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This paper presents an a-priori analysis of the use of five different interactive proof
assistants for education, based on the resolution of a typical undergraduate exercise
on abstract  functions.  It  proposes to analyse these tools according to three main
categories  of  aspects:  language  and  interaction  mode,  automation  and  user
assistance, and proof structure and visualisation. We argue that this analysis may
help formulate and clarify further research questions on the possible impact of such
tools on the development of reasoning and proving skills.

Keywords: 11. Teaching and learning of logic, reasoning and proof, 5. Digital and
other resources in university  mathematics education, 3. Transition to,  across and
from university  mathematics, 4. Novel  approaches to teaching, Computer assisted
theorem proving.

INTRODUCTION

Investigating the use of technology for the teaching and learning of proof and proving
is an active topic in both communities of education research and computer-assisted
theorem proving. The topic of proof has been garnering interest in the mathematics
education research community for years. The 19th ICMI Study focused on six major
themes  relative  to  the  teaching  and  learning  of  proof  and  proving.  It  led  to  the
publication of a study volume (Hanna & de Villiers, 2012) with contributions from
specialists of the field, providing insight on these themes. The interactive theorem
proving community has also shown interest in the use of proof assistants for teaching
since at least 2007 and the workshop on Proof Assistants and Types in Education
(Geuvers & Courtieu, 2007), followed since 2011 by the ThEDU workshop series.

Recently,  Hanna and de Villiers,  together  with Reid,  coordinated another  volume
specifically  focusing  on  the  use  of  software  tools  for  computer-assisted  proof  in
education  (Hanna  et  al.,  2019),  featuring  contributions  from  researchers  in  both
communities. In the introductory chapter, they state that the book’s goal is “to begin a
dialogue  between  mathematics  educators  and  researchers  actively  developing
automatic theorem provers and related tools”. The chapter ends with the statement
that “we know almost nothing of [proof assistants’] potential contribution to other
roles of proof, such as explanation, communication, discovery, and systematization,
or  how they  now may  become  more  relevant  as  pedagogical  motivation  for  the
learning of proof in the classroom”, implying that much research is still required in
order to gain further insight on the convergence of both fields.
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Proof  assistants  (henceforth  PAs)  are  quite  broadly  used to  teach  logic,  proof  of
computer programs and, increasingly, classical mathematical topics by teachers who
are not researchers in the field of interactive theorem proving. In this paper, we focus
on  the  potential  use  of  these  tools  for  teaching  proof  and  proving  itself,  at  the
transition  between  high  school  and  university.  In  this  work,  we  consider  proof
assistants  as  possible  teaching  tools  and  not  as  professional  tools.  The  tool’s
underlying proof theory and the structure and size of its mathematical libraries are
therefore not directly relevant. We will instead focus on the way each tool enables the
development of skills related to proof and proving.

The questions which motivate this work can be phrased as follows:

• What are the possible effects of using PAs on students’ learning of proof?

• What characteristics of PAs are likely to strengthen or hinder these effects?

In order to start addressing these questions, we chose to analyse the resolution of a
single typical exercise about functions using a selection of five different PA (Coq,
Isabelle, Edukera, dEAduction and Lurch, introduced briefly below). We solved this
exercise  using  each  PA  in  turn,  with  one  experimenter  building  the  proof
interactively,  and  two  observers.  Based  on  initial  observations  we  designed  an
analysis grid to capture some of the tools’ characteristics likely to have an impact on
teaching and learning. We then revisited each resolution of the exercise and analysed
it with respect to this grid. Our aim is to help distinguish aspects of each PA which
may  facilitate  or  hinder  student’s  learning  of  the  various  knowledge  and  skills
involved in proof and proving, as a preliminary step to future research.

We first briefly introduce the concept of PA. We then present our case study, before
describing our analysis grid. We finish by raising additional questions regarding the
possible impacts of each PA on the teaching and learning of proof and proving.

PROOF ASSISTANTS IN EDUCATION

The term  proof  assistant,  or  interactive theorem prover,  refers  to  a  software tool
allowing a user to interactively construct a formal mathematical proof. Some systems
are designed to work in a specific domain such as geometry, logic or the analysis of
computer programs, while others are general-purpose. Additionally, proof assistants
used in the classroom can be sorted roughly in two categories: systems built by the
community  of  educators,  and  others  built  by  specialists  of  interactive  theorem
proving for research or other professional purposes.

The input languages of PAs are usually classified into two categories: imperative and
declarative languages.  In  an  imperative  language  the  user  orders  changes  to  be
performed on the  proof state (the current  set  of  declared variables and constants,
assumed hypotheses, and goals) using a predefined set of orders (also called tactics).
Each  tactic  consists  in  one  or  several  deduction  rules  to  be  applied,  or  other
manipulations of the proof state. Most tactics do not contain explicit mathematical
statements.  In  a  declarative  language,  one  provides  assertions  along  with  their



justification,  in  a  way  similar  to  a  natural-language  proof.  The  statements  are
therefore written explicitly, using a syntax resembling mathematical language.

In  simple  cases,  each  proof  step’s  validity  is  ensured  by  matching  some  of  the
available statements with the premise of a given deduction rule, substituting variables
accordingly in the rule’s conclusion, and verifying that each involved expression is
well-typed.  This  may  be  complemented  with  other  automation  techniques,  for
instance  to  help  searching  or  selecting  applicable  rules,  to  perform  automatic
computations in restricted domains (arithmetic, algebra…), to assist in the syntactic
manipulation of statements, etc.

In  the  terminology  of  (Duval  &  Egret,  1993),  most  PAs  clearly  distinguish  the
theoretical status (hypothesis, axiom, definition, theorem, conjecture) and operational
status (premise, conclusion, external rule, goal) of each statement. This is done using
visual hints, the syntax of the PA’s language, or by separating statements between
disjoint areas of the user interface. This may be an important feature in an educational
context, since this distinction is known to be a source of difficulty for students.

We  will  revisit  these  characteristics  below,  when  we  detail  the  aspects  which
constitute our analysis grid, and illustrate them on our selection of proof assistants.

CASE STUDY: ANALYSING AN EXERCISE IN FIVE PROOF ASSISTANTS

The exercise we chose for this work is a typical elementary proof about sets, relations
and functions commonly found in introductory courses about reasoning and proof, in
both Mathematics and Computer Science curricula, and available (or writable) in all
studied PA. The exercise text reads as follows, with minor variants:

1. Given f : A→B and C⊆A , show that C⊆f−1(f (C )).

2. Given f : A→B and C⊆A , show that if f is injective then f−1(f (C ))⊆C .

We chose this exercise because it involves relatively simple mathematical concepts,
little calculation, and the involved proofs are of a manageable size, yet not trivial for
students: they involve universal and existential quantifiers, implication, and several
definitions  and  concepts  (set,  function,  subset  relation,  direct  and  inverse  image,
injectivity) which students tackling the proof are required to be able to manipulate.

We now briefly describe the five PA we chose to analyse in this work. Coq and
Isabelle are professional systems which are also used for teaching. Lurch, Edukera
and dEAduction were designed specifically for teaching.

Coq and  Isabelle are free and open-source proof assistants. Coq was created in the
1980s in French academia (Coq Team, 2022). Isabelle was developed at University of
Cambridge and Technische Universität München (Nipkow et al., 2002). Both have
been used successfully to prove mathematical theorems such as the Feith-Thompson
theorem,  the  four-colour  theorem  or  the  Kepler  conjecture,  and  to  prove  the
correctness of large-scale computer programs. They have also been experimented for
several  years  as  teaching tools  in  graduate  or  undergraduate  curricula  on various



topics. A difference between the two lies in the kind of user interaction and language
they  offer.  In  this  work,  we  only  use  Coq  in  imperative  mode,  and  Isabelle  in
declarative mode using its Isar language. 

Lurch is a free and open-source word processor built on OpenMath, that can check
the steps of a mathematical proof (Carter & Monks, 2013). Lurch is designed for
student use and was experimented for teaching in 2008 and 2013. To our knowledge,
it is no longer maintained. Its user interface is inspired by that of a word processor,
proof checking being presented similarly to spell-checking: one can write text freely,
then mark some mathematical expressions as meaningful and check their validity.

Edukera is a closed-source web-based graphical proof assistant loosely based on Coq
(Rognier & Duhamel, 2016). It is no longer maintained. It was designed to help teach
proof and proving as well  as classical  high school mathematics content including
algebra and basic analysis. Its originality is to combine a point-and-click interface
with a presentation of the whole proof mimicking human-written text.

DEAduction [2] is  a recent free and open-source graphical  interface to the LEAn
proof assistant created by Frédéric Le Roux. It was specifically designed for teaching,
and is under active development. It provides a purely point-and-click user interface.

By lack of space we cannot provide here a full account of the proofs of the exercise in
each  PA,  but  we  will  give  additional  details  during  the  presentation.  Interested
readers may download proof files for this exercise in each studied PA online [1].

ASPECTS OF PROOF AND PROVING IN PROOF ASSISTANTS

In this section we describe the three main categories of aspects of PA we retained in
our analysis, each including several criteria which are summarised in Table 1. Other
factors  of  practical  importance are left  out  of  this study,  such as type of  license,
availability, ease of installation, integration with learning management systems, etc.

Language and interaction
mode

type of user input, imperative or declarative style, object 
naming, possibility of writing ill-formed statements

Automation and user 
assistance

mathematical libraries, rule selection and application, 
scope management, rule chaining and automated 
computation, type of feedback

Proof structure and proof 
state visualisation

global or local viewpoint on proof, status of statements, 
possibility to create new definitions and lemmas

Table 1: Categories of aspects of proof assistants and related analysis criteria

Language and interaction mode

The first category we consider relates to the nature of interactions between user and
proof assistant. We focus in particular on the tools’ linguistic, semiotic and visual
characteristics. This includes the syntax and semantics of the input language, if any,



the  textual,  graphical  or  mixed  output  language  displayed  by  the  PA,  and  more
generally any kind of visual hints which carry proof-related meaning.

Type of user input. Interactions between the user and a PA generally include both
mouse-based  and  text-based  modalities,  to  varying  degrees.  In  dEAduction  and
Edukera most interaction is mouse-based (through menus, buttons, drag-and-drop),
textual input being only rarely required (for instance when introducing an existential
witness). In Coq and Isabelle the user respectively types in tactics or proof text, both
obeying a strict syntax. In Lurch the user experience is similar to that of “literate
programming”  where  code  is  mixed  with  explanatory  text.  By  default  natural-
language text is ignored and carries no semantics. “Meaningful expressions”, whose
syntax resembles that of standard mathematics, are then combined with one another
to form deduction steps, which are then formally checked by the software.

Imperative or declarative style. Coq is an example of an imperative language. The
user  types in  tactics which perform transformations of  the current  proof state.  In
Question  1  of  the  analysed exercise,  to  prove  that f (x)∈f (C ) the user  runs  the
command  unfold im,  which instructs the prover to unfold the definition of an
element  being  in  f (C) ,  yielding  as  new  goal ∃ x0(x0∈C∧f (x)=f (x0)) . In
Isabelle the language is declarative: at every step the user has to declare what will be
proved, i.e. she has to state how the goal will be transformed after she applies the
next proof step. Assuming the hypothesis x∈C the user may type: have "f x f
` C" using x_in_C by (rule imageI).  This  line  attempts  to  prove
f (x)∈f (C ) using  the  hypothesis  labelled  x_in_C (presumably  meaning  that
x∈C ) and the definition of the image of a set (imageI).  In Edukera the user

simply clicks the “def” button while the goal is selected and the definition of the
image of a set is unfolded automatically.

Object naming and referencing. In Coq and Isabelle the user can choose the names of
hypotheses and objects when they are introduced. In Edukera, each line of the proof
is automatically numbered, and is referenced whenever it is used as a premise in a
deduction step. In dEAduction variables and hypotheses are automatically assigned
fresh names (i.e. not bound in the current context). In Lurch one can choose custom
labels for statements. Even though each tool offers different presentation choices and
interaction  styles,  being  able  to  refer  to  objects  by  name  is  essential  to  the
structuration of a proof.

Automation and user assistance

Automation refers to all features facilitating the selection of a usable rule in a given
context,  the  syntactic  manipulation  of  statements  (in  particular  regarding  type
checking, substitution and pattern matching), the chained application of rules, etc.
Other features include the organised presentation of  available rules and theorems,
automatic scope management, and contextual hints or feedback. According to some
PA designers’  and  teachers’  testimonies,  finding  a  good  balance  in  the  level  of



automation  is  a  challenge,  especially  in  an  educational  context  where  efficiently
completing a proof may not be the main goal.

Mathematical libraries. Contrary to traditional proofs, most PAs provide libraries of
definitions and theorems, and make their formal definitions easy to access. PAs may
also provide additional assistance such as contextual search, automatic completion,
online help, etc. Professional PAs like Coq and Isabelle provide thousands of proven
mathematical  facts.  Edukera  and  dEAduction  simply  list  predefined  lemmas  and
definitions, sorted by topic, not all of which are available in every exercise.

Rule selection and application. One of the main actions when building a proof in a
PA consists in performing a reasoning step by applying a theorem or a logical rule, or
by substituting  a  symbol  by its  definition.  Each PA provides  a  different  level  of
assistance  and  automation  for  these  tasks,  mainly  regarding  the  way  a  rule  or
statement is instantiated when it is used (i.e. its variables substituted by terms), or the
way a given rule, theorem or definition is selected with respect to the current context.
In  Isabelle  and Lurch,  the  user  writes  instantiated  mathematical  expressions,  and
explicitly invokes a rule by its name. The tool then checks that this instantiation is
correct, and if so applies the rule. In Lurch, multiple rules may share the same name,
in  which  case  all  matching  rules  are  tried  in  order  until  one  succeeds.  In  Coq,
dEAduction and Edukera, commands to unfold a definition or apply a theorem are
provided, either by invoking them by name or by selecting them from a list. In all
three systems,  pattern matching and substitution are  performed automatically.  For
logical deduction rules, a varying degree of automation is offered. In some of the
tools (Coq and Edukera in maths mode), generic commands are available to eliminate
or introduce logical connectors and quantifiers. Only when ambiguity occurs is the
user required to add input.  In other tools,  the user generally has to determine the
outermost logical connective themself.

Scope management. According to teacher testimony and previous research on proof
(ref?),  keeping  track  of  the  scope  of  each  variable  or  hypothesis  is  a  source  of
difficulty for students, which sometimes leads to confusion between free and bound
variables, or to circular arguments. In Coq and dEAduction, scope management is
fully  automatic  and  available  variables  and  hypotheses  are  neatly  gathered  in
corresponding areas of  the interface.  In Edukera,  unproven statements  are clearly
distinguished from proved ones, scopes are visually materialised and can be selected
when introducing new variables or hypotheses. Isabelle and Lurch also have syntactic
or visual means to indicate scopes, but more work is left to the user to maintain them.

Rule chaining and automated computation. Some PAs offer possibilities for implicit
or explicit “chaining” of rule applications. For instance, when applying a universally
quantified  theorem,  Edukera  offers  to  perform  the  introduction  of  the  universal
quantifier and introduction of implication in a single step. Coq also supports implicit
chaining of rules: for example, a single invocation of the apply command to deduce
x=x ’ from the  hypothesis f (x)=f (x ' ) using the  injectivity  of f successively



unfolds  the  definition  of  injectivity,  eliminates  two universal  quantifiers  and  one
implication,  and  performs  the  associated  pattern  matching  and  substitution  steps.
Other  tactics  in  Coq  or  Isabelle  may  perform  further  automatic  transformations.
Finally, in specific mathematical areas such as basic arithmetic or linear algebra, PAs
may  give  access  to  fully  automatic  solvers,  for  instance  when  checking  simple
equations.

Type of feedback. Feedback varies from basic to very rich. In Coq and Isabelle little
feedback is given, apart from error messages when a rule does not apply or when an
expression is not well-typed. On the contrary, feedback in Lurch is very rich: there is
a colour code to indicate the status of each statement (undischarged hypothesis, valid
or  invalid  conclusion)  and  visual  hints  to  highlight  the  scopes  of  hypotheses.
Moreover, very complete feedback on rule application is provided, including a list of
selected premises and an explicit substitution of variables.

Proof structure and proof state visualisation

This final category concerns the aspects of a PA related to how proofs are perceived
and manipulated. There are two main design choices: in some PA, the whole proof
text is visible at once, and users complete it by inserting new assertions. Work may
be done progressively on several parts of the proof. In others, only the current goal
and the current proof state is prominently displayed. Other aspects related to proof
structure concern the users’ possibility to decompose a long proof by writing down
and separately proving intermediate definitions theorems which can then be reused.

Global vs local viewpoint on proof. In Coq or dEAduction, the user may visualise the
sequence of invoked tactics and navigate through them to view the evolution of the
proof state at each point. The proof as a whole is left implicit, it is never displayed
entirely [3]. Moreover, the origin of each statement in the context (hypothesis of the
theorem to be proven, previously proved fact, hypothesis in a proof by cases or by
contradiction) is not displayed. In both tools, it is also natural to treat the goals in the
order in which they are generated by the system. One may say the viewpoint on proof
is local, with much information hidden. On the contrary, in Edukera or Lurch (or in a
pen-and-paper proof), the proof state is implicit: it is composed of the list of open
statements combined with the list of hypotheses which are assumed to hold in the
scope of each open statement. Due to their declarative style and since proof texts in
these two PAs rather closely imitates usual mathematical language, they offer a more
global viewpoint on proofs without resorting to back-and-forth navigation through
proof  lines.  Isar  (Isabelle’s  language)  combines  both  aspects  by  allowing  both  a
complete,  more  or  less  human-readable  proof  text,  and the  ability  to  display  the
current proof state at each line of the proof.

Possibility to create new definitions and lemmas. DEAduction and Edukera do not
allow the user  to create new definitions or  theorems, the user  is  on a “deductive
island” imposed by the system. In Edukera, teachers can compose their own exercise
sheets but they cannot create new exercises. Developing new theories is not possible



for end users. Using Coq, Isabelle, or Lurch, the user is free to restructure her proof
by introducing new lemmas or concepts.

Status of statements. As already stated, one may distinguish the theoretical status of a
statement  (axiom,  lemma,  hypothesis,  conjecture,  etc.)  and  its  operational  status
(premise, conclusion, external statement)which may vary in the course of a proof: a
statement may be the conclusion of a deduction step and the premise of another one.
The status of statements is rather clear in all PAs (except Edukera where admitted
lemmas/axioms,  and  proved  lemmas  are  not  distinguished).  In  DEAduction
hypotheses  of  the  exercises  and  other  elements  of  the  context  are  displayed  in
separate frames. Moreover, hypotheses used at least once as premises are greyed out.
In Isabelle, local hypotheses introduced to prove universally quantified implications
are syntactically distinguished. In Lurch, the validity of each step is displayed using a
colour code. The operational status of statements is displayed using "bubbles".

POSSIBLE IMPACTS ON THE TEACHING AND LEARNING OF PROOF

As their name suggests, proof assistants relieve the user of some of the tasks usually
associated  with proving.  While  this  may be desirable  in  a  professional  setting,  it
might become a hindrance when the goal is precisely to let students practice some of
these tasks. Based on our analysis, we formulate a few hypotheses on the possible
effects of the use of PA in teaching regarding various possible teaching goals.

Possible effects on memorisation and formulation. When asking students to solve an
exercise  on functions,  a  possible  prerequisite  or  desired  learning outcome is  that
students  intuitively  understand  relevant  definitions  (in  our  case  those  of  set  and
function, set inclusion, direct and inverse image, and the notion of injectivity) and be
able to state (and use)  their formal definition. When using a PA where details of
definitions and properties are always at hand, one may postulate that memorisation of
formal statements is not required to “solve” the exercise. Rather, students may be
required to read, understand and appropriately make use of them. However, it might
be the case that being repeatedly presented with definitions and properties and putting
them to use may actually help memorise them.

Possible  effects  on  manipulation  of  formal  statements. It  has  been remarked that
performing substitution is one of the many difficulties of the proving activity (Mckee
et al., 2010, page 212). As we observed, the five PAs we studied differ in the way
they automate the manipulation of formal statements. In several cases (dEAduction,
Edukera and Coq), it may be possible to achieve a complete proof without actually
having to  write  a  single  mathematical  statement.  Coq and Edukera  automatically
identify  the  outermost  operator  in  a  mathematical  term.  While  this  does  not
completely exempt the user from thinking about statements and anticipating which
rules  may  be  used  next,  it  is  not  up  to  the  user  to  actually  figure  out  which
substitution makes a statement match a given pattern, or how to apply it to another
statement in order to use a rule. This is not the case in Isabelle and Lurch, where the
user explicitly writes down mathematical terms, and the system simply checks if they



are correct. In all cases however,  a posteriori control and validation is possible, for
example by replaying a step in imperative PAs. This may provide another way to
practise skills related to formula manipulation, by reading and control rather than by
writing. Lurch in particular provides rich and explicit feedback on substitutions.

Possible effects on the perception of proof and proving. In our experience, users of
imperative-style proof assistants such as dEAduction, Edukera and Coq may feel as
though they are simply “pushing symbols around until it works”, possibly not even
understanding why the proof went through. This may be strengthened by the fact that
these tools automatically manage scopes, figuring out the current context, including
the  clear  identification  of  the  operational  status  of  each  statement.  Even  though
accessing previous contexts and replaying previous steps is possible, these tools may
act as “blinders”, allowing one to entirely focus on the current proof state, possibly
“forgetting”  about  other  parts  of  the  proof.  This  “tunnel”  effect  may  even  be
strengthened by the fact that these tools automate several aspects of proving, which
makes a trial-and-error exploration strategy more viable than in declarative-style PAs
such as Lurch and Isabelle. Edukera stands out as a special case in that the whole text
of the proof remains visible throughout, even though user input is mostly imperative
and syntactic manipulations largely automated.

As we can see, different design choices in each PA entail different actions on the part
of the user. Certain concepts (for instance that of substitution) intervene in all cases
but quite differently, and may require different levels of proficiency from the user.
One may argue that freeing students from certain tasks (writing syntactically correct
statements, keeping track of variables and hypotheses’ status and scope, memorising
definitions and theorems, recalling what remains to be proven) may enable them to
concentrate  on  the  deeper  ideas  involved  in  a  proof,  and  may  contribute  in
overcoming these difficulties outside of the PA by mere “habituation”. Conversely,
one may object that acquiring these skills is indeed one of the intended goals of these
activities, and that it is therefore essential to have students practise them and not rely
on a tool’s facilities. For a discussion of the possible effects of using a PA on the
acquisition of proving skills, see for example (Thoma & Iannone, 2021).

Figuring out the actual effect of each PA on learning would of course require further
research. It would be interesting to try and analyse student’s proficiency with various
proof-related competencies when using different types of PAs. Do PAs have an effect
on known syntactic and semantic difficulties that students typically encounter when
working on proof? Do they favour  the development  of  higher-level  competencies
such as writing a full and correct proof on paper, or summarising the main arguments
of a proof verbally? How much do these effects depend on students’ backgrounds and
curricula?

NOTES

1. Link to our appendices.

2. Deaduction website, including source code: https://github.com/dEAduction/dEAduction

https://github.com/dEAduction/dEAduction


3. Readers unfamiliar with PAs may consult the following site for examples of proof scripts along
with corresponding proof states: https://plv.csail.mit.edu/blog/alectryon.html#alectryon.
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