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Dans le jeu du plus grand sous-graphe connexe, deux joueurs, Anaïs et Gilles, s’affrontent en colorant les sommets d’un
graphe. À chaque tour, Anaïs colore un sommet non coloré en rouge puis Gilles colore un sommet non coloré en bleu.
Lorsque tous les sommets sont colorés, le joueur dont la couleur induit la plus grande composante connexe gagne. Ce
jeu a été défini dans [Bensmail et al, WG’21 et AlgoTel’21] où il a été montré entre autres que Gilles n’a jamais de
stratégie gagnante (au mieux, il peut espérer une égalité). Nous étudions la version de ce jeu où on se donne aussi un
entier : ≥ 1. Dans ce cas, Anaïs gagne si elle crée une composante connexe rouge de taille au moins : et Gilles gagne
sinon. Étant donné un graphe �, nous étudions 26 (�), le plus grand entier : qui garantit la victoire d’Anaïs.
Outre le fait que cela donne une chance à Gilles de gagner, cette variante fait partie de la famille des jeux combinatoires
Maker-Breaker, qui ont été très étudiés. De plus, cette variante offre des outils différents pour mieux comprendre la
version Maker-Maker initiale. En particulier, nous étudions les graphes �-parfaits pour lesquels Anaïs peut gagner en
créant une unique composante rouge, i.e., les graphes � à = sommets tels que 26 (�) = d =2 e.
Nous montrons que le calcul de 26 est PSPACE-complet dans les graphes bipartis, scindés (split) ou planaires, et que 26
et une stratégie correspondante peuvent être calculés en temps linéaire dans les graphes %4-clairsemés (généralisant les
cographes). Nous donnons ensuite des conditions suffisantes (liées aux degrés ou au nombre d’arêtes) pour qu’un graphe
soit �-parfait. Un résultat surprenant est qu’il n’existe aucun graphe 3-régulier �-parfait avec plus de 132 sommets.

Mots-clefs : Maker-Breaker game, connection game, largest connected subgraph game, PSPACE-complete.

1 Introduction
In the largest connected subgraph game [BFMN21], two players, Anaïs and Gilles, play on a graph �

whose vertices are initially uncoloured. Each round, Anaïs colours an uncoloured vertex of � red, and
then Gilles colours one blue (if any remain). The game ends when every vertex is coloured. If the largest
connected red (blue, resp.) component is larger than the largest connected blue (red, resp.) one, then Anaïs
(Gilles, resp.) wins. If both components have the same order, then the game ends in a draw. In [BFMN21],
it was shown that Anaïs can always avoid losing this game. For more fairness, we study the following
variant where, in addition to �, an integer : ≥ 1 is given as input. In this paper, Anaïs wins the game if
she can create a connected red component of order at least : in �, and Gilles wins otherwise. Let 26 (�)
denote the largest : such that Anaïs has a strategy to create a connected red component of order at least :
in �, regardless of how Gilles plays.

Besides the fact that it offers Gilles the opportunity to win (if : > 26 (�)), the version of the largest
connected subgraph game studied in this paper is part of the family of Maker-Breaker games that have been
widely studied. Since their introduction with famous games like Hex [Gar59] and the Shannon switching
game [Gar61], Maker-Breaker games arguably drew more attention after the 1973 paper of Erdös and
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through the UCA JEDI (ANR-15-IDEX-01), the EUR DS4H (ANR-17-EURE-004) Investments in the Future projects and the ANR-
21-CE48-0001 project P-GASE. Due to lack of space, proofs have been sketched or omitted and can be found in [BFM+21].
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Selfridge on positional games [ES73] which, in particular, gives sufficient conditions for Breaker to win.
In general, the outcome of a Maker-Breaker game is PSPACE-complete [RW21]. Among other examples,
Chvátal and Erdös introduced Maker-Breaker games played on the complete graph  =: the Hamiltonicity
game, the Connectivity game, and the Clique game [CE78]. In each of these games, Anaïs and Gilles
alternate picking edges of the complete graph  = on = vertices, and Anaïs wins if she creates a Hamiltonian
cycle for the former, spanning tree for the second, and clique of a given size for the latter.

The game we introduce also takes place in connection game theory, i.e., games in which players aim to
create connected structures. Several of theses games are well known, such as HEX. Connection games are
known to be, in general, difficult complexity-wise. Indeed, the generalised Maker-Breaker version of HEX
was proven to be PSPACE-complete in 1981 by Reisch [Rei81], even if the graph is planar. This version,
called PLANAR GENERALISED HEX, is played on an arbitrary planar graph in which two special vertices,
denoted by B and C, are initially coloured red. Anaïs and Gilles alternate colouring vertices, and Anaïs wins
if she manages to connect B and C by a red path. Otherwise, Gilles wins.

Finally, studying the Maker-Breaker variant of the largest connected subgraph game offers new tools to
obtain further results on the Maker-Maker version. In particular, the class of �-perfect graphs, i.e., the
=-node graphs � for which 26 (�) = d =2 e, is particularly interesting since, in any odd order �-perfect graph,
Anaïs has a winning strategy in the initial Maker-Maker variant.

Our contributions. We first prove that computing 26 is PSPACE-complete, even for restricted families of
graphs such as bipartite graphs of diameter at most 4, split graphs, and planar graphs. On the positive side,
26 (�) ≤ 2 for any path or cycle�, and 26 can be computed in linear time in (@, @−4)-graphs (a super-class
of cographs). We then give sufficient conditions, depending on the degrees and on the number of edges, for
a graph to be �-perfect. Finally, we prove that there exist arbitrarily large 3-regular �-perfect graphs if and
only if 3 ≥ 4. In particular, surprisingly, there are no 3-regular �-perfect graphs of order more than 132.

2 PSPACE-Hardness and some polynomial cases
In this section, we study the complexity of computing 26. Let us start with basic results. First, since

Anaïs and Gilles colour vertices turn-by-turn, Anaïs cannot colour more than half of the vertices of the
graph, making �-perfect graphs “ideal” for Anaïs. Moreover, if there exists a vertex of degree 3, Anaïs can
first colour it, and then colour as much of its neighbours as possible ensuring a red component of size at
least 1 + b 32 c. Hence, this gives the following tight bounds:

Lemma 2.1 For every =-node graph � with maximum degree Δ(�),
⌊
Δ(�)

2

⌋
+ 1 ≤ 26 (�) ≤

⌈
=
2
⌉
.

In [BFMN21], paths, cycles, and cographs (graphs not containing the path %4 on four vertices as an
induced subgraph), where Anaïs has a winning strategy (in the Maker-Maker variant) have been fully char-
acterised. From these results, it follows that 26 (�) = 2 for any path or cycle � with at least 3 vertices. The
case of cographs in [BFMN21] is not trivial due to the fact that the Maker-Maker version seems difficult to
handle in disconnected graphs. Here (Maker-Breaker version), the following lemma makes the study easier:

Lemma 2.2 Let � be any graph with connected components �1, . . . , �: . Then, 26 (�) = max
1≤8≤:

26 (�8).

Taking advantage of Lemma 2.2 (in the Maker-Breaker variant, we can restrict our study to connected
graphs), we can extend the result of [BFMN21] to the class of (@, @ − 4)-graphs [BO95], i.e., graphs where
any @ vertices induce at most @ − 4 induced paths %4 (cographs are (4, 0)-graphs):

Theorem 2.3 For any @ ≥ 0, 26 (�) can be computed in linear time in the class of (@, @ − 4)-graphs �.

However, computing 26 (�) is still a hard computational problem, even for restricted families of graphs.

Theorem 2.4 Given a graph � and an integer : ≥ 1, it is PSPACE-complete to decide whether 26 (�) ≥ : ,
even if � is a bipartite, split or planar graph.

Sketch of the proof. The case of bipartite and split graphs follows from a typical reduction from the classical
PSPACE-complete problem POS CNF. Due to lack of space, we only focus on the PSPACE-hardness for the
case of planar graphs. The proof is via a reduction from PLANAR GENERALISED HEX. Let (�, B, C) be



Une version Maker-Breaker du jeu du plus grand sous-graphe connexe

center:

�B C

B10 C10

B11

...

B1
=+4

C11

...

C1
=+4

B20 C20

B21
. . .B2

=+4 C21
. . . C2

=+4

B30 C30

B31
. . .B3

=+4 C31
. . . C3

=+4

FIGURE 1: Construction in the proof of Theo-
rem 2.4.

FIGURE 2: A 5-regular �-
perfect graph.
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FIGURE 3: Aqueduct graph
in the proof of Theorem 3.3.

an instance of PLANAR GENERALISED HEX such that � is an =-node planar graph. Let � be the graph
obtained from � as follows (illustrated in Figure 1). Add to � three vertices B10, B

2
0, B

3
0 adjacent to B, and

another three vertices C10 , C
2
0 , C

3
0 adjacent to C. To each of these six vertices we just added, attach = + 4 new

degree-1 vertices, so that a total of 6(= + 4) degree-1 vertices (leaves) are added to �. Clearly, � is planar.
We prove that 26 (�) ≥ = + 5 if and only if Anaïs wins PLANAR GENERALISED HEX in (�, B, C).

Intuitively, to ensure a sufficiently large connected red component, Anaïs must colour “enough” vertices
in the two subtrees rooted in B and C (that were added to � to obtain �). To prevent Anaïs from winning,
Gilles must also colour “enough” vertices in these subtrees. The result is that Anaïs will colour B and C
before any other vertex of � is coloured. Finally, Anaïs creates a large enough connected red component
if and only if she can connect B and C with a red path, i.e., if and only if she wins PLANAR GENERALISED
HEX in (�, B, C). C

3 When Anaïs can win with a single red component
The rules of the game and Lemma 2.1 suggest that dense graphs clearly favour Anaïs. We now focus

on �-perfect graphs, i.e., graphs where Anaïs can ensure a unique red component at the end of the game
(i.e., =-node graphs � with 26 (�) = d =2 e). First, we give two sufficient conditions, related to its degrees or
number of edges, for a graph to be A-perfect. Note that we can prove that the next two bounds are tight.
Recall that Δ(�) (X(�), resp.) denotes the maximum (minimum, resp.) degree of a vertex in a graph �.

Theorem 3.1 If � is a connected =-node graph with Δ(�) + X(�) ≥ =, then � is A-perfect.

Sketch of the proof. First, Anaïs colours a vertex of degree Δ(�), forming a connected component of order 1
that she wants to extend into one of order d =2 e. Due to the degree conditions, we can prove by induction on
the number of turns that, regardless of what Gilles does, Alice can always colour a vertex adjacent to her
connected component from the previous turn. Thus, each turn, Alice colours such a vertex and increases
the order of her connected component by 1, until the game ends, at which point her connected component
has order d =2 e. C

Theorem 3.2 If � is a connected =-node graph with |� (�) | − 3 ≥ (=−2) (=−3)
2 , then � is A-perfect.

Sketch of the proof. If Δ(�) = = − 1 or Δ(�) ≤ = − 4, the result holds (a simple counting argument ensures
the conditions from Theorem 3.1). Hence, we may assume that =− 3 ≤ Δ(�) ≤ =− 2 and the proof follows
by a tedious case analysis. Roughly, let E be a vertex of degree Δ(�), and let ( be the set of vertices at
distance at least 2 from E (so, |( | ≤ 2). Anaïs first colours E. Intuitively, to guarantee a connected red
component of order d =2 e, Anaïs must colour a vertex D of (, and one of its neighbours (which is also a
neighbour of E) in order for D to be in the same connected red component as E. Then, she can colour as
many neighbours of E as possible. We provide such strategies depending on the degree of the vertices in (
and on the maximum degree of a neighbour of E. C
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From the above paragraphs, the degrees of the vertices of a graph are important in determining whether
it is �-perfect. Therefore, we consider the class of regular graphs (where all vertices have the same degree).
From the results above, we already know that 26 is 2 for 2-regular graphs (disjoint union of cycles), and so
they are not �-perfect (if they have at least 5 vertices). In contrast, for any 3 ≥ 4, there are arbitrarily large
3-regular �-perfect graphs. Surprisingly, there is no �-perfect 3-regular graph of order more than 132.

Theorem 3.3 There exist arbitrarily large 3-regular �-perfect graphs if and only if 3 ≥ 4.

Sketch of the proof. For 3 ≥ 5 and ℎ ≥ 3, consider the graph� obtained from ℎ disjoint copies  0, . . . ,  ℎ−1

of the complete graph  3+1 on 3 + 1 vertices. For every 0 ≤ 8 < ℎ, choose 4 vertices of  8 , and remove
the edges between these 4 vertices. Finally, for any 0 ≤ 8 < ℎ, add 4 (well-chosen) edges between  8 and
 8+1 mod ℎ in order to build a 3-regular graph � (see Figure 2 for an example for 3 = 5). It can be proved
that � (which has (3 + 1)ℎ vertices) is �-perfect (see [BFM+21] for more details). A similar (but slightly
different) construction allows to show that there are arbitrarily large �-perfect 4-regular graphs [BFM+21].

We now show that any 3-regular �-perfect graph has order at most 132. For this purpose, let us consider
an optimal strategy for Anaïs in some 3-regular =-node graph �, i.e., that allows her to make a connected
red component of order 26 (�). Let D0 ∈ + (�) be the first vertex coloured by Anaïs by this strategy. The
proof consists of two cases depending on whether D0 belongs to a cycle � of length at most =2 − 1 or not.

In the case that such a short cycle � exists, we show that + (�) can be partitioned into two non-empty
parts � and � such that + (�) ⊆ �, and there exists a matching " separating � and �. By colouring at least
one vertex of each edge of " , Gilles can ensure there are at least two (disjoint) connected red components,
and so, � is not �-perfect.

If every cycle containing D0 has size larger than =
2 − 1. Then, by considering maximum disjoint paths

starting from the three neighbours of D0, we prove that, if = > 132, � contains an aqueduct (see Figure 3) as
an induced subgraph. It is then easy to see that any graph with an aqueduct as an induced subgraph is not �-
perfect. Indeed, in that case, Gilles can always guarantee that one vertex in {G1, G2, G3, H} will be red and not
connected to the largest connected red component (by considering the matching {{G0, G1}, {G2, H}, {G3, G4}}).
Hence, Anaïs cannot create a single connected red component, and � is not �-perfect. C

Further work. Several directions for further work on the Maker-Breaker largest connected subgraph game
are appealing. First, it would be interesting to study it in other standard graph classes such as trees, for which
determining 26 seems non-trivial. Another interesting case is that of grids, which are natural structures to
play on in several types of games, as illustrated by HEX, and for which we only have partial results:

Proposition 1 If � is any finite subgraph of the infinite hexagonal grid, then 26 (�) ≤ 6.

Proposition 2 For = ≤ <, let %=�%< be the = × < Cartesian grid. Then, 26 (%=�%<) ≤ 2=.

One issue we ran into while considering grids (and to some extent trees) is that Anaïs can play in a non-
connected way, and it is not clear how Gilles should answer to that. Precisely, it would be interesting to
study the cost of connectedness, i.e., how much less will Anaïs score if she is always (except on her first
turn) constrained to colour a neighbour of another red vertex, and the game ends when she cannot.
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