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This paper presents an a-priori analysis of the use of five different interactive proof  
assistants for education based on the resolution of a typical undergraduate exercise  
on abstract  functions.  It  proposes to analyse these tools according to three main  
categories of aspects:  (1)  language and interaction mode,  (2)  automation and user  
assistance,  (3)  proof structure and visualisation.  We argue that this analysis may  
help formulate and clarify further research questions on the possible impact of such  
tools on the development of reasoning and proving skills.
Keywords:  Teaching and learning of logic, reasoning and proof,  Digital and other  
resources  in  university  mathematics  education,  Transition  to,  across  and  from 
university mathematics,  Novel approaches to teaching, Computer assisted theorem  
proving.
INTRODUCTION
Investigating the use of technology for the teaching and learning of proof and proving 
is an active topic in both communities of education research and computer-assisted 
theorem proving. The topic of proof has been garnering interest in the mathematics 
education research community for years. The 19th ICMI Study focused on six major 
themes  relative  to  the  teaching  and  learning  of  proof  and  proving.  It  led  to  the 
publication of a study volume (Hanna & de Villiers, 2012) with contributions from 
specialists of the field providing insight on these themes.  The interactive theorem 
proving community has also shown interest in the use of proof assistants for teaching 
since at least 2007 and the workshop on Proof Assistants and Types in Education 
(Geuvers & Courtieu, 2007), followed since 2011 by the ThEDU workshop series.
Recently  Hanna and  de  Villiers,  together  with  Reid,  coordinated  another  volume 
specifically  focusing  on  the  use  of  software  tools  for  computer-assisted  proof  in 
education  (Hanna  et  al.,  2019),  featuring  contributions  from  researchers  in  both 
communities. In the introductory chapter they state that the book’s goal is “to begin a 
dialogue  between  mathematics  educators  and  researchers  actively  developing 
automatic  theorem  provers  and  related  tools”.  The  chapter  concludes  with  the 
statement that “we know almost nothing of [proof assistants’] potential contribution 
to  other  roles  of  proof,  such  as  explanation,  communication,  discovery,  and 
systematization,  or  how  they  now  may  become  more  relevant  as  pedagogical 
motivation for the learning of proof in the classroom”, implying that much research is 
still required in order to gain further insight on the convergence of both fields.



Proof  assistants  (henceforth  PAs)  are  quite  broadly  used  to  teach logic,  proof  of 
computer programs and, increasingly, classical mathematical topics by teachers who 
are not researchers in the field of interactive theorem proving. In this paper we focus 
on  the  potential  use  of  these  tools  for  teaching  proof  and  proving  itself  at  the 
transition  between  high  school  and  university.  In  this  work  we  consider  proof 
assistants  as  possible  teaching  tools  and  not  as  professional  tools.  The  tool’s 
underlying proof theory and the structure and size of its mathematical libraries are 
therefore not directly relevant. We will instead focus on the way each tool enables the 
development of skills related to proof and proving.
The questions which motivate this work can be phrased as follows:

• What are the possible effects of using PAs on students’ learning of proof?

• What characteristics of PAs are likely to strengthen or hinder these effects?
In order to start addressing these questions we chose to analyse the resolution of a 
single typical exercise about functions using a selection of five different PAs (Coq, 
Isabelle, Edukera, dEAduction and Lurch, introduced briefly below). We solved this 
exercise using each PA in turn, with one experimenter building the proof interactively 
and two observers.  Based on initial  observations we designed an analysis  grid to 
capture some of the tools’ characteristics likely to have an impact on teaching and 
learning.  We then  revisited  each  resolution  of  the  exercise  and  analysed  it  with 
respect to this grid. Our aim is to help distinguish aspects of each PA which may 
facilitate  or  hinder  student’s  learning of  the  various  skills  involved in  proof  and 
proving (Selden, 2012) as a preliminary step to future research.
We first briefly introduce the concept of PA. We then present our case study before 
describing our analysis grid. We finish by raising additional questions regarding the 
possible impacts of each PA on the teaching and learning of proof and proving.
PROOF ASSISTANTS IN EDUCATION
The term  proof  assistant,  or  interactive theorem prover,  refers  to  a  software  tool 
allowing a user to interactively construct a formal mathematical proof. Some systems 
are designed to work in a specific domain such as geometry, logic or the analysis of 
computer programs, while others are general-purpose. Additionally, proof assistants 
used in the classroom can be sorted roughly in two categories: some are built by the 
community of educators and others are designed by specialists of interactive theorem 
proving for research or other professional purposes.
The input languages of PAs are usually classified into two categories: imperative and 
declarative languages.  In  an  imperative  language  the  user  orders  changes  to  be 
performed on the  proof  state (the current  set  of  declared variables and constants, 
assumed hypotheses, and goals) using a predefined set of orders (also called tactics). 
Each  tactic  consists  in  one  or  several  deduction  rules  to  be  applied,  or  other 
manipulations of the proof state. Most tactics do not contain explicit mathematical 
statements.  In  a  declarative  language  one  provides  assertions  along  with  their 



justification,  in  a  way  similar  to  a  natural-language  proof.  The  statements  are 
therefore written explicitly, using a syntax resembling mathematical language.
In simple cases the validity of each proof step is ensured by matching some of the 
available statements with the premise of a given deduction rule, substituting variables 
accordingly in the rule’s conclusion, and verifying that each involved expression is 
well-typed.  This  may  be  complemented  with  other  automation  techniques,  for 
instance to help searching for applicable rules, to perform automatic computations in 
restricted domains (arithmetic, algebra…), to assist in syntactic manipulations, etc.
In  the  terminology  of  Duval  &  Egret  (1993),  most  PAs  clearly  distinguish  the 
theoretical status (hypothesis, axiom, definition, theorem, conjecture) and operational 
status (premise, conclusion, external rule, goal) of each statement. This is done using 
visual hints, the syntax of the PA’s language, or by separating statements between 
disjoint areas of the user interface. This may be an important feature in an educational 
context, since this distinction is known to be a source of difficulty for students.
We  will  revisit  these  characteristics  below,  when  we  detail  the  aspects  which 
constitute our analysis grid, and illustrate them on our selection of proof assistants.
CASE STUDY: ANALYSING AN EXERCISE IN FIVE PROOF ASSISTANTS
The exercise we chose for this work is a typical elementary proof about sets, relations 
and functions commonly found in introductory courses about reasoning and proof, in 
both Mathematics and Computer Science curricula, and available or formalisable in 
all studied PA. The exercise text reads as follows, with minor variants:

1 Given f : A → B and C⊆ A , show that C⊆ f − 1(f (C )).

2 Given f : A → B and C⊆ A , show that if f  is injective then f −1 (f (C ))⊆ C .

We  chose  this  exercise  because  it  involves  few  and  fundamental  mathematical 
concepts and little calculation. The required proofs are of a manageable size, yet not 
trivial for students. They involve the concepts of set, function, subset relation, direct 
and inverse image and injectivity. The definitions of these concepts require universal 
and  existential  quantifiers  and  implication,  which  students  tackling  the  proof  are 
required to be able to manipulate.
We now briefly describe the five PAs we chose to analyse in this work. Coq and 
Isabelle are professional systems which are also used for teaching. Lurch, Edukera 
and dEAduction were designed specifically for teaching.
Coq and  Isabelle are free and open-source proof assistants. Coq was created in the 
1980s in French academia (Coq Team, 2022). Isabelle was developed at University of 
Cambridge and Technische Universität München (Nipkow et al., 2002). Both have 
been used successfully to prove mathematical theorems such as the Feith-Thompson 
theorem,  the  four-colour  theorem  or  the  Kepler  conjecture,  and  to  prove  the 
correctness of large-scale computer programs. They have also been experimented for 
several  years  as  teaching tools  in  graduate  or  undergraduate  curricula  on  various 



topics. A difference between the two lies in the kind of user interaction and language 
they  offer.  In  this  work,  we  only  use  Coq  in  imperative  mode,  and  Isabelle  in 
declarative mode using its Isar language. 
Lurch is a free and open-source word processor built on OpenMath, that can check 
the steps of a mathematical  proof (Carter & Monks, 2013). Lurch is designed for 
student use and was experimented for teaching in 2008 and 2013. To our knowledge, 
it is no longer maintained, but was kept under consideration due to its originality with 
respect to other PA. Its user interface is inspired by that of a word processor, proof 
checking being presented similarly to spell-checking: one can write text freely, then 
mark some mathematical expressions as meaningful and check their validity.
Edukera is a closed-source web-based graphical proof assistant loosely based on Coq 
(Rognier & Duhamel, 2016). It is no longer maintained but was kept in our study for 
the same reasons as Lurch. It was designed to help teach proof and proving as well as 
classical high school mathematics content including algebra and basic analysis. Its 
originality is to combine a point-and-click interface with a presentation of the whole 
proof mimicking human-written text.
DEAduction [2] is a recent free and open-source graphical interface to the LEAN 
proof assistant created by Frédéric Le Roux. It was specifically designed for teaching, 
and is under active development. It provides a purely point-and-click user interface.
By lack of space we cannot provide here a full account of the proofs of the exercise in 
each  PA,  but  we  will  give  additional  details  during  the  presentation.  Interested 
readers may download proof files for this exercise in each studied PA online [1].
ASPECTS OF PROOF AND PROVING IN PROOF ASSISTANTS
In this section we describe the three main categories of aspects of PA we retained in 
our analysis, each including several criteria which are summarised in Table 1. Other 
factors  of practical  importance are  left  out  of this  study,  such as type of  license, 
availability, ease of installation, integration with learning management systems, etc.

Language and interaction 
mode

type of user input, imperative or declarative style, object 
naming, possibility of writing ill-formed statements

Automation and user 
assistance

mathematical libraries, rule selection and application, 
scope management, rule chaining and automated 
computation, type of feedback

Proof structure and proof 
state visualisation

global or local viewpoint on proof, status of statements, 
possibility to create new definitions and lemmas

Table 1: Categories of aspects of proof assistants and related analysis criteria



Language and interaction mode
The first category we consider relates to the nature of interactions between user and 
proof assistant.  We focus in particular on the tools’ linguistic, semiotic and visual 
characteristics. This includes the syntax and semantics of the input language, if any, 
the  textual,  graphical  or  mixed  output  language  displayed  by  the  PA,  and  more 
generally any kind of visual hints which carry proof-related meaning.
Type of user input. Interactions between the user and a PA generally include both 
mouse-based  and  text-based  modalities,  to  varying  degrees.  In  dEAduction  and 
Edukera most interaction is mouse-based (through menus, buttons, drag-and-drop), 
textual input being only rarely required (for instance when introducing an existential 
witness). In Coq and Isabelle the user respectively types in tactics or proof text, both 
obeying a strict syntax. In Lurch the user experience is similar to that of “literate 
programming”  where  code  is  mixed  with  explanatory  text.  By  default  natural-
language text is ignored and carries no semantics. “Meaningful expressions”, whose 
syntax resembles that of standard mathematics, are then combined with one another 
to form deduction steps, which are then formally checked by the software.
Imperative or declarative style. Coq is an example of an imperative language. The 
user  types in  tactics which perform transformations  of  the current  proof state.  In 
Question  1  of  the  analysed  exercise,  to  prove  that  f (x )∈ f (C ) the  user  runs  the 
command  unfold im,  which instructs the prover to unfold the definition of an 
element being in  f (C ),  yielding as new goal  ∃x0 (x0∈ C∧ f (x )=f (x0)). In Isabelle the 
language is declarative: at every step the user has to declare what will be proved, i.e. 
she has to state how the goal will be transformed after she applies the next proof step. 
Assuming the hypothesis  x∈ C, referred to by label  Hx, is available in the current 
scope,  the  user  may  type:  have "f x f ` C" using Hx by (rule 
imageI). This line attempts to prove f (x )∈ f (C ) using the hypothesis x∈ C and the 
definition of the image of a set (imageI). Deduction steps in Lurch have a similar 
structure. In Edukera the user simply clicks the “def” button while the goal is selected 
and the definition of the image of a set is unfolded automatically. In dEAduction the 
user has to select the appropriate definition from a predefined list.
Object naming and referencing. In Coq and Isabelle the user can choose the names of 
hypotheses and objects when they are introduced. In Edukera, each line of the proof 
is automatically numbered, and is referenced whenever it is used as a premise in a 
deduction step. In dEAduction variables and hypotheses are automatically assigned 
fresh names (i.e. not bound in the current context). In Lurch one can choose custom 
labels for statements. Even though each tool offers different presentation choices and 
interaction  styles,  being  able  to  refer  to  objects  by  name  is  essential  to  the 
structuration of a proof.



Automation and user assistance
Automation refers to all features facilitating the selection of a usable rule in a given 
context,  the  syntactic  manipulation  of  statements  (in  particular  regarding  type 
checking, substitution and pattern matching), the chained application of rules, etc. 
Other features include the organised presentation of available rules and theorems, 
automatic scope management, and contextual hints or feedback. According to some 
PA  designers’  and  teachers’  testimonies,  finding  a  good  balance  in  the  level  of 
automation  is  a  challenge,  especially  in  an  educational  context  where  efficiently 
completing a proof may not be the main goal.
Mathematical libraries. Contrary to traditional proofs, most PAs provide libraries of 
definitions and theorems, and make their formal definitions easy to access. PAs may 
also provide additional assistance such as contextual search, automatic completion, 
online help, etc. Professional PAs like Coq and Isabelle provide thousands of proven 
mathematical  facts.  Edukera  and  dEAduction  simply  list  predefined  lemmas  and 
definitions, sorted by topic, not all of which are available in every exercise.
Rule selection and application. One of the main actions when building a proof in a 
PA consists in performing a reasoning step by applying a theorem or a logical rule, or 
by substituting a  symbol  by its  definition.  Each PA provides  a  different  level  of 
assistance  and  automation  for  these  tasks,  mainly  regarding  the  way  a  rule  or 
statement is instantiated when it is used (i.e. its variables substituted by terms), or the 
way a given rule, theorem or definition is selected with respect to the current context. 
In  Isabelle  and Lurch,  the  user  writes  instantiated  mathematical  expressions,  and 
explicitly invokes a rule by its name. The tool then checks that this instantiation is 
correct, and if so applies the rule. In Lurch, multiple rules may share the same name, 
in  which  case  all  matching  rules  are  tried  in  order  until  one  succeeds.  In  Coq, 
dEAduction and Edukera, commands to unfold a definition or apply a theorem are 
provided, either by invoking them by name or by selecting them from a list. In all 
three systems,  pattern matching and substitution are performed automatically.  For 
logical deduction rules, a varying degree of automation is offered. In some of the 
tools (Coq and Edukera in maths mode), generic commands are available to eliminate 
or introduce logical connectors and quantifiers. Only when ambiguity occurs is the 
user required to add input. In other tools,  the user generally has to determine the 
outermost logical connective themself.
Scope management. According to teacher testimony and previous research on proof, 
keeping track of the scope of each variable or hypothesis is a source of difficulty for 
students, which sometimes leads to confusion between free and bound variables, or to 
circular arguments. In Coq and dEAduction, scope management is fully automatic 
and available variables and hypotheses are neatly gathered in corresponding areas of 
the interface. In Edukera, unproven statements are clearly distinguished from proved 
ones,  scopes  are  visually  materialised  and can be  selected  when introducing new 



variables or hypotheses. Isabelle and Lurch also have syntactic or visual means to 
indicate scopes, but more work is left to the user to maintain them.
Rule chaining and automated computation. Some PAs offer possibilities for implicit 
or explicit “chaining” of rule applications. For instance, when applying a universally 
quantified  theorem,  Edukera  offers  to  perform  the  introduction  of  the  universal 
quantifier and introduction of implication in a single step. Coq also supports implicit 
chaining of rules: for example, a single invocation of the apply command to deduce 
x=x ’ from the hypothesis f (x )=f (x ' ) using the injectivity of f  successively unfolds the 
definition of injectivity, eliminates two universal quantifiers and one implication, and 
performs the associated pattern matching and substitution steps. Other tactics in Coq 
or  Isabelle  may  perform  further  automatic  transformations.  Finally,  in  specific 
mathematical areas such as basic arithmetic or linear algebra, PAs may give access to 
fully automatic solvers, for instance when checking simple equations.
Type of feedback. Feedback varies from basic to very rich. In Coq and Isabelle little 
feedback is given, apart from error messages when a rule does not apply or when an 
expression is not well-typed. On the contrary, feedback in Lurch is very rich: there is 
a colour code to indicate the status of each statement (undischarged hypothesis, valid 
or  invalid  conclusion)  and  visual  hints  to  highlight  the  scopes  of  hypotheses. 
Moreover, very complete feedback on rule application is provided, including a list of 
selected premises and an explicit substitution of variables.
Proof structure and proof state visualisation
This final category concerns the aspects of a PA related to how proofs are perceived 
and manipulated. There are two main design choices: in some PA, the whole proof 
text is visible at once, and users complete it by inserting new assertions. Work may 
be done progressively on several parts of the proof. In others, only the current goal 
and the current proof state is prominently displayed. Other aspects related to proof 
structure concern the users’ possibility to decompose a long proof by writing down 
and separately proving intermediate definitions theorems which can then be reused.
Global vs local viewpoint on proof. In Coq or dEAduction, the user may visualise the 
sequence of invoked tactics and navigate through them to view the evolution of the 
proof state at each point. The proof as a whole is left implicit, it is never displayed 
entirely [3]. Moreover, the origin of each statement in the context (hypothesis of the 
theorem to be proven, previously proved fact, hypothesis in a proof by cases or by 
contradiction) is not displayed. In both tools, it is also natural to treat the goals in the 
order in which they are generated by the system. One may say the viewpoint on proof 
is local, with much information hidden. On the contrary, in Edukera or Lurch (or in a 
pen-and-paper proof), the proof state is implicit: it is composed of the list of open 
statements combined with the list of hypotheses which are assumed to hold in the 
scope of each open statement. Due to their declarative style and since proof texts in 
these two PAs rather closely imitates usual mathematical language, they offer a more 
global viewpoint on proofs without resorting to back-and-forth navigation through 



proof  lines.  Isar  (Isabelle’s  language)  combines  both  aspects  by  allowing  both  a 
complete,  more  or  less  human-readable  proof  text,  and  the  ability  to  display  the 
current proof state at each line of the proof.
Possibility to create new definitions and lemmas. DEAduction and Edukera do not 
allow the user  to create  new definitions or  theorems,  the user  is  on a “deductive 
island” imposed by the system. In Edukera, teachers can compose their own exercise 
sheets but they cannot create new exercises. Developing new theories is not possible 
for end users. Using Coq, Isabelle, or Lurch, the user is free to restructure her proof 
by introducing new lemmas or concepts.
Status of statements. As already stated, one may distinguish the theoretical status of a 
statement  (axiom,  lemma,  hypothesis,  conjecture,  etc.)  and  its  operational  status 
(premise, conclusion, external statement) which may vary in the course of a proof: a 
statement may be the conclusion of a deduction step and the premise of another one. 
The status of statements is rather clear in all PAs (except Edukera where admitted 
lemmas/axioms,  and  proved  lemmas  are  not  distinguished).  In  DEAduction 
hypotheses  of  the  exercises  and  other  elements  of  the  context  are  displayed  in 
separate frames. Moreover, hypotheses used at least once as premises are greyed out. 
In Isabelle, local hypotheses introduced to prove universally quantified implications 
are syntactically distinguished. In Lurch, the validity of each step is displayed using a 
colour code. The operational status of statements is displayed using “bubbles”.
POSSIBLE IMPACTS ON THE TEACHING AND LEARNING OF PROOF
As their name suggests, proof assistants relieve the user of some of the tasks usually 
associated  with proving.  While  this  may  be desirable  in  a  professional  setting,  it 
might become a hindrance when the goal is precisely to let students practice some of 
these tasks. Based on our analysis, we formulate a few hypotheses on the possible 
effects of the use of PAs in teaching regarding various possible teaching goals.
Possible effects on memorisation and formulation. When asking students to solve an 
exercise  on functions,  a  possible  prerequisite  or  desired  learning outcome  is  that 
students  intuitively  understand  relevant  definitions  (in  our  case  those  of  set  and 
function, set inclusion, direct and inverse image, and the notion of injectivity) and be 
able to state (and use) their formal  definition. When using a PA where details of 
definitions and properties are always at hand, one may postulate that memorisation of 
formal statements is not required to “solve” the exercise. Rather, students may be 
required to read, understand and appropriately make use of them. However, it might 
be the case that being repeatedly presented with definitions and properties and putting 
them to use may actually help memorise them.
Possible  effects  on  manipulation  of  formal  statements. It  has  been remarked  that 
performing substitution is one of the many difficulties of the proving activity. As we 
observed, the five PAs we studied differ in the way they automate the manipulation 
of  formal  statements.  In  three  cases  (dEAduction,  Edukera  and  Coq),  it  may  be 
possible  to  achieve  a  complete  proof  without  actually  having  to  write  a  single 



mathematical  statement.  Coq  and  Edukera  automatically  identify  the  outermost 
operator in a mathematical  term.  While this does not completely exempt the user 
from thinking about statements and anticipating which rules may be used next, it is 
not up to the user to actually figure out which substitution makes a statement match a 
given pattern, or how to apply it to another statement in order to use a rule. This is 
not  the  case  in  Isabelle  and  Lurch,  where  the  user  explicitly  writes  down 
mathematical terms, and the system simply checks if they are correct. In all cases 
however, a posteriori control and validation is possible, for example by replaying a 
step in imperative PAs. This may provide another way to practise skills related to 
formula  manipulation,  by  reading  and  control  rather  than  by  writing.  A  related 
possible  effect  is  that  PAs  may  forbid  certain  incorrect  manipulations,  produce 
correct but unexpected outcomes or provide additional feedback (Lurch in particular 
provides rich and explicit feedback on substitutions). These retroactions are of course 
unavailable in a pen-and-paper proof. 
Possible  effects  on the  perception  of  proof  structure. In  our  experience,  users  of 
imperative-style proof assistants such as dEAduction, Edukera and Coq may feel as 
though they are “pushing symbols around until it works”, possibly not understanding 
why the proof went through. This may be strengthened by the fact that these tools 
automatically  manage  scopes  and  contexts,  including  the  identification  of  each 
statement’s operational status. Even though replaying previous steps is possible, these 
tools may act as “blinders”, allowing one to entirely focus on the current proof state, 
possibly “forgetting” about other parts of the proof. This “tunnel” effect may even be 
strengthened by the fact that these tools automate several aspects of proving, which 
makes a trial-and-error exploration strategy more viable than in declarative-style PAs 
such as Lurch and Isabelle. Edukera stands out as a special case in that the whole text 
of the proof remains visible throughout, even though user input is mostly imperative 
and syntactic manipulations largely automated.
As we can see, different design choices in each PA entail different actions on the part 
of the user. Certain concepts (for instance that of substitution) intervene in all cases 
but quite differently, and may require different levels of proficiency from the user. 
One may argue that freeing students from certain tasks (writing syntactically correct 
statements, keeping track of variables and hypotheses’ status and scope, memorising 
definitions and theorems, recalling what remains to be proven) may enable them to 
concentrate  on  the  deeper  ideas  involved  in  a  proof,  and  may  contribute  in 
overcoming these difficulties outside of the PA by mere “habituation”. Conversely, 
one may object that acquiring these skills is indeed one of the intended goals of these 
activities, and that it is therefore essential to have students practise them and not rely 
on a tool’s facilities. For a discussion of the possible effects of using a PA on the 
acquisition of proving skills, see for example (Thoma & Iannone, 2021).
Figuring out the actual effect of each PA on learning would of course require further 
research. It would be interesting to try and analyse student’s proficiency with various 
proof-related competencies when using different types of PAs. Do PAs have an effect 



on known syntactic and semantic difficulties that students typically encounter when 
working on proof?  Do they favour  the development  of  higher-level  competencies 
such as writing a full and correct proof on paper, or summarising the main arguments 
of a proof verbally? How much do these effects depend on students’ backgrounds?
NOTES
1. See https://github.com/jnarboux/PA_a_priori_analysis for screenshots and source files in all PAs.

2. Deaduction website, including source code: https://github.com/dEAduction/dEAduction

3. Readers unfamiliar with PAs may consult the following site for examples of proof scripts along 
with corresponding proof states: https://plv.csail.mit.edu/blog/alectryon.html#alectryon.
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