the group milling, whatever the direction of rotation.

2.3 Numerical simulations of the model

For each set of parameter values, we performed 20 simulation runs with different initial condi-

tions over a period of time during which each fish performed 2000 kicks.

In H. rhodostomus, the average kick duration being 0.5 s, the total duration of each run cor-

responds to 16.6 minutes, during which fish are expected to have reached a stable state. Initial

transient times (typically 100 s) of each run are not taken into account in the calculation of the

average values used in the analysis of the behavioral phases, in order to remove possible effects

of the initial condition. These initial transients are however conserved to measure the time it

takes to reach a stable state.

The discretization setting to explore the parameter space was chosen to get a detailed visual-

ization of the regions of interest and their evolution from one condition to another (large

phase diagrams were obtained with Δγ = 2 × 10−3, and small phase diagrams with Δγ = 10−2).

At the initial condition (at t = 0), all fish are randomly distributed in a circle of radius R
chosen so that the mean distance between fish, estimated to be�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR2=N

p
, is of the order of

half the range of social interactions, (� lAtt/2, that is, R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN=pÞ

p
lAtt=2Þ. Initial headings are

sampled from the uniform distribution in (−π, π).

3 Results

The data-driven model considered in the present work aims at studying the diversity and plas-

ticity of collective behavior in a specific species of fish (Hemigrammus rhodostomus). Yet, the

general structure of our burst-and-coast model can be also exploited to describe other species

of fish performing intermittent swimming. This is for instance the case of zebra fish (Danio
rerio) for which the interaction functions have been measured in [45], and where the range of

interactions were found to be much shorter, contributing to explain the fact that zebra fish dis-

play a weaker collective social behavior than H. rhodostomus.
Moreover, within a model for a specific species, it is certainly worthwhile to study the

behavior of the model when changing the value of its parameters (intensity and range of the

interactions, intensity of the cognitive noise), and in particular, to address the possible occur-

rence of non-trivial collective states. Not only this is relevant on a theoretical point of view, but

it is also expected that actual fish can experience different effective interaction parameters

depending on their age, activity, or their environment. For instance, it is shown in [31] that

the intensity of the alignment interaction for Kuhlia mugil is roughly proportional to the mean

velocity of the school. Moreover, water turbidity [46–48] and/or light intensity [49] have been

shown to impact the interactions between fish. For instance, the authors of [49] have shown

that in darkness and under low illuminance, H. rhodostomus move with lower polarization

and a large mean nearest-neighbor distance that can span many body lengths. In the same

work, the authors showed that it is possible to change the intensity of the attraction between

fish by compromising the lateral-line system with a specific antibiotic treatment.

Hence, in the following, we explore the parameter space of the H. rhodostomus model by

varying its main parameters, which are the intensity of the attraction and alignment
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interactions γAtt and γAli, their respective range lAtt and lAli, the intensity of the random head-

ing fluctuation γR (cognitive noise), and the group size N. Results are presented in the form of

two-dimensional phase diagrams obtained by varying the intensity of the attraction and align-

ment interactions, γAtt and γAli, while keeping other parameters fixed (interaction ranges, cog-

nitive noise, group size).

We first present the most illustrative cases where the regions corresponding to the different

phases of collective behaviors can be easily identified. We then describe the impact of the other

parameters on these characteristic collective phases.

In each case, two social interaction strategies are considered, each one determined by the k
selected neighbors (with k = 1 and k = 2) that have the largest influence on the focal fish when

it performs a new kick.

3.1 Characterization and analysis of the collective states

Fig 3 shows the color maps of dispersion, polarization, and milling as a function of the parame-

ters γAtt and γAli where significative variations have been found, for the two social strategies

k = 1 and k = 2, in the particular case where the social interaction ranges are lAtt = lAli = 0.28 m,

the intensity of random fluctuations (noise) is γR = 0.2, and the group size is N = 100. For

k = 1, variations take place for (γAtt, γAli) in [0, 0.1] × [0, 0.6], and for (γAtt, γAli) in [0, 0.1] ×
[0, 0.4] for k = 2.

Fig 3. Dispersion, polarization, and milling as functions of the intensity of attraction γAtt and alignment γAli when fish interact with their most

influential neighbor (k = 1) and their two most influential neighbors k = 2. (AD) Dispersion: color intensity is proportional to dispersion. White

region means that the school of fish is highly cohesive. In the green region, attraction is too weak and fish quickly disperse. (BE) Polarization. (CF)

Milling. Regions of high color intensity mean that fish frequently display either the characteristic behavioral patterns of schooling or milling. Social

interaction ranges are lAtt = lAli = 0.28 m, intensity of random fluctuation (noise) is γR = 0.2. Each pixel is the average of 20 runs of 2000 kicks per fish

(in which the first 100 kicks have been discarded).

https://doi.org/10.1371/journal.pcbi.1009437.g003
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The first remarkable result is that, despite the discrete character of the burst-and-coast

swimming mode, the group of fish remains cohesive in a large region of the parameter space,

even when fish interact only with their most influential neighbor, as testified by the wide

regions in Fig 3A and 3D. For both interaction strategies k = 1 and k = 2, the dispersion map

consists of two regions of high and low values of D separated by a thin transition layer. In the

green region, γAtt is too small and the attraction is not strong enough to preserve the cohesion

of the group and fish disperse. The high value shown in the green regions of Fig 3A and 3D

(higher than 5) is determined by the duration of the numerical simulations; longer runs give

rise to higher values of D(t). This is not the case in the white region, where the group remains

cohesive whatever the length of the simulation time.

The transition layer is almost vertical and very thin (width� 0.005). Its location is mostly

determined by the value of γAtt, which is of about 0.03 when k = 1 and of about 0.015 when

k = 2, showing that cohesion is mostly mediated by attraction, alignment having only a mar-

ginal contribution. When k = 2, an horizontal light green region where D� 1 is visible in

Panel D when γAli > 0.3. In this region, the value of γAli is so large that the contribution of the

alignment to the heading angle change δϕ in Eq 4 makes the fish to rotate an angle often larger

than π, as if the new heading angle was chosen randomly. For these values, the fish behave

more or less like slow random walkers. This region of slow dispersion is not visible when k = 1

because in this case Eq 4 has only one contribution to the increase of δϕ. The same kind of dis-

persion is observed when γAtt is very large, for both k = 1 and k = 2. We have tried to determine

the onset of this region in the interval of values of γAtt for k = 1. Increasing the value of γAtt pro-

duces a stronger attraction and should in principle give rise to a more cohesive group. How-

ever, we found that an optimal value of the attraction strength exists, g�Att � 0:5, for which the

distance to the nearest neighbor is minimal. This means that, above g�Att, increasing γAtt leads

to an increase in the distance to the nearest neighbor, which is a clear indicator that cohesion

begins to weaken. We have calculated this optimal value for γAli 2 [0, 0.3], finding that it is

more or less the same.

The second remarkable result is that significantly high values of polarization (P> 0.5 in Fig

3B and 3E and milling (M> 0.4 in Fig 3C and 3F) are observed in wide regions of the parame-

ter space. This result shows that groups of fish are able to display the characteristic collective

behaviors of schooling and milling, even if each fish only interacts with their most influential

neighbor. Both the schooling and milling regions are mostly contained in the region of high

cohesion, although the schooling region seems to slightly overlap with the dispersion region

when γAtt is small. This corresponds to situations where the group is initially aligned (attrac-

tion is weak, so interaction is mostly alignment) and then splits in several subgroups. Although

fish move away from each other, they remain more or less aligned inside each subgroup and

also with respect to other subgroups, due to the persistence of the initial alignment, thus con-

tributing to produce high values of P(t). As mentioned above for the region of dispersion, lon-

ger simulations would give rise to a lost of this persistence and thus to the shrinking of the

region of high polarization, reducing it to the points contained in the white region of disper-

sion in Fig 3A.

We performed a series of very long simulations of our model for values of γAtt and γAli

across the region of high polarization in Fig 3B, that is, for γAtt going from 0.026 to 0.06 and

for a fixed value of γAli = 0.2 (20 times longer simulations, until t = 20.000 s, each point is the

average of 100 runs). S4 Fig shows that the polarization is maximal and remains at its highest

value P� 0.85 for a small interval of the attraction strength γAtt 2 [0.034, 0.04]. Outside this

interval, high polarization is lost, and this occurs in two different ways, depending on if γAtt is

smaller or higher than the values contained in this interval. For values of γAtt below 0.034, the
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polarization decreases because the attraction strength is so small that the group splits in sub-

groups (S5 Fig). Even if fish may be still aligned inside each subgroup, they are not necessarily

aligned with fish from other subgroups, and consequently the polarization of the total group

decreases. For values of γAtt higher than 0.04, the attraction strength is sufficiently high to

maintain the group cohesive (there is only one group, as shown in S5 Fig). In turn, this strong

attraction makes the fish to rotate excessively towards their neighbor, thus unbalancing the

alignment between fish and consequently the polarization of the group. This effect is stronger

the higher γAtt is, and is a direct consequence of the discrete nature of the model. For larger

values of γAtt, above 0.06, the polarization has disappeared and the group is in a swarming

state.

The transition from high to low polarization as γAtt decreases depends on the duration of

the simulations. Each line in S4 Fig represents more than 5 hours of real swimming of the

whole fish group, a time during which environmental conditions are expected to vary consid-

erably, at least in light and temperature. In Fig 3 (and the rest of simulations in the paper),

each point is the result of simulations of *16.6 minutes of swimming time, a reasonable time

duration during which changes in environmental conditions are considered as not affecting

fish behavior.

The schooling region also overlaps with the milling region, meaning that both P and M
have high average values for the same combination of parameters. This corresponds to situa-

tions where the group alternates between schooling and milling, and where wide turns (of

radius equal to several times the radius of the group) can also be observed.

In order to analyze the relative size and location of the collective phases and to describe the

impact of the interaction strategies and the other parameters on these behavioral phases, we

synthesize the information in a phase diagram that puts together the distinct behavioral phases

(see Fig 3).

We define the following four phases of collective behavior:

I). P� 0.4 and M� 0.4 correspond to the SCHOOLING phase, in red.

II). P� 0.4 and M� 0.4 correspond to the MILLING phase, in blue.

I-II). P> 0.4 and M> 0.4 correspond to the INTERMITTENT region, in cyan.

III). P< 0.4 and M< 0.4 correspond to the SWARMING phase, in green.

The typical behavioral patterns displayed by the group in each of the four phases are illus-

trated in Fig 4A and in S3–S7 Videos.

Fig 4 shows the resulting phase diagram corresponding to each strategy in Panels B and C,

with the borders of the regions overlaying the dispersion map in Panels D and E. Phase dia-

grams are centered on the region of interest, (γAtt, γAli) 2 [0, 0.08] × [0, 0.4], using the same

scale for both strategies k = 1 and k = 2.

Fig 4B shows that the SCHOOLING and MILLING phases are precisely located in the zone

between the region of high dispersion (gray region) and the region of high cohesion (green).

When attraction is too small, fish are dispersed. When the attraction is larger than γAtt� 0.03

for k = 1 (Fig 4D) and γAtt� 0.015 for k = 2 (Fig 4E), fish reaction to its neighbor becomes suf-

ficiently strong to coordinate collective movements, whose particular form depends on the

intensity of the alignment.

Let us describe first the case k = 1 for growing values of γAtt. For γAtt� 0.03 and 0.01< γAli

< 0.1, the fish turn around their barycenter in a typical milling formation shown in Fig 4A; for

0.12< γAli < 0.3, the strength of the alignment induces the fish to swim almost all in the same

direction, producing a fish schooling formation (Fig 4A(I)). For higher values of the alignment
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strength (i.e., when γAli > 0.3), the school is disorganized and forms a swarm (Fig 4A(III)).

Indeed, because of the discrete nature of the model, when the intensity of the alignment

becomes too strong, the heading change of the focal fish becomes too large and effectively ran-

dom, which leads to a decrease in the group polarization and even to a dispersion of the group

for γAli of order 1.

Larger values of γAli, not appearing in the phase diagram, correspond to the transition to

the slow dispersion region described above. For given values of γAli in the narrow interval

[0.12, 0.13], the group alternates milling and schooling along time. Intermediate states appear,

in which fish are more or less aligned, forming a curved group that describes wide turns of a

radius larger than several times the width of the group when it is in a milling formation. In

both phases, these intervals of γAli become smaller as larger values of γAtt are considered. Thus,

Fig 4. Impact of interaction strategies on collective states. (A) Spatial configuration of the characteristic collective

states displayed by a group of N = 100 fish when each fish interacts with its most influential neighbor (k = 1). (BC)

Phase diagrams showing four distinct behavioral regions: SCHOOLING (I) in red, with highly polarized group (P> 0.4,

M< 0.4), MILLING (II) in blue, with low polarized group frequently displaying milling behavior (P< 0.4, M> 0.4),

SWARMING (III) in green, with small polarization and milling (P< 0.4, M< 0.4), intermittence between schooling and

milling (I-II) in cyan (P> 0.4, M> 0.4) when fish interact with their most influential neighbor (B) and their two most

influential neighbors (C). Gray regions correspond to excessively weak or excessively strong interactions, giving rise to

fish dispersion (D> 5 m). Boundary between high dispersion region and swarming region (both in uniform color) is

determined by the transition layer from high to low dispersion shown in Panels D and E. (DE): Contour lines of the

collective behavior phases shown in Panels (BC), overlaying the dispersion map, from green (low dispersion) to gray

(high dispersion). In panel (D), small circles denote the combination of parameters (γAtt, γAli) corresponding to the

time series shown in Fig 5, and yellow lines denote the vertical and horizontal cuts described in Fig 6. Social interaction

ranges are lAtt = lAli = 0.28 m, intensity of random fluctuation (noise) is γR = 0.2.

https://doi.org/10.1371/journal.pcbi.1009437.g004
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the SCHOOLING phase lasts until γAtt� 0.05 for γAli� 0.2, and the MILLING phase goes up to γAtt

� 0.065 for γAli� 0.05. The transition from schooling and milling phases to the swarming

phase results from the unbalance of attraction and alignment interactions. For instance, when

attraction is too strong, or, equivalently, alignment is too weak, fish turn excessively towards

their neighbors, in detriment of the alignment required to preserve group configuration. For

larger values of γAtt, not appearing in the phase diagram, we find a region of slow dispersion

where fish move as if their heading angle varies in a random way.

Extending the number of interacting neighbors from k = 1 to 2 strongly reduces the size of

the MILLING phase, which shrinks in width from about 0.045 to about 0.022 and in height from

0.1 to 0.026 (Fig 4C). This is due to the fact that fish now pay attention to two neighbors, thus

destabilizing the milling formation, in benefit of the schooling formation, which absorbs most

of the milling region. The SCHOOLING phase is indeed much wider than when k = 1, growing in

width from 0.02 to 0.065, for almost the same height of about 0.15, but for a smaller range of

the alignment: when k = 1, schooling takes place for γAli 2 [0.125, 0.3], while when k = 2,

schooling appears when γAli 2 [0.025, 0.2].

In order to understand how the transition between collective states take place, we explored

in detail the time series of the three observables D(t), P(t), and M(t), in a number of representa-

tive cases. Fig 5 shows the time series of polarization (red) and milling (blue) for the four sets

of parameters (γAtt, γAli) represented in Fig 4D, one for each distinct behavioral phase. Panels

A, B, and D of Fig 5 clearly correspond to what is expected from the phase diagram. Note that

these time series are 5 times longer than those used to calculate the average values plotted in

Fig 5. Time series of polarization (red line) and milling (blue line), representative of each characteristic collective state by a group of N = 100 fish when each

fish only interacts with its most influential neighbor (k = 1). (A) SCHOOLING state: (γAtt, γAli) = (0.04, 0.2), high polarization P(t)� 0.9, low milling M(t)� 0.22. (B)

MILLING state: (γAtt, γAli) = (0.05, 0.05), low polarization P(t)� 0.16, high milling M(t)� 0.6. (C) Intermittent state: (γAtt, γAli) = (0.033, 0.11), region where high

polarization and high milling alternate: P(t)� 0.98 with M(t)� 0.22, and P(t)� 0.18 with M(t)� 0.6. (D) SWARMING state: (γAtt, γAli) = (0.06, 0.125), low values of

both polarization and milling: P(t)� 0.2, M(t)� 0.2. Social interaction ranges are lAtt = lAli = 0.28 m, intensity of random fluctuation (noise) is γR = 0.2. Time

interval is [0, 10000] s, i.e., more than 2.5 hours.

https://doi.org/10.1371/journal.pcbi.1009437.g005
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the phase diagram. Less obvious is what happens in the transition region between schooling

and milling. Panel C indicates that different collective states can emerge with the same set of

parameters, and that the averaging process used to draw the phase diagram can hide complex

combinations of patterns.

In order to explore how frequent these patterns of bistability are, we computed the proba-

bility density functions (PDF) of polarization and milling along three cuts crossing the identi-

fied phases regions in Fig 4D (yellow lines): one vertical cut at γAtt = 0.0325, and two

horizontal cuts at γAli = 0.2 and γAli = 0.05. The PDFs are calculated over the 20 runs of 2000

kicks per fish, initial transient excluded.

Fig 6 shows the resulting PDFs, with the mean value depicted in the phase diagram super-

imposed to each PDF. Panels A and B show respectively the PDF of polarization and milling

along the vertical cut for γAli 2 [0, 0.4]. Each phase is clearly recognizable: MILLING phase for

0.02< γAli < 0.08 (low values of P below 0.15, high values of M above 0.5 and up to 0.8),

SCHOOLING phase for 0.14< γAli < 0.28 (high values of P above 0.5 and up to 0.9, low values of

M below 0.18), and SWARMING phase for γAli < 0.02 and γAli > 0.3 (values of P below 0.5 and

values of M below 0.2). One can notice a first sharp transition to milling state at γAli� 0.02,

then milling decreases until γAli� 0.1, and then there is another sharp transition to schooling

state at γAli� 0.12.

In the SCHOOLING phase, the level of polarization is smaller for higher values of the alignment

strength. This is a consequence of the higher amplitude that angular changes have in the swim-

ming direction of fish when γAli is high, thus decreasing the group polarization. This effect,

which at first glance may appear paradoxical, reveals the impact on collective behaviors of a

burst-and-coast swimming mode in which there is a discontinuous influence of social interac-

tions on the direction of swimming of fish.

For larger values of the alignment strength (i.e., when γAli > 0.3), the heading angle change

δϕ is so large that fish turn excessively and can hardly synchronize their movements with their

neighbors, making the group to adopt a swarming phase.

Of particular interest is the intermediate region where 0.08< γAli < 0.14 (see Fig 6A and

6B). There, the PDFs of both P and M exhibit two peaks, thus revealing the alternation between

the high polarization and high milling intervals, as shown in the time series in Fig 5C. More-

over, the polarization is higher in this intermittent region (P� 0.95) than in the pure schooling

phase (P� 0.85).

Phases are equally easily identifiable in the horizontal cuts (Fig 6C–6F). No ordered phases

appear when the strength of attraction is too small (i.e., when γAtt < 0.02), for both values of

γAli. The SCHOOLING phase shows a high value of P� 0.85 from γAtt� 0.028 to 0.048, where the

PDFs start to exhibit a second wide peak at low values of P� 0.2, corresponding to the transi-

tion from the schooling phase to the SWARMING phase. The MILLING phase, crossed by the lower

horizontal cut, starts at a higher value of γAtt� 0.032, and spans a wider interval up to γAtt�

0.064, where, as for the schooling phase, the transition to the SWARMING phase starts.

It is remarkable that cohesive and even ordered (schooling; milling) collective phases are

obtained when fish only interact with their most influential neighbor (k = 1), whereas only

interacting with the nearest neighbor would not even permit the cohesiveness of the school, as

shown in [60]. In S6 and S7 Figs, we respectively show the PDF of the number of different

most influential neighbors (DMIN) and of the number of different first nearest neighbors

(DFNN), at any given time, for a school of N = 100 fish, and for interaction parameters chosen

deep in the 3 different collective phases (swarming; schooling; milling). Note that for a physical

attractive interaction only depending on the distance between interacting particles (like grav-

ity), DFNN would exactly coincide with the DMIN. We find that the mean number of DMIN

(39 for schooling and swarming states; 46 for the milling state) is very significantly smaller
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γ γ

γ γ

γ γ
Fig 6. Polarization (red) and milling (blue) probability distribution functions and mean values (solid lines) along one vertical

and two horizontal cuts of the phase diagram for the case k = 1. (AB) Vertical cut at γAtt = 0.0325, (CD) Horizontal cut at γAli =

0.2, and (EF) Horizontal cut at γAli = 0.05. Each vertical line is the probability distribution function (PDF) of the corresponding value

of the parameter shown in the x-axis, for the parameter of each figure. Color intensity is proportional to the frequence of a value in

the vertical axis. Solid lines are the corresponding mean value of each PDF. Interaction ranges are lAtt = lAli = 0.28 m and noise

intensity is γR = 0.2.

https://doi.org/10.1371/journal.pcbi.1009437.g006
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than the number of DFNN (mean 71 in the 3 collective phases), showing that a typical DMIN

is linked (and interacts) with more fish than a DFNN (2.2–2.6 fish linked to each DMIN; 1.4

fish linked to each DFNN). Therefore, the dynamical notion of most influential neighbors is

more effective at propagating information within the school, and hence ensuring cohesiveness

and a possible long-range order (schooling and milling). Interestingly, the milling phase is

characterized by more DMIN than the 2 other phases (which are indiscernible under this crite-

rion), possibly because more information exchange within the school is needed to ensure the

cohesiveness, alignment, and collective rotation of the school.

In summary, small variations of the parameter values that control the intensity of attraction

and alignment lead to sharp changes in collective states that emerge at the group level. Further-

more, each of the two parameters γAtt and γAli can independently control the emergence of the

schooling and milling phases in certain ranges of their value. In other words, both attraction

and alignment interactions can have a synergistic effect on the stability of the different collec-

tive states. In addition, and confirming some results obtained in [60], the notion of most influ-

ential neighbors (compared to the more naive notion of nearest neighbors) is crucial to ensure

the existence of cohesive and even ordered states within interacting rules only involving a very

few fish (1 or 2). As already discussed in [60], the biological relevance of this notion of most

influential neighbors could emerge from cognitive processes filtering the environment of real

fish.

3.2 Impact of interaction ranges and individual behavioral fluctuations on

the collective states

The typical range of action of social interactions and the amplitude of fluctuations in the spon-

taneous behavior of fish are key parameters that affect the collective state of the group. For

given values of γAtt and γAli, both the module and the range of the social interaction functions

FAtt and FAli depend on the respective parameters lAtt and lAli (see Fig 2B). We consider the

case where lAtt = lAli, and refer to the interaction ranges by means of the single variable lAtt.

The intensity of γR reflects the amplitude of spontaneous decisions of the fish to change its

heading; intuitively, the group will tend to be more coordinated with smaller values of γR, i.e.,

high values of spontaneous fluctuations in the individual behavior will counterbalance the

effect of social interaction and the ability of the group to self-organize into ordered phases.

We thus analyze the impact that the interaction range and the fluctuations in the spontane-

ous behavior on the relative size and location of the collective states for both social interaction

strategies. In the previous section, we focused on the particular case where lAtt = lAli = 0.28 m

and γR = 0.2, where collective phases are clearly recognizable and have similar size. Experimen-

tal data corresponding to pairs of H. rhodostomus swimming in a circular tank have close but

slightly different values, lAtt = lAli = 0.2 m and γR = 0.45 [44]. In larger groups, fish have a

strong tendency to conform to the speed and direction of motion of the group, so that the indi-

vidual spontaneous fluctuations of heading direction have a smaller amplitude [40, 51]. We

thus present the results for five values of lAtt and lAli around the value found for pairs of H. rho-
dostomus, 0.16, 0.2, 0.24, 0.28 and 0.32, for the value of γR = 0.45 found for H. rhodostomus
and an additional intermediate value γR = 0.3.

Fig 7 shows the combined effects of lAtt and γR on collective states when fish interact with

their k = 1 or k = 2 most influential neighbors.

As expected, increasing the amplitude of spontaneous fluctuation in the individual behavior

(cognitive noise) reduces the extent of the ordered phases (schooling and milling) and even

leads to their complete disappearance, for all values of lAtt and both k = 1 and k = 2. The MILL-

ING phase shrinks and disappears whatever the value of lAtt in Fig 7 as γR grows for both k = 1
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and k = 2, and only a small SCHOOLING phase remains for k = 2 when γR = 0.45. High noise val-

ues at the individual scale also lead to the shrinking of the SWARMING phase when k = 1,

although this effect weakens for larger values of lAtt and is only slightly perceptible when k = 2.

As observed in the previous section, paying attention to the second most influential neigh-

bor contributes to the shrinking of the MILLING phase, in benefit of a wider SCHOOLING phase.

For each combination of lAtt and γR, the blue region gets smaller and the red region larger

when k = 2.

Increasing the ranges of social interaction (lAtt and lAli) amounts first to increase the inten-

sity of the attraction. This effect is clearly visible in the reduction of the dispersion region (fig-

ured in gray): fish remain cohesive for a wider range of values of γAtt; see, e.g., column 1 for

k = 1 and γR = 0.2, where the transition layer between the dispersive and swarming regions

γ
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γ γ γ

γ

γ γ γ

γ

●

γ

γ

γ

γ γ γ

Fig 7. Phase diagrams for k = 1 and 2 for different combinations of the interaction ranges lAtt = lAli and the intensity of random fluctuations γR. Each row

corresponds to a given value of the interaction range; from top to bottom: lAtt = lAli = 0.16, 0.2, 0.24, 0.28, and 0.32 m. Each column corresponds to a given value of

random fluctuations; from left to right: γR = 0.2, 0.3, and 0.45. Color phases are SCHOOLING in red (P> 0.4), MILLING in blue (M> 0.4), and SWARMING in green. Cyan

color corresponds to P> 0.4 and M> 0.4. Gray color corresponds to region of high dispersion (D> 5 m). Values estimated from experiments with pairs of

H. rhodostomus swimming in a small circular tank are lAtt = lAli = 0.2 m and γR = 0.45, marked with a yellow dot in the second row and columns 1 (k = 1) and

4 (k = 2). We used a fine discretization with Δγ = 10−2 on both axes.

https://doi.org/10.1371/journal.pcbi.1009437.g007
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moves to the left from γAtt� 0.13 for lAtt = 0.16 m to γAtt� 0.03 for lAtt = 0.32 m. See S1 Fig

for the continuous dispersion map detailing this transition layer for the same conditions.

When k = 1, only the transition towards small values of γAtt appears in the depicted portion of

the phase planes.

For k = 2, the same effect is visible in the transition layer when γAli is smaller than 0.3,

which is the region where the group is still cohesive; see Fig 4E, where higher values of the dis-

persion (represented by a darker shadow of green) appears precisely above γAli = 0.3, and col-

umns 4, 5, and 6 in S1 Fig. For the higher values of lAtt, in the upper region of the phase

diagram, the dispersion dominates because the combined effect of attraction and alignment to

the heading angle change δϕ in Eq 4 makes the fish to rotate randomly so that they move as

random walkers, thus breaking any residual coordination in the fish movements. S1 Fig shows

clearly the wide transition from swarming to dispersion in the upper-right part of the phase

planes, especially when lAtt, lAli, and γR are large.

The shift to the left of the transition layer as lAtt grows is accompanied by the same shift to

the left of the SCHOOLING and MILLING phases. As explained in the previous section, increasing

the attraction strength reduces the range of milling, so increasing lAtt has the same effect,

clearly visible in, e.g., column 1 for k = 1, where the height of the MILLING phase decreases from

0.25 (at γAtt� 0.11) to less than 0.1 (at γAtt� 0.03). This effect is visible for all values of γR and

both k = 1 and 2.

The same effect is also found in the transition from the SCHOOLING phase to the SWARMING

phase as γAtt grows, that is, to the right of the red region. Note that, for these phase

diagrams, increasing lAtt also means that lAli increases the same way, so the alignment force

becomes stronger; see column 4, for k = 2, where the width of the red phase decreases from

0.1 (at γAli� 0.1) to 0.04 (at γAli� 0.07).

Larger values of lAtt also amounts to larger interaction ranges (both in attraction and align-

ment). The impact of this effect is however more difficult to perceive on the phase diagrams.

One could think that increasing the interaction range in a milling state would imply that

fish can pay attention to neighbors that are further away but have a relative orientation that

induces a stronger influence, so that the milling state turns into the schooling state. Finally,

when k = 2, for the same value of the amplitude of the individual fluctuations, the increase in

the interaction range reduces the areas of the parameter space that lead to ordered phases. The

extent of the schooling and milling phases decreases as lAtt and lAli increase, and these collec-

tive states only exist for low values of attraction and alignment.

3.3 Impact of group size on the collective states

In this section, we investigate the impact of the group size N on the collective states. We

perform a series of simulations for N = 25, 50, 100, and 200 fish at fixed lAtt = lAli = 0.28 m and

γR = 0.2 for both k = 1 and k = 2, the same values used for the illustrative case shown in Figs 3

to 6.

Fig 8 shows the phase diagrams corresponding to these conditions. The first observation is

that both the SCHOOLING and MILLING phases appear for all group sizes and social interaction

strategies. In all cases, the dispersion region remains relatively small in the space of parameter

values used in previous sections, (γAtt, γAli) 2 [0, 0.14] × [0, 0.4]. For each strategy, the transi-

tion between the dispersion region and the SWARMING phase is located at more or less the same

place, γAtt� 0.04 when k = 1 and γAtt� 0.02 when k = 2, and, as in previous section, is where

the schooling and milling patterns emerge.

When k = 1, the SCHOOLING phase is quite large for N = 25, meaning that the burst-and-

coast swimming mode is quite able to preserve the schooling formation in such relatively small
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groups. Increasing group size by a factor 2 reduces the width of the schooling phase by approx-

imately the same factor: 0.1, 0.06, 0.02, and 0.01 for the successive panels in the first row of

Fig 8. The height of the schooling region is also reduced but only moderately (0.32, 0.26, 0.2

and 0.2, although a finer discretization would have been necessary here). This means that pre-

serving a schooling formation is more difficult in large groups when individuals use such a dis-

crete and asynchronous swimming mode.

Most of the region of the parameters that leads to the schooling state in small groups size

shrinks and is replaced by the swarming state as N become larger. In parallel, the region lead-

ing to a milling state grows. This feature is however in line with the fact that the milling pattern

requires minimal group size to emerge [62].

The same observation holds when k = 2. However, as group size increases, the shrinking of

the region of schooling state and the appearance of milling state in the lower part of that region

are not as pronounced as when k = 1. Passing from k = 1 to k = 2 also strongly reduces the

range of values of the alignment strength that give rise to ordered phases (e.g., from 0.36 to

0.22 for N = 25 and from 0.34 to 0.18 for N = 50). In turn, the range of values of the attraction

strength γAtt for which schooling patterns emerge becomes smaller in small groups and

increases with group size: for N = 25, the width of the schooling region is smaller when k = 2

than when k = 1, it is the same for both k = 1 and k = 2 when N = 50, and the relation is

reversed in larger groups N = 100 and 200, due to the fact that the reduction of the width of the

schooling region as N grows is smaller when k = 2. Finally, the transition from swarming to

dispersion when γAli is large (above 0.3) is more abrupt in larger groups; see the continuous

dispersion map in S2 Fig, where the smooth transition shown for N = 100 (slowly decaying as

γAli grows from 0.3 to 0.4) becomes sharp for N = 200.

Fig 8. Phase diagrams for k = 1 and k = 2 and different group sizes. SCHOOLING (P> 0.4, in red), MILLING (M> 0.4, in blue) and SWARMING (green) phases. Cyan

regions correspond to P> 0.4 and M> 0.4, and gray region to high dispersion (D> 7 m). Group sizes are, from left to right, N = 25, 50, 100, and 200 fish. First row:

k = 1, second row: k = 2. We used lAtt = lAli = 0.28 m and γR = 0.2, as for Figs 3 to 6.

https://doi.org/10.1371/journal.pcbi.1009437.g008
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4 Discussion

Social interactions play a key role in the ability of groups of individuals to achieve coordinated

movements [1, 2, 11, 13]. Identifying these interactions, measuring their effects on individual

behavior, and determining the conditions under which they can lead to coordination in a

group of individuals are crucial steps to understand collective motion in social groups [63].

Social interactions have been shown to be the result of genetic, epigenetic, endocrine, and neu-

ral mechanisms [64–66]. The effect of social interactions on individual behavior is also modu-

lated by different environmental parameters, such as light intensity or water turbidity, that

directly affect the range of perception of individuals [46, 67–69]. Finally, the information pro-

cessing abilities of individuals also deeply impact the effects of these social interactions on col-

lective behaviors that will emerge at the group level [54, 55, 57, 58].

Here we use a data-driven fish school model to quantitatively investigate the impact of per-

ceptual and cognitive factors at the individual level on coordination and the patterns of collec-

tive movements. This model that describes the interactions involved in the coordination of

burst-and-coast swimming in groups of H. rhodostomus has the double advantage of being

based on the quantitative characterization of social interactions between fish and their modu-

lation according to the distance, the viewing angle, and the relative orientation between indi-

viduals, and of having been validated by experiments with small group sizes [44, 60].

Our results provide a comprehensive understanding of the conditions under which specific

collective phases emerge as a function of (1) the way individual fish integrate and respond to

the social information conveyed by their conspecifics (i.e., the intensity and spatial range of

interactions and the number of influential neighbors), (2) the size of the group, and finally

(3) the intensity of random individual behavioral fluctuations. Note that for a given species,

these corresponding effective interaction parameters could depend on the age of the fish, their

activity, and their environment (water turbidity, light intensity, and hence, time of the day. . .),

which, in addition to the clear theoretical interest, motivated us to study the general phase dia-

gram of our model.

We first find that fish schools remain highly cohesive over a broad range of parameters’ val-

ues, notwithstanding the discrete and asynchronous burst-and-coast swimming mode. How-

ever, whatever the interaction range, the number of influential neighbors selected by fish, and

the group size, there must exist a minimal attraction between fish to maintain group cohesion,

and a minimal level of alignment is also required to allow the formation of collective patterns

such as schooling and milling.

Surprisingly, stronger social interactions do not always enhance group cohesion and coor-

dination: fish school can be less cohesive for high values of attraction and alignment interac-

tions. This phenomenon is quite different from the typical dynamics observed in models with

continuous updating rules, in which cohesion and polarization both increase with the intensity

of social interactions [31, 62]. Indeed, when a fish chooses its new heading direction at the

onset of a kick, high values of γAtt and γAli can induce large turning angles. Now, when the

angle of deviation is of order π, this is in fact equivalent to a situation in which a fish chooses

its new heading angle randomly. Thus, when the intensity of social interactions becomes too

strong, fish move like solitary random walkers, producing a “desocializing” effect that leads to

fish dispersion.

This effect is amplified by the number of neighbors with which individuals interact. Consid-

ering more influential neighbors amounts to add more social contributions to the instanta-

neous angle change δϕ in Eq (5); if these contributions are high and have the same sign, the

final value of |δϕ| can more easily be larger than π. The same happens when the intensity of the

individual behavioral fluctuations is high. In that case, a large value of γR is added to the
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contribution to the instantaneous angle change δϕ in Eq (4), which leads |δϕ| to be larger than

π, thus resulting in the dispersion of fish. Considering the selection pressure in natural condi-

tions, especially under the predator threat, it is likely that the intensity of social interactions

has been tuned so that a group can end up in the cohesive region of the phase diagram where

its benefits from better adaptiveness by being able to adopt various collective states [70–72].

Social interactions between fish contribute to the spatial organization of the school [73]. By

positioning themselves and tuning their headings with respect to their neighbors with indepen-

dent interactions, individual fish coordinate their collective movements. In the phase diagram,

our simulation results have shown that these collective behaviors are located at a thin boundary

between a region where the fish disperse and a region of cohesion where the fish are mostly in

a swarming state, so that milling and schooling states appear as transition states from dispersed

to cohesive groups. This means that small variations in the strength of attraction and alignment

allow a school to quickly change from one collective state to another as a response to sudden

environmental changes. This is particularly visible at the boundary between the schooling and

milling. In that region of the parameter space, the school alternates periods of time during

which it is in a schooling state with other periods in which it is in a milling state, an intermit-

tent behavior that was also observed in a data-driven fish school model of Kuhlia mugil [62].

These highly coordinated collective states depend on the intensities of social interaction, which

could possibly be the result of adaptiveness to environmental stimuli. Indeed, it has been

shown that the presence of predators or alarm substances shape the alignment and attraction

response of individuals [70, 71, 74, 75], and increase the cohesion of fish schools [73, 76–78].

Moreover, these adaptive changes of social response are heritable and can be reinforced in the

offspring generation [72], thus enhancing the fitness of individuals in this species.

Our results also show that the main impact of interacting with the two most influential

neighbors is that the ordered phases appear for smaller strengths of attraction and alignment.

Moreover, when k = 2, the range of values of attraction intensity for which fish adopt a school-

ing phase is at least twice larger than the one found for k = 1, at the same time reducing the mill-

ing phase. Indeed, when k = 2, the two most influential neighbors are on average located on the

front of the focal fish; see S3 Fig. This means that the alignment forces exerted on fish by those

neighbors are very weak, so that the contribution of each neighbor to the value of δϕ in Eq (5) is

small and lead to small heading variation. This particular position of the most influential neigh-

bors facilitates the emergence and the stability of a schooling phase instead of a milling phase,

for which a preferred side of attraction is necessary to preserve the clockwise (or counterclock-

wise) direction of rotation of the school. We have checked this hypothesis at the micro-scale,

finding that there exists a strong difference between schooling or a milling state when one con-

sider the position of the most influential neighbors of fish (see S3 Fig). In the schooling state,

both influential neighbors are located at the front of the focal fish, while in the milling state,

they are mostly located on the sides of fish. Thus, the relative weight of the attraction and align-

ment interactions leads to different spatial distributions of the most influential neighbors,

which in turn conditions the collective phase which emerge at the scale of the school.

Finally, the maximum value of alignment intensity over which schooling appears when

k = 2 is 2/3 the value found when k = 1, meaning that when fish interact with their two most

influential neighbors, strong alignment leads to a disorganization of the schooling phase. This

is a consequence of the same mechanism described above in which |δϕ| reaches high values

and fish move like random walkers.

Our simulation results also reveal that individual behavioral fluctuations have two different

effects on the size and location of collective states in the phase diagram. On one hand, moder-

ate fluctuations can contribute to trigger spontaneous transitions between schooling and mill-

ing states. For instance, the transition from schooling to milling can be triggered by the abrupt
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turning of some individuals located in the front of the group (see S5 Video). Then, this change

in the moving direction propagates to other individuals through social interactions, so that the

whole group starts to rotate with a large radius of curvature. Then, when the individuals who

are in the front follow those who are in the back, the group forms a milling phase. Similar

mechanisms also happen in the milling-schooling transition, where the fish that trigger the

transition can be positioned on the group border (see S6 Video). These examples show that

spontaneous transition between schooling and milling can arise from random fluctuations in

the moving direction of some few individuals in the school. On the other hand, if the heading

fluctuations are too large, the ordered phases of schooling and milling can no longer be main-

tained and the school switches to a swarming phase. For even larger values of δϕR,i, |δϕ| in

Eq (4) can often become of order π, thus leading to group dispersion.

Moreover, for a given intensity of the individual behavioral fluctuations, our simulation

results indicate that increasing the interaction range (lAtt and lAli) has a similar impact on col-

lective dynamics as increasing the strengths of attraction and alignment. Thus, when the inter-

action range increases, the school remains cohesive and the schooling and milling states

appear for smaller values of γAtt and γAli. The dispersion due to high values of heading change

also occurs for smaller values of the strength of attraction and alignment. As a consequence,

the region of ordered states shrinks and shifts to the bottom-left of the parameter space. Tran-

sitions between swarming, schooling and milling can be induced by varying the interaction

ranges. This is indeed one of the ways used in the most common fish school models that imple-

ment repulsion, alignment and attraction rules through layered zones around each fish to get

different patterns of collective movements [16, 18, 20, 21]. Furthermore, interaction range is

tightly related to the sensory ability of fish. The visual system is the primary sensory modality

of fish [79, 80], higher visual acuity and wider visual coverage facilitate group cohesion and

polarity [66]. Specifically for H. rhodostomus, visual information is essential to enable attrac-

tion and alignment with neighbors and thus forming and maintaining schooling state [49].

Accordingly, collective states determined by different interaction ranges in the model corre-

spond to behavioral changes observed when the environment affects the sensory abilities of

the fish. This is related to the lower ability of fish to coordinate their behavior in turbid water,

which has been observed in many species [46–48].

We also find important differences in collective states caused by variations in group size.

We consider size variations in groups from 2 to 8 times larger. Each time the group size N is

doubled, the schooling region shrinks by a similar factor. For high values of attraction, school-

ing phase is replaced by the swarming phase, while for lower values of alignment, the schooling

phase is replaced by the milling phase. This effect is clearly visible when k = 1, but also happens

when k = 2. High polarization requires that most of the N fish have the same orientation, i.e.,

the same heading angle. Heading variations from one fish to a close neighbor are typically

small, especially when fish are in a schooling state. If the number of fish is small, heading

changes of moderate amplitude can give rise to high polarization. However, in large groups,

heading variations between close fish can still be small, but heading differences between distant

fish can be very high. Such a disparity of orientations leads to low polarization and therefore to

the shrinking of the schooling region in the parameter space. This effect increases with group

size. More surprising is the extension of the milling region as group size increases. This result

is however in agreement with observations carried out on large fish schools: golden shiners

spend significantly more time in a milling state when they are in large groups than when they

are in small groups [32]. Our model also shows that H. rhodostomus display a schooling state

in rather small group sizes (25 individuals for k = 1) and a wide range of attraction and align-

ment strength, suggesting that burst-and-coast swimming mode provides some advantage for

coordination and control in small group sizes.
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The results obtained here for H. rhodostomus can be generalized to other species that per-

form the same burst-and-coast swimming mode. As recently shown in [45], zebrafish (Danio
rerio) can be described by a model with an identical structure as the H. rhodostomus model,

including the way of combining social interactions. The difference between both models, and

hence between both species, lies in the actual quantitative shape of the social interaction func-

tions. In particular, the interaction ranges in H. rhodostomus are much larger than in D. rerio,

which can be related to the more social general behavior presented by H. rhodostomus. These

results show the importance of understanding and characterizing the social interactions in dif-

ferent species that are involved in swimming coordination to better understand the similarities

and differences between these coordination mechanisms and the potential impact of ecological

constraints on them.

In summary, we have shown that non-trivial collective states can be obtained in a realistic—

discrete and asynchronous—model for fish displaying a burst-and-coast swimming mode, and

only involving the interaction with 1 or 2 most influential neighbors. Social interactions medi-

ated and constrained by individuals’ sensory and cognitive abilities deeply influence collective

behaviors that emerge at the group level. By identifying highly synchronized and stable collec-

tive states in the parameter space, our results suggest that social responses can be dynamically

adjusted in various environmental situations, potentially conferring the social group higher fit-

ness and adaptiveness.

Supporting information

S1 Video. Identification of the most influential neighbor in a simulation of a school of fish

interacting with their most influential neighbor (k = 1). Individual fish are represented by

solid black triangles and vertices indicate the current moving directions. The focal fish is repre-

sented in red and its most influential neighbor is represented in dark blue. The video has been

slowed down by a factor of 10.

(MP4)

S2 Video. Identification of the most influential neighbor in a simulation of a school of fish

interacting with their two most influential neighbors (k = 2). Individual fish are represented

by solid black triangles and vertices indicate the current moving directions. The focal fish is

represented in red, its most influential neighbor is represented in dark blue, and its second

most influential neighbor is represented in light blue. The video has been slowed down by a

factor of 10.

(MP4)

S3 Video. Schooling state in the fish school model. Representative example of schooling state

corresponding to Fig 4A(I) in a simulation of a school of a hundred fish interacting with their

most influential neighbor (k = 1). Individual fish are represented by solid black triangles and

vertices indicate the current moving directions. Trajectories show the successive positions of

individuals over the past 1 s.

(MP4)

S4 Video. Milling state in the fish school model. Representative example of milling state cor-

responding to Fig 4A(II) in a simulation of a school of a hundred fish interacting with their

most influential neighbor (k = 1). Individual fish are represented by solid black triangles and

vertices indicate the current moving directions. Trajectories show the successive positions of

individuals over the past 1 s.

(MP4)
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S5 Video. Transition from schooling state to milling state in the fish school model. The

representative transition corresponds to Fig 4A(I) and 4A(II) in a simulation of a school of a

hundred fish interacting with their most influential neighbor (k = 1). Individual fish are repre-

sented by solid black triangles and vertices indicate the current moving directions. Trajectories

show the successive positions of individuals over the past 1 s.

(MP4)

S6 Video. Transition from milling state to schooling state in the fish school model. The

representative transition corresponds to Fig 4A(I) and 4A(II) in a simulation of a school of a

hundred fish interacting with their most influential neighbor (k = 1). Individual fish are repre-

sented by solid black triangles and vertices indicate the current moving directions. Trajectories

show the successive positions of individuals over the past 1 s.

(MP4)

S7 Video. Swarming state in the fish school model. The representative transition corre-

sponds to Fig 4A(III) in a simulation of a school of a hundred fish interacting with their most

influential neighbor (k = 1). Individual fish are represented by solid black triangles and vertices

indicate the current moving directions. Trajectories show the successive positions of individu-

als over the past 1 s.

(MP4)

S1 Fig. Dispersion maps for k = 1 and 2 for different combinations of the interaction

ranges lAtt = lAli and the intensity of random fluctuations γR. Each row corresponds to a

given value of the interaction range; from top to bottom: lAtt = lAli = 0.16, 0.2, 0.24, 0.28, and

0.32 m. Each column corresponds to a given value of random fluctuations; from left to right:

γR = 0.2, 0.3, and 0.45. Gray color corresponds to high dispersion (D> 1 m), green color to

swarming phase. Intermediate color from gray to green correspond to the transition layer

from dispersion to swarming. Values extracted from experiments with pairs of H. rhodostomus
swimming in a small circular tank are lAtt = lAli = 0.2 m and γR = 0.45, denoted by a yellow dot

in second row, columns 1 (k = 1) and 4 (k = 2). Figures appear pixelized because simulations

are extremely long. We used a fine discretization with Δγ = 10−2 in both axes.

(TIF)

S2 Fig. Dispersion maps for different group sizes for k = 1 and k = 2. Gray color corre-

sponds to region of high dispersion (D> 0.7 m), green color to swarming phase. Intermediate

color from gray to green correspond to the transition layer from dispersion to swarming.

Group sizes are, from left to right, N = 25, 50, 100, and 200 fish. First row: k = 1, second row:

k = 2. We used lAtt = lAli = 0.28 m and γR = 0.2, as for Figs 3 to 6.

(TIF)

S3 Fig. Density maps of the relative position of the most influential neighbors of fish when

they perform a kick. (ABC) Density maps of the relative position of the most influential

neighbor of a fish when k = 1 in (A) the schooling state (γAtt = 0.03, γAli = 0.2), (B) the

milling state (γAtt = 0.04, γAli = 0.04), and (C) the swarming state (γAtt = 0.1, γAli = 0.05). (D–I)

Density maps of the relative position of (DEF) the most influential neighbor and (GHI)

the second most influential neighbor of a fish, when k = 2, in (DG) the schooling state

(γAtt = 0.02, γAli = 0.1), (EH) the milling state (γAtt = 0.02, γAli = 0.025), and (FI) the swarming

state (γAtt = 0.1, γAli = 0.05). Each subgraph corresponds to the average of 2 runs, each run last-

ing about 1000 s (corresponding to 2000 kicks per fish), in which the first 200 s have been dis-

carded. Bin size is 0.01 × 0.01 m2. The focal fish is represented by a short red line located at the
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origin (0, 0) and whose heading is pointing to the north. For all cases, N = 100, lAtt = lAli = 0.28

m, and γR = 0.2.

(TIF)

S4 Fig. Time evolution of the mean polarization along extremely long runs for a growing

attraction strength γAtt across the schooling phase. Each line is the mean polarization of the

whole groups of N = 100 fish, averaged over 100 runs of 20.000 s of duration, for different val-

ues of γAtt 2 [0.026, 0.06], i.e., across the schooling region shown in Fig 4, for γAli = 0.2. Line

color denotes the phase region in which the point (γAtt, γAli) is located. Time instants are plot-

ted only each 100 times. The value γAtt = 0.034 seems to be the threshold of the attraction

strength below which the curve of the polarization decreases more or less rapidly to the value

of no polarization (� 0.1), and above which the curve seems to remain constant in time, at a

smaller height at larger values of γAtt.

(TIF)

S5 Fig. Time evolution of the mean number of 3-groups along extremely long runs for a

growing attraction strength γAtt across the schooling phase. Each line is the mean number

of 3-groups averaged over 100 runs of 20.000 s of duration, for different values of γAtt 2 [0.026,

0.06], i.e., across the schooling region shown in Fig 4, for γAli = 0.2. Line color denotes the

phase region in which the point (γAtt, γAli) is located. The partition of the N fish into 3-groups

is done recursively: start with a fish i and put in its group its three nearest neighbors, then the

three nearest neighbors of each nearest neighbor of i, and so on. When all the new neighbors

of an iteration are already in the group, this 3-group is completed. Take another fish j which is

not in a previous 3-group and repeat the process. Once all individuals belong to a 3-group,

stop the process and count the number of 3-groups.

(TIF)

S6 Fig. Probability distribution functions (PDF; solid lines) and corresponding mean val-

ues (dashed vertical lines) of the number of different most influential neighbors at a given

time in the three collective states, for the case k = 1. (A) Schooling state: γAtt = 0.035, γAli =

0.2; (B) Milling state: γAtt = 0.04, γAli = 0.05; (C) Swarming state: γAtt = 0.07, γAli = 0.1. PDFs

and mean values are derived from 30 simulation runs, each of 1000 s duration, and sampled at

each second in the time interval [200, 1000] (30 800 = 24000 data sampled per graph, leading

to an uncertainty for the corresponding mean of order 0.1%). For all cases, the group size is

N = 100, the intensity of random fluctuation is γR = 0.2, and the social interaction ranges are

lAli = lAli = 0.28 m. We note that there are significantly more different most influential neigh-

bors in the milling state (mean close to 46) than in the 2 other states (mean around 39).

(TIF)

S7 Fig. Probability distribution functions (PDF; solid lines) and corresponding mean val-

ues (dashed vertical lines) of the number of different nearest neighbors at a given time in

the three collective states, for the case k = 1. (A) Schooling state: γAtt = 0.035, γAli = 0.2; (B)

Milling state: γAtt = 0.04, γAli = 0.05; (C) Swarming state: γAtt = 0.07, γAli = 0.1. PDFs and mean

values are derived from 30 simulation runs, each of 1000 s duration, and sampled at each sec-

ond in the time interval [200, 1000] (24000 data sampled per graph; uncertainty for the corre-

sponding mean less than 0.1%). For all cases, the group size is N = 100, the intensity of random

fluctuation is γR = 0.2, and the social interaction ranges are lAli = lAli = 0.28 m. We find that the

mean number of different nearest neighbors is close to 71 in the three collective states, and is

hence much larger than the corresponding number of different most influential neighbors.

(TIF)
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Supervision: Zhangang Han, Guy Theraulaz.

Validation: Ramón Escobedo, Clément Sire, Guy Theraulaz.

Visualization: Weijia Wang, Ramón Escobedo, Stéphane Sanchez.
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