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Generalized n-Dimensional Rigid Registration:
Theory and Applications

Jin Wu, Miaomiao Wang, Member, IEEE, Hassen Fourati, Hui Li, Yilong Zhu, Chengxi Zhang, Member, IEEE,

Yi Jiang, Member, IEEE, Xiangcheng Hu, and Ming Liu , Senior Member, IEEE

Abstract—The generalized rigid registration problem in high
dimensional Euclidean spaces is studied. The loss function is
minimized with an equivalent error formulation by Cayley
formula. Closed-form linear least-square solution to such problem
is derived which generates the registration covariances, i.e., un-
certainty information of rotation and translation, providing quite
accurate probabilistic descriptions. Simulation results indicate
the correctness of the proposed method and also present its
efficiency on computation time consumption, compared with
previous algorithms using singular value decomposition (SVD)
and linear matrix inequality (LMI). The proposed scheme is then
applied to an interpolation problem on the special Euclidean
group SE(n) with covariance-preserving functionality. Finally,
experiments on covariance-aided Lidar mapping show practical
superiority in robotic navigation.

Index Terms—Point-cloud Registration, Robotic Perception,
Navigation, Rigid Transformation, Covariance Analysis.

I. INTRODUCTION

A. Background and Related Works

Point-cloud registration has been extensively developed in
the past few decades and widely employed in various fields
including robotic perception, automated reconstruction, com-
puter aided design (CAD), etc. [1]–[3]. The points can either
be measured by a 2-D/3-D laser scanner, or by a time-of-
flight (TOF) sensor, or even by scene reconstruction from
monocular/binocular cameras [4], [5]. The basic purpose of
the point-cloud registration is to find out the rigid/affine/non-
rigid transformations between two measured point sets, while
most registration problems can be considered as locally rigid
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ones as much as possible [6], [7]. By virtue of this aim,
many engineering processes require the point-cloud registra-
tion, including spacecraft attitude determination, autonomous
navigation, simultaneous localization and mapping (SLAM),
etc. [8]–[12]. Thus, the principle of point-cloud registration is
to seek the most appropriate correspondences along with an
optimal transformation to match the two point sets. Note that
the point numbers of the two sets do not have to be consistent,
so such problem is usually non-convex during matching. For
rigid point-cloud registration, the best correspondences and
the optimal rigid transformation are usually unified with the
iterative closest point (ICP, [13]). In ICP, the correspondences
can be figured out iteratively by means of brute-force searching
or aided by a kD tree, with a given transformation guess.
The rigid transformation is often obtained via closed-form
solutions, e.g., singular value decomposition (SVD, [14], [15]),
eigendecomposition (EIG, [16]), dual quaternion method [17],
etc. [18]. ICP is practical and efficient but suffers from local
minima during iterations. Therefore, some efforts have been
paid to find the global optimum of such problem, e.g., the Go-
ICP [19]. Mainstream ICP variants mainly deal with the 3-D
registration case while the high-dimensional one is actually
needed for some other cases, such as the localization of sensor
networks [20], [21].

The main work presented in this paper is to show the
closed-form solution and its covariance analysis of such high-
dimensional rigid registration problem. To describe the shape
of rigid transformations, special orthogonal groups and special
Euclidean groups are usually invoked [22], [23]. Studying the
control problems based on such manifolds has become popular
in recent years, involving some results on feedback control
laws, optimization hull, motion planning, etc. [24]–[26]. The
specific problem of n-dimensional rigid registration can be
solved via the SVD or linear matrix inequality (LMI) [27],
[28]. However, as both these methods suffer from the exis-
tence of high nonlinearity, a covariance analysis guaranteeing
reliable quality control may be not feasible at the current stage.

The engineering background for the presented study is
that, apart from those nonlinear observers on the 3-D special
orthogonal groups [29], [30], higher dimensional registration
techniques have been ultilized by the authors in [31] to
solve the robotic hand-eye calibration between robotic gripper
and attached camera, of the type AX = XB with A,B
being known and X being unknown. It is revealed that a
mapping from 3-D special Euclidean group to the 4-D special
orthogonal group will be of convenience in solving such
problem. In the 4-D case, the authors propose the unit octonion

https://orcid.org/0000-0002-4500-238X


IEEE TRANSACTIONS ON CYBERNETICS 2

method for point-cloud registration but this is not extendable
regarding registration with arbitrary dimensions. As hand-eye
calibration has received extensive research during the past
several decades [32]–[36], the proposed n-dimensional case
may benefit future related works. It is also noticed that, for
the 3-D case, Barczyk et al. have derived the closed form of
the ICP matching covariance and the results have been later
fused with inertial measurement using an invariant Kalman
filter [37]. As mentioned above, the 3-D and 4-D cases are all
specific ones that can not give mandatory information for the
extension to n-dimensional ones. Therefore the main challenge
confronted is to find an efficient universal parameterization
approach for the registration on n-dimensional Euclidean
space.

B. Contributions

Following above problems in n-dimensional registration,
this paper proposes a new formulation as linear solution. Major
contributions are:

• Based on Caylay transformation, linear results regarding
the registration problem have been derived. The de-
veloped method provides a new perspective other than
existing ones like SVD.

• Computational burden has been significantly decreased by
simplifying related computation steps via specific matrix
manipulations. With this technique the online efficiency
of the algorithm has been improved.

• The uncertainty descriptions of the derived solution are
also derived which gives the quantization of the quality
of registration with given noisy point clouds.

Following these contributions, through simulation and ex-
perimental results, we also show the advantages of the pro-
posed method in algorithmic implementation and efficiency,
compared with representatives like LMI, SVD and other
applications.

C. Outline

This paper is structured as follows: Section II presents
the problem formulation and introduces our proposed linear
solution and covariance analysis. Section III consists of ex-
periments, results and comparisons while concluding remarks
are drawn in Section IV.

D. Notations

The n-dimensional Euclidean vector space is described with
Rn. We use Rn×m to denote the real space containing all
matrices with row dimension of n and column dimension
of m. The identity matrix has the notation of I and owns
a certain size according to the context. X⊤,X−1 mean the
transpose and inverse of a given matrix X respectively in
which the inverse exists when X is square and nonsingular.
We use tr to represent the trace of a square matrix. The
adj denotes the adjoint matrix. ∥·∥ stands for the l2 norm
in the Euclidean space such that ∥x∥ =

√
x⊤x for any

given column vector x. rank(X) depicts the row rank in-
formation of X . For the three dimensional Lie algebra, the

special orthogonal group SO(3) contains all the orthonormal
rotation matrices in R3×3. It is extended to n-dimensional
Euclidean space with the SO(n) whose identity is expressed
with X ∈ SO(n) ⇒ XX⊤ = X⊤X = I,det(X) = 1.
The so(3) contains all skew-symmetric matrices x× from
any 3-dimensional vector x = (x1, x2, x3)

⊤ such that the
cross product between any two 3-dimensional vectors x, y is
equivalent to x × y = x×y = −y×x. The generalization of
so(3) from 3-D space to the n-D space is so(n). Note that any
element on the group so(n) is a skew-symmetric matrix and
can be exponentially mapped to a unique rotation matrix on

SO(n). With a n(n−1)
2 -D vector x =

[
x1, x2, . . . , xn(n−1)

2

]⊤
,

the associated skew-symmetric matrix is defined in (1) so that
x× ∈ so(n).
x× =

0 −xn(n−1)
2

xn(n−1)
2

−1
· · · (−1)n−2x2n−3 (−1)n−1xn−1

∗ 0 −xn(n−1)
2

−2
· · · (−1)n−3x2n−4 (−1)n−2xn−2

∗ ∗
. . . · · ·

.

.

.

.

.

.

∗ ∗ ∗
. . . −xn x2

∗ ∗ ∗ ∗ 0 −x1
∗ ∗ ∗ ∗ ∗ 0


(1)

The inverse map, i.e., the wedge operation ∧ from the n× n
skew-symmetric matrix to the n(n−1)

2 -D vector is denoted as
x∧
× = x.

II. HIGH-DIMENSIONAL REGISTRATION: SOLUTION AND
COVARIANCES

A. Problem Formulation

The generalized rigid registration problem can be charac-
terized with the following optimization [13],

argmin
R∈SO(n),t∈R3

L =

N∑
i=1

wi∥bi −Rri − t∥2 (3)

in which R is the n-dimensional rotation matrix; t represents
the Euclidean translation vector in the Rn. The rotation and
translation, together, namely the homogeneous transformation(

R t
0 1

)
∈ SE(n) in the special Euclidean group SE(n),

relates N vector pairs {bi, ri|i = 1, 2, . . . , N} in the body
frame b and reference frame r together. Here the relationship
between vector pairs is expressed with the normalized weight

wi, such that
N∑
i=1

wi = 1. The weights actually denote the

uncertainty characteristics of the data to be aligned. However,
in practice, when there are large amount of points, e.g. for the
Lidar mapping, there is no criteria to determine the weights.
In that case, the weights are computed equally as wi = 1/N .
The problem (3) will always be convex by introducing the
unit quaternion for representation of R in SO(3) [38]. The
uniqueness of the problem can be found in [15]. The problem
is a least-square one and can be solved with many techniques
[39]. When the dimension increases, the quaternion will be
no longer feasible to give adequate description of rotations.
Let us think about the general rotation representation and
factorization that is independent of the dimension n. For any
orthonormal rotation matrix with dimension of three, one has
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Rξ = ξ, where ξ = (ξ1, ξ2, ξ3)
⊤ is called the eigenaxis of R.

While for the rotation in SO(3), the Rodrigues formula can be
accordingly derived as R = cos θI+(1−cos θ)ξξ⊤+sin θξ×,
where θ is the intermediate rotation angle about the eigenaxis
ξ.

The high-dimensional extension of Rodrigues formula is in
a sophisticated form since the cross-product of vectors are
only proven to exist in three and seven dimensional Euclidean
spaces [40]. Moreover, the Rodrigues formula is nonlinear
and can hardly offer convenience for rotation computation.
However, the Cayley transformation, i.e.,

R = (I +G)
−1

(I −G) (4)

with G denoting an n-dimensional skew-symmetric matrix,
always holds for the rotation factorization. Such technique has
been invoked for solving the Wahba’s problem that is a special
case of (3) with n = 3, t = 0 and ∥bi∥ = ∥ri∥ = 1 forming a
spacecraft attitude estimator called OLAE [41]. With different
data dimensions n > 3, the problem significantly varies. The
matrices I+G and I−G are often invertible, but will suffer
from singularities when all Euler angles approach ±π, which
is a special case. However, in engineering, there is almost no
such a coincident case for n-dimensional registration, because
of the noise of the input data. Therefore, we assume here
that I +G and I −G are strictly invertible. In the following
parts, we are going to present the proposed linear solution and
associated covariance analysis.

B. Proposed Linear Solution
Let us define the centers of the mass of the point sets as:

b̄ =

N∑
i=1

wibi, r̄ =

N∑
i=1

wiri (5)

with bi, ri ∈ Rn. For large numbers of points, without loss
of generality, the covariance of each point can be unified with
Σ = Σbi = Σri . Then the rotation-only problem is converted
to the following optimization

argmin
R∈SO(n)

L =

N∑
i=1

wi

∥∥bi − b̄−R(ri − r̄)
∥∥2 (6)

With the virtue of (4) and defining b̃i = bi − b̄, r̃i = ri − r̄
and the error vector ei = b̃i − Rr̃i, one always expect the
error to be zero, such that

ei = b̃i − (I +G)
−1

(I −G)r̃i = 0. (7)

The right item can be further expressed as

b̃i = (I +G)
−1

(I −G) r̃i ⇒ (I +G) b̃i = (I −G) r̃i

⇒ G
(
b̃i + r̃i

)
= r̃i − b̃i.

(8)
Note that in [41], the above equation can be further derived
to (

b̃i + r̃i

)
×
g = b̃i − r̃i (9)

where G is replaced by G = g× ∈ so(3). The equation
can be obtained by symbolic manipulation using MATLAB,
Maple or Mathematica. That is to say the minimization (6) is
transformed into

argmin
G⊤=−G

L =

N∑
i=1

wi∥Gxi − di∥2 (10)

where

xi = b̃i + r̃i

di = r̃i − b̃i.
(11)

For the n-dimensional G, we need to determine the n(n−1)/2
items inside G such that

G(g) = g⊗ =

0 g1 g2 · · · gn−1

−g1 0 gn · · · g2n−3

−g2 gn
. . . · · ·

...
...

...
... 0 gn(n−1)

2

−gn−1 −g2n−3 · · · −gn(n−1)
2

0


(12)

with g =
[
g1, g2, . . . , gn(n−1)

2

]⊤
and G being a linear function

of g. It can be noticed that although the linear mapping g⊗ is
also on so(n), it does not require the specific arrangements
of elements and signs that are needed inside the mapping
from G to g× in (1). Therefore, g⊗ is more flexible than
g× in representing G (see skewdec command in MATLAB
software for some details). Then for arbitrary Gxi in (10),
we can always find a corresponding matrix Pn(xi) satisfying
G(g)xi = Pn(xi)g. This can be achieved via many concur-
rent mathematical tools. For instance, in the MATLAB, we

P4(xi) =


xi,2 xi,3 xi,4 0 0 0
−xi,1 0 0 xi,3 xi,4 0
0 −xi,1 0 −xi,2 0 xi,4

0 0 −xi,1 0 −xi,2 −xi,3



P5(xi) =


xi,2 xi,3 xi,4 xi,5 0 0 0 0 0 0
−xi,1 0 0 0 xi,3 xi,4 xi,5 0 0 0
0 −xi,1 0 0 −xi,2 0 0 xi,4 xi,5 0
0 0 −xi,1 0 0 −xi,2 0 −xi,3 0 xi,5

0 0 0 −xi,1 0 0 −xi,2 0 −xi,3 −xi,4


(2)
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P⊤
4 (xi)P4(xi) =



x2
i,1 + x2

i,2 xi,2xi,3 xi,2xi,4

xi,2xi,3 x2
i,1 + x2

i,3 xi,3xi,4

xi,2xi,4 xi,3xi,4 x2
i,1 + x2

i,4︸ ︷︷ ︸
S1

. .
.

. .
.

x2
i,2 + x2

i,3 xi,3xi,4

xi,3xi,4 x2
i,2 + x2

i,4︸ ︷︷ ︸
S2

. .
.

. .
.

x2
i,3 + x2

i,4︸ ︷︷ ︸
S3


(14)

can use equationsToMatrix function to obtain instant
expression of Pi. The optimization (10) is then solved by

∂L
∂g

= 0

⇒ g⊤
N∑
i=1

wiP
⊤(xi)P (xi)−

N∑
i=1

wid
⊤
i P (xi) = 0

⇒
N∑
i=1

wiP
⊤(xi)P (xi)g =

N∑
i=1

wiP
⊤(xi)di.

(13)

It is obvious that the solution is linear and it follows:

g = H−1v (15)

with

H =

N∑
i=1

wiP
⊤(xi)P (xi)

v =

N∑
i=1

wiP
⊤(xi)di.

(16)

Then the rotation is reconstructed by

R = (I + g⊗)
−1

(I − g⊗) . (17)

As a convention, the translation can be determined with
t = b̄−Rr̄ [14].

Now that we have already known P (xi) ∈ Rn×n(n−1)
2 . The

time complexity of the matrix inversion varies from O(n2.373)
to O(n3) using optimized Coppersmith-Winograd method and
the Schoolbook multiplication respectively [42]. The matrix
H ∈ R

n(n−1)
2 ×n(n−1)

2 will consume huge load of time to
compute its inversion with increasing order n → +∞. Thus
the emerging task is to figure out a faster matrix inversion of
H by dimension reduction through the following properties.

C. Fast Matrix Inversion

The diagonal zero elements of G make P (xi) a matrix with
row-rank of n− 1, which also leads to

rank
[
P⊤(xi)P (xi)

]
= n− 1. (18)

With increasing point numbers, we have

rank (H) ⩽
N∑
i=1

rank
[
wiP

⊤(xi)P (xi)
]
= N (n− 1) .

(19)

That is to say only a few pairs of points can hardly obtain
accurate registration result of R and t. This requirement is
easy to be satisfied as the point numbers are usually far larger
than the dimension so as to guarantee the global observability
of parameters to be estimated.

Here we define Pn(xi) as the P (xi) for n-dimensional
registration problem. By examples we can see the contents
of Pn(xi) with various dimensions in (2). Then we can
summarize the generalized form for n-dimensional case, i.e.,

Pn(xi) =


n
2x

⊤
i

n
3x

⊤
i

−xi,1I
. . . n

n−1x
⊤
i

−xi,2I
. . . −xi,nI

 (20)

where k
jxi denotes the partial column vector consisting of

sequential components of xi from index j up to index k. With
the aid of explicit form of matrix such as those in (2), one can
immediately infer that P⊤

n (xi)Pn(xi) takes following form

P⊤
n (xi)Pn(xi) =


S1 . .

.

S2

. . .
. .

.
Sn−2

 (21)

in which S1,S2, · · · ,Sn−2 are symmetric positive semidefi-
nite matrices. Taking the fourth-order transformation as exam-
ple, the matrix manipulation is shown in (14). Moreover, for
Sk we have the following eigenvalues

λSk
= x2

i,k, x
2
i,k, . . . , x

2
i,k,

n∑
j=k

x2
i,j︸ ︷︷ ︸

(n−k) eigenvalues.

(22)

Then Sk is positive semidefinite as all its eigenvalues are non-
negative. Therefore the sum H is also symmetry-preserving
and positive semidefinite and takes the summed form of (21).
Invoking the Sherman-Morrison-Woodbury formula

(A+BDC)
−1

= A−1−A−1B
(
D−1 +CA−1B

)−1
CA−1

(23)
where A, D and D−1 +CA−1B are nonsingular matrices,
we have(

A B
C D

)−1

=[ (
A−BD−1C

)−1 −A−1B
(
D −CA−1B

)−1

−D−1C
(
A−BD−1C

)−1 (
D −CA−1B

)−1

]
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Notice that(
D −CA−1B

)−1
=

D−1 +D−1C
(
A−BD−1C

)−1
BD−1,

(24)

we actually need to pay more attention to solving A−1,D−1

and
(
A−BD−1C

)−1
. Here A−1 and

(
A−BD−1C

)−1

have the same dimension and require the complexity of
O[(n − 1)3]. Empirically, we found that all Sk matrices for
k = 1, 2, . . . are strictly invertible when the problem (4) is
valid, i.e., 1) the measurement number N is greater than than
the unknown degree n(n − 1)/2 + n; 2) not all the points
are coplanar or colinear. Then following the mapping of H to(

A B
C D

)
, we can see that D here is also in the form of H ,

i.e., the sum of multiple (21). In this way, H can be iteratively
built up by smaller matrix blocks and the final computation
comes from these blocks.

In numerical calculation of H−1, H may always suffer
from very tiny or very large determinant values. At such time,
the inverse of H will be influenced by the numerical loss.
Using the above proposed fast blocked-matrix inversion, we
may find out that A−1, D−1 and

(
A−BD−1C

)−1
are

required. While seen from (21), one can obviously notice that
A, D are positive semidefinite. That is to say in engineering
tasks, with sufficient point numbers, A, D will be exactly
positive definite and this solver is able to obtain much more
robust blocked inversions. By taking matrix manipulations
including addition and multiplication, H−1 can be accurately
recovered. This shows the better robustness of this approach
than conventional numerical schemes for computing H−1.

D. Singularity Avoidance

In (16), each independent component P⊤(xi)P (xi) is
singular due to the rank shown in (18). However, with the sum
of hetrogeneous matrices P⊤(xi)P (xi), the matrix gradually
reaches to full-rank state, which has been described in (19).
When some extreme cases occur, H will be singular and the
proposed fast inversion in the last subsection will also be
trivial. The extreme case mainly covers:

1) Lack of mandatory point numbers [10].
2) Collinear reference vectors [43].
3) Dominant weights [44].

Each of these factors shown above will lead to numerical
problem such that the matrix H is rank-deficient. In fact
for almost all extreme cases, the determination of rotation
would be meaningless as the observability of angles has been
significantly distorted. Studying the extreme performance for
the proposed method is to prevent the computation from
numerical crash, e.g., the existence of Not-a-Number (NaN).
For instance, when H is singular, the determinant will be very
small which generates very large values of H−1 by

H−1 = adj(H)/det(H) (25)

Then inserting the large values into (4) results in another huge
numerical loss. Under such circumstance, we should replace
the original inversion with the pseudo inverse [45] g = H+v.
Here H+ is the Moore-Penrose generalized inverse of H .

E. Covariance Analysis

There are some assumptions for us to derive the covariances
of the obtained results in previous sub-sections:

1) The measured points from one point set contain no
correlated covariance between each other.

2) The two point sets for registration have independent
noise distribution.

These assumptions are based on the fact that current Lidar
sensor outputs huge loads of points, such as Velodyne VLP-
16 Lidar can have 300, 000 points per second. Thus one can
hardly describe individual correlation inside points. We use ⟨·⟩
to represent the operation of expectation and δ is employed to
represent an perturbed infinitesimal induced by input noises
from bi and ri. In this sub-section, high-order (second-order
or higher) infinitesimals are ignored for their tiny impacts in
the error propagation. Then the difference of H is

δH

=

N∑
i=1

wiP
⊤ (xi + δxi)P (xi + δxi)−

N∑
i=1

wiP
⊤ (xi)P (xi)

=

N∑
i=1

wi

[
P⊤ (δxi)P (xi) + P⊤ (xi)P (δxi)+

P⊤ (δxi)P (δxi)

]

≈
N∑
i=1

wi

[
P⊤ (δxi)P (xi) + P⊤ (xi)P (δxi)

]
.

(26)
Note that for each sub-item Ji, it follows that

Ji = wi

[
P⊤ (δxi)P (xi) + P⊤ (xi)P (δxi)

]
. (27)

It can be decomposed linearly in δxi, such that

Ji =
[
K1 (xi) δxi,K2 (xi) δxi, · · · ,Kn(n−1)

2
(xi) δxi

]
.

(28)
For instance when n = 4, the matrices are

K1 (xi) = wi


2xi,1 2xi,2 0 0
0 xi,3 xi,2 0
0 xi,4 0 xi,2

−xi,3 0 −xi,1 0
−xi,4 0 0 −xi,1

0 0 0 0



K2 (xi) = wi


0 xi,3 xi,2 0

2xi,1 0 2xi,3 0
0 0 xi,4 xi,3

xi,2 xi,1 0 0
0 0 0 0
−xi,4 0 0 −xi,1
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K3 (xi) = wi


0 xi,4 0 xi,2

0 0 xi,4 xi,3

2xi,1 0 0 2xi,4

0 0 0 0
xi,2 xi,1 0 0
xi,3 0 xi,1 0



K4 (xi) = wi


−xi,3 0 −xi,1 0
xi,2 xi,1 0 0
0 0 0 0
0 2xi,2 2xi,3 0
0 0 xi,4 xi,3

0 −xi,4 0 −xi,2



K5 (xi) = wi


−xi,4 0 0 −xi,1

0 0 0 0
xi,2 xi,1 0 0
0 0 xi,4 xi,3

0 2xi,2 0 2xi,4

0 xi,3 xi,2 0



K6 (xi) = wi


0 0 0 0

−xi,4 0 0 −xi,1

xi,3 0 xi,1 0
0 −xi,4 0 −xi,2

0 xi,3 xi,2 0
0 0 2xi,3 2xi,4

 .

The noise-perturbed system is given as follows,

(H + δH) (g + δg) = v + δv

⇒ δHg + (H + δH) δg = δv

⇒ δg = H+ (δv − δHg)

(30)

where

δHg =

N∑
i=1

Jig

=

N∑
i=1

n(n−1)
2∑

j=1

gjKj (xi) δxi =

N∑
i=1


n(n−1)

2∑
j=1

gjKj (xi)

 δxi.

(31)
We obtain

Σg =
〈
δgδg⊤

〉
=
〈
H+ (δv − δHg) (δv − δHg)⊤H+

〉
=

〈
H+

(
δvδv⊤ + δHgg⊤δH

−δHgδv⊤ − δvg⊤δH

)
H+

〉

= H+



Σv+

N∑
i=1


n(n−1)

2∑
j=1

gjKj (xi)

Σxi×

N∑
i=1


n(n−1)

2∑
j=1

gjK
⊤
j (xi)

−
N∑
i=1


n(n−1)

2∑
j=1

gjKj (xi)

〈δxiδv
⊤
〉
−

〈
δxiδv

⊤
〉 N∑

i=1


n(n−1)

2∑
j=1

gjK
⊤
j (xi)





H+

(32)

in which

Σv =
〈
δvδv⊤

〉
≈

N∑
i=1

w2
i

〈{
P⊤ (δxi)di + P⊤ (xi) δdi

}
{
P⊤ (δxi)di + P⊤ (xi) δdi

}⊤

〉

=

N∑
i=1

w2
i

[
P⊤ (di)ΣxiP (di)− P⊤ (xi)Σxi,diP (di)−
P⊤ (di)Σxi,diP (xi) + P⊤ (xi)ΣdiP (xi)

]
(33)

and 〈
δxiδv

⊤〉
=

〈
δxi

N∑
i=1

wi

[
P⊤ (δxi)di + P⊤ (xi) δdi

]⊤〉

=

〈
N∑
i=1

wi

[
δxid

⊤
i P (δxi) + δxiδd

⊤
i P (xi)

]〉

=

〈
N∑
i=1

wi

[
δxiδd

⊤
i P (xi)− δxiδx

⊤
i P (di)

]〉

=

N∑
i=1

wi [Σxi,di
P (xi)−Σxi

P (di)],

(34)

provided that

δv =

N∑
i=1

wi

[
P⊤ (δxi)di + P⊤ (xi) δdi

]
(35)

and
Σxi,di

=
〈
δxiδd

⊤
i

〉
=

〈(
δb̃i + δr̃i

)(
δr̃i − δb̃i

)⊤
〉

=
〈
δb̃iδr̃

⊤
i + δr̃iδr̃

⊤
i − δb̃iδb̃

⊤
i − δr̃iδb̃

⊤
i

〉
=

〈
δb̃iδr̃

⊤
i + δr̃iδr̃

⊤
i − δb̃iδb̃

⊤
i − δr̃iδb̃

⊤
i

〉
= Σr̃i

−Σb̃i
.

(36)

In particular, when b̃i and r̃i have the same statistical distri-
bution, especially in the cases with huge numbers of points,
the covariance of g is

Σg = H+×

N∑
i=1

wi

[
P⊤ (di)ΣxiP (di) + P⊤ (xi)ΣdiP (xi)

]
+

N∑
i=1


n(n−1)

2∑
j=1

gjKj (xi)

Σxi

N∑
i=1


n(n−1)

2∑
j=1

gjK
⊤
j (xi)



H+.

(37)
While in applications we always need uncertainty description
of R. In this way, one may derive{

(I +G)R = I −G
[I +G (g + δg)] (R+ δR) = I −G (g + δg)

⇒ (R+ δR) +G (g + δg) (R+ δR) = I −G (g + δg)

⇒ δR+GδR+G (δg)R = −G (δg)

⇒ δR = −(I +G)
−1

δg⊗ (R+ I) .
(38)
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Let us write R+ I in columns as R+ I = (s1, s2, . . . , sn).
Then one has

δg⊗ (R+ I) = [P (s1) δg,P (s2) δg, · · · ,P (sn) δg] .
(39)

Finally the covariance of R is

ΣR =
〈
δRδR⊤

〉
=

〈
(I +G)−1δg⊗ (R+ I)

(R+ I)⊤δg⊗
[
(I +G)−1]⊤

〉

=

〈(I +G)−1[
n∑

k=1

P (sk) δgδg
⊤P⊤ (sk)

] [
(I +G)−1]⊤

〉

= (I +G)−1

[
n∑

k=1

P (sk)ΣgP
⊤ (sk)

] [
(I +G)−1]⊤.

(40)

Likewise, the error model of t is δt = δb−δRr̄−Rδr, which
leads to

Σt ≈ Σb +RΣrR
⊤

+

〈
(I +G)−1δg⊗ (R+ I) r̄

r̄⊤(R+ I)⊤δg⊗
[
(I +G)−1]⊤

〉
≈ Σb +RΣrR

⊤+

(I +G)−1

[
n∑

k=1

P (r̄ksk)ΣgP
⊤ (r̄ksk)

] [
(I +G)−1]⊤.

(41)

III. EXPERIMENTAL RESULTS

A. Accuracy and Robustness

The algorithmic flow is show in Algorithm 1. For the
subsections III.A and III.B, we simulate the following vector
pairs

bi = Rtrueri + ttrue + ε, i = 1, 2, . . . , N (42)

Algorithm 1 The Generalized Linear n-Dimensional Regis-
tration.
Require: Point clouds with N pairs of measurements ri and
bi for i = 1, 2, . . . , N .

Step 1: Compute mean points b̄ =
n∑

i=1

aibi, r̄ =
n∑

i=1

airi.

Step 2: Compute H matrix and v vector using (21). If N is
large, use results in (25) ∼ (30) to simplify the process.
Step 3: Compute required elements of g in (20) and then
compute the rotation using (22).
Step 4: Reconstruct the translation by t = b̄−Cr̄.
Step 5: Compute the covariances of R and t by (46) and (47)
respectively.

where ε ∼ N (0, εI) is the zero-mean random perturbation
subject to Gaussian distribution and Rtrue, ttrue are true
reference rotation matrix and translation vector. ε here is
called the noise density that decides the magnitude of the
noise. The accuracy of the n-dimensional registration will be
affected by the value of ε, i.e., with larger ε the estimation
accuracy will be worse. Six cases with different values of ε are
simulated uniformly where the point number N = 100000 to
guarantee the avarage statistical performance. The following
error criterion is invoked,

ϵ =
1

N

N∑
i=1

∥bi −Rri − t∥2. (43)

We pick up the SVD [46] and LMI [28] approaches for
comparison. The SVD uses the following principle

R = U diag [1, 1, . . . ,det(UV )]V ⊤ (44)

TABLE I
ACCURACY (NOISE DENSITY ε = 1.0× 10−15)

Dimension n ϵSVD ϵLMI ϵProposed

5 2.5189× 10−15 3.9770× 10−15 2.5534× 10−15

10 4.1445× 10−15 7.5453× 10−15 4.1869× 10−15

15 6.1569× 10−15 9.8278× 10−15 6.1933× 10−15

20 7.4839× 10−15 1.2049× 10−14 7.5265× 10−15

25 9.4027× 10−15 1.4780× 10−14 9.4433× 10−15

30 8.9694× 10−15 1.3265× 10−14 9.0142× 10−15

35 1.0416× 10−14 1.5201× 10−14 1.0466× 10−14

40 1.1447× 10−14 1.7480× 10−14 1.1496× 10−14

45 1.2971× 10−14 2.0592× 10−14 1.3020× 10−14

50 1.4288× 10−14 2.2007× 10−14 1.4339× 10−14

55 1.3608× 10−14 2.2283× 10−14 1.3661× 10−14

60 1.4685× 10−14 2.7381× 10−14 1.4741× 10−14

65 1.5838× 10−14 2.5491× 10−14 1.5894× 10−14

70 1.7252× 10−14 2.7601× 10−14 1.7306× 10−14

75 1.7786× 10−14 3.0958× 10−14 1.7842× 10−14

80 1.9007× 10−14 3.2302× 10−14 1.9062× 10−14

85 1.9726× 10−14 3.1926× 10−14 1.9782× 10−14

90 2.1036× 10−14 3.4314× 10−14 2.1094× 10−14

95 2.0890× 10−14 2.9565× 10−14 2.0948× 10−14

100 2.2686× 10−14 3.7892× 10−14 2.2732× 10−14

TABLE II
ACCURACY (NOISE DENSITY ε = 1.0× 10−11)

Dimension n ϵSVD ϵLMI ϵProposed

5 8.0732× 10−12 1.3465× 10−11 8.0732× 10−12

10 1.2590× 10−11 1.6765× 10−11 1.2590× 10−11

15 1.5558× 10−11 2.4746× 10−11 1.5558× 10−11

20 1.7976× 10−11 3.0183× 10−11 1.7976× 10−11

25 2.0297× 10−11 3.4387× 10−11 2.0297× 10−11

30 2.2206× 10−11 3.8058× 10−11 2.2206× 10−11

35 2.4105× 10−11 3.1602× 10−11 2.4105× 10−11

40 2.5741× 10−11 3.8339× 10−11 2.5741× 10−11

45 2.7409× 10−11 4.2927× 10−11 2.7409× 10−11

50 2.8842× 10−11 4.9149× 10−11 2.8842× 10−11

55 3.0359× 10−11 4.5121× 10−11 3.0359× 10−11

60 3.1765× 10−11 5.1417× 10−11 3.1765× 10−11

65 3.3025× 10−11 5.3235× 10−11 3.3025× 10−11

70 3.4349× 10−11 5.5118× 10−11 3.4349× 10−11

75 3.5478× 10−11 5.5461× 10−11 3.5478× 10−11

80 3.6685× 10−11 5.7690× 10−11 3.6685× 10−11

85 3.7946× 10−11 5.9655× 10−11 3.7946× 10−11

90 3.9061× 10−11 6.8401× 10−11 3.9061× 10−11

95 4.0109× 10−11 6.7446× 10−11 4.0109× 10−11

100 4.0974× 10−11 7.6927× 10−11 4.0974× 10−11
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TABLE III
ACCURACY (NOISE DENSITY ε = 1.0× 10−08)

Dimension n ϵSVD ϵLMI ϵProposed

5 7.7914× 10−09 1.1886× 10−08 7.7914× 10−09

10 1.2518× 10−08 2.0765× 10−08 1.2518× 10−08

15 1.5479× 10−08 2.6433× 10−08 1.5479× 10−08

20 1.8111× 10−08 3.0359× 10−08 1.8111× 10−08

25 2.0241× 10−08 3.4652× 10−08 2.0241× 10−08

30 2.2276× 10−08 3.5577× 10−08 2.2276× 10−08

35 2.4160× 10−08 4.3726× 10−08 2.4160× 10−08

40 2.5811× 10−08 3.8046× 10−08 2.5811× 10−08

45 2.7455× 10−08 4.2292× 10−08 2.7455× 10−08

50 2.8837× 10−08 4.9336× 10−08 2.8837× 10−08

55 3.0398× 10−08 4.7447× 10−08 3.0398× 10−08

60 3.1659× 10−08 4.8594× 10−08 3.1659× 10−08

65 3.3004× 10−08 5.0344× 10−08 3.3004× 10−08

70 3.4303× 10−08 5.8933× 10−08 3.4303× 10−08

75 3.5634× 10−08 5.1539× 10−08 3.5634× 10−08

80 3.6726× 10−08 5.6076× 10−08 3.6726× 10−08

85 3.7855× 10−08 6.3566× 10−08 3.7855× 10−08

90 3.8955× 10−08 6.1485× 10−08 3.8955× 10−08

95 4.0017× 10−08 6.3347× 10−08 4.0017× 10−08

100 4.1120× 10−08 6.5319× 10−08 4.1120× 10−08

TABLE IV
ACCURACY (NOISE DENSITY ε = 1.0× 10−05)

Dimension n ϵSVD ϵLMI ϵProposed

5 8.0834× 10−06 1.2991× 10−05 8.0834× 10−06

10 1.2327× 10−05 1.9442× 10−05 1.2327× 10−05

15 1.5622× 10−05 2.7248× 10−05 1.5622× 10−05

20 1.7870× 10−05 2.8758× 10−05 1.7870× 10−05

25 2.0152× 10−05 3.0017× 10−05 2.0152× 10−05

30 2.2217× 10−05 3.6156× 10−05 2.2217× 10−05

35 2.4295× 10−05 3.9725× 10−05 2.4295× 10−05

40 2.5801× 10−05 3.5996× 10−05 2.5801× 10−05

45 2.7411× 10−05 4.2853× 10−05 2.7411× 10−05

50 2.8786× 10−05 4.6512× 10−05 2.8786× 10−05

55 3.0412× 10−05 4.4348× 10−05 3.0412× 10−05

60 3.1668× 10−05 4.7548× 10−05 3.1668× 10−05

65 3.3071× 10−05 5.0175× 10−05 3.3071× 10−05

70 3.4427× 10−05 4.9038× 10−05 3.4427× 10−05

75 3.5611× 10−05 6.3040× 10−05 3.5611× 10−05

80 3.6670× 10−05 5.9718× 10−05 3.6670× 10−05

85 3.7910× 10−05 6.1752× 10−05 3.7910× 10−05

90 3.8971× 10−05 6.7341× 10−05 3.8971× 10−05

95 4.0016× 10−05 6.3221× 10−05 4.0016× 10−05

100 4.1141× 10−05 6.9154× 10−05 4.1141× 10−05

TABLE V
ACCURACY (NOISE DENSITY ε = 1.0× 10−02)

Dimension n ϵSVD ϵLMI ϵProposed

5 8.1853× 10−03 1.4259× 10−02 8.1853× 10−03

10 1.2534× 10−02 1.9991× 10−02 1.2534× 10−02

15 1.5371× 10−02 2.3495× 10−02 1.5371× 10−02

20 1.8140× 10−02 2.6999× 10−02 1.8140× 10−02

25 2.0178× 10−02 3.0602× 10−02 2.0178× 10−02

30 2.2231× 10−02 3.7298× 10−02 2.2231× 10−02

35 2.4116× 10−02 3.9932× 10−02 2.4116× 10−02

40 2.5846× 10−02 3.9382× 10−02 2.5846× 10−02

45 2.7373× 10−02 3.8117× 10−02 2.7373× 10−02

50 2.8909× 10−02 4.3503× 10−02 2.8909× 10−02

55 3.0338× 10−02 5.0324× 10−02 3.0338× 10−02

60 3.1645× 10−02 4.9776× 10−02 3.1645× 10−02

65 3.3087× 10−02 5.1069× 10−02 3.3087× 10−02

70 3.4326× 10−02 5.6569× 10−02 3.4326× 10−02

75 3.5564× 10−02 5.5242× 10−02 3.5564× 10−02

80 3.6693× 10−02 5.6178× 10−02 3.6693× 10−02

85 3.7868× 10−02 5.4755× 10−02 3.7868× 10−02

90 3.9025× 10−02 6.5662× 10−02 3.9025× 10−02

95 4.0027× 10−02 6.2286× 10−02 4.0027× 10−02

100 4.1095× 10−02 6.8882× 10−02 4.1095× 10−02

TABLE VI
ACCURACY NOISE DENSITY ε = 1.0× 10+01

Dimension n ϵSVD ϵLMI ϵProposed

5 2.9183× 10+00 4.7148× 10+00 2.9183× 10+00

10 4.1216× 10+00 6.9657× 10+00 4.1216× 10+00

15 5.0425× 10+00 8.8207× 10+00 5.0425× 10+00

20 5.8215× 10+00 9.2720× 10+00 5.8215× 10+00

25 6.5206× 10+00 1.1008× 10+01 6.5206× 10+00

30 7.1352× 10+00 1.2353× 10+01 7.1352× 10+00

35 7.7093× 10+00 1.3150× 10+01 7.7093× 10+00

40 8.2448× 10+00 1.3918× 10+01 8.2448× 10+00

45 8.7331× 10+00 1.2899× 10+01 8.7331× 10+00

50 9.2070× 10+00 1.3756× 10+01 9.2070× 10+00

55 9.6519× 10+00 1.5520× 10+01 9.6519× 10+00

60 1.0085× 10+01 1.5606× 10+01 1.0085× 10+01

65 1.0494× 10+01 1.7121× 10+01 1.0494× 10+01

70 1.0898× 10+01 1.5725× 10+01 1.0898× 10+01

75 1.1281× 10+01 1.8923× 10+01 1.1281× 10+01

80 1.1639× 10+01 1.8249× 10+01 1.1639× 10+01

85 1.2020× 10+01 1.7407× 10+01 1.2020× 10+01

90 1.2344× 10+01 1.8864× 10+01 1.2344× 10+01

95 1.2693× 10+01 1.9491× 10+01 1.2693× 10+01

100 1.3016× 10+01 1.9967× 10+01 1.3016× 10+01

with SVD of Z such that

UΠV ⊤ = Z

Z =
1

N

N∑
i=1

(
bi − b̄

)
(ri − r̄)

⊤ (45)

where Π is the diagonal matrix containing all singular values
of Z. The LMI is based on the following optimization

argmax
R∈SO(n)

tr(RZ⊤) (46)

subject to (
I R⊤

R I

)
≥ 0. (47)

All these algorithms are implemented using the C++ program-
ming language of the standard 2014 and compiled with the
GNU gcc 7.0 compiler. We use Eigen library to compute
the SVD and related matrix manipulations. The GpoSolver
is adopted for the solution of LMI [47]. Each algorithm
is executed for 100 times for mean errors. Simulations on
different dimensions are also reflected in the presented tables.
The results are shown in Table I, II, III, IV, V and VI.

One can see that with low values of ε, all the algorithms are
able to generate accurate registration results. Among them, the
SVD owns the best precision and the proposed method ranks
the second. With growing ε, the noise also grows, inducing
higher errors to the model (42). The proposed algorithm now
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has the same accuracy with that of SVD while the LMI
gradually performs badly. The reason is that SVD and the pro-
posed algorithm share the same optimization framework and
all belong to analytical solutions. However, LMI converts the
rigid-registration loss function into a polynomial optimization
one that requires sophisticated nonlinear solver. As SVD has
been regarded as a highly reliable algorithm [48], [49], that is
to say the proposed method is stable and reliable in this sense.

B. Computational Efficiency

There is slight impact of the point numbers on the com-
putational efficiency since the complexity of the algorithm is
linear with respect to the point numbers, as shown in (15).
For high-order matrices, the proposed matrix inversion will
gradually be slower than SVD. This is because the proposed
one has the complexity of O[ 12n(n − 1)]3 while that of the
SVD is O(n3). Choosing the slowest algorithm as a basic
reference, the realistic time complexity of the other algorithms
should be compentated for specific machines. This leads to
the modified time complexity expressions for the proposed
method and SVD i.e. O(ain

3) with ai the compensation
constant for i-th algorithm. For instance, if we implement the
matrix operations with the famous Eigen library using C++
programming language on a MacBook Pro 2017 13” with
CPU of i7-4core 3.5GHz, the measured mean values (100
times) are a2/a1 = 1.667 × 105 and a3/a1 = 6.25 × 106.
Then the plots of time complexity can be shown in Fig. 1.
The unaltered matrix inversion using Eigen is very slow in
high dimensions and has very large slopes as the dimension
n increases. It should be noted that ai is determined by the
machine and employed library. For lower dimensions, the
computation time would be much lower than the SVD as low-
dimensional matrix inversions can usually be obtained with
algebraic results instantly. The intersection point between the
proposed method and SVD is n = 112. A detailed comparison
showing the exact in-run performance of the computation
time is presented in Table VII where t denotes the evaluated
computation time.

We may see that with increasing dimension n, the com-
putational complexity also increases. At the initial stage,
the SVD is quite slower than the proposed method and
the LMI is always the slowest since it needs nonlinear
optimizations. However, when n becomes larger, the matrix
manipulations of the proposed method also turn to be more
and more time-consuming. This leads to the deceasing ratio
of tSVD/tProposed. That is to say, for very large n, SVD will
be faster and the LMI will be even more complex than the
proposed method, as indicated by tLMI/tProposed (also see
Fig. 2). Note that there are very few cases that n is larger
than 100, the proposed method is more practical than SVD in
most cases since it also owns information of covariances.

C. Application: Covariance-Preserving Interpolation on spe-
cial Euclidean group SE(n)

The special Euclidean group SE(n) is a simultaneous
precise description of the rotation and translation, which
has been extensively used in rigid-body state estimation and

Fig. 1. Time complexity performances of various algorithms.

control [23], [50], [51]. Also, in the field of robotics, SE(n)
plays important roles in camera egomotion estimation, hand-
eye calibration, motion planning and etc. [26], [31], [52].
However, in engineering applications, the measurements on
SE(n) are usually restricted by low sampling frequency and
asynchronous data transmission. Therefore, interpolated result
between two successive measurements on SE(n) will be vital
to such systems. The interpolation of SE(n) is sometimes
dependent on the interpolation on SO(n). Belta and Kumar
studied the interpolation on SE(3) using SVD, where the rota-
tion and translation are simultaneously interpolated for optimal
approximation with error of SE(3) geodesics. Because of the
internal nonlinearity of SVD, it is very hard for the users to
obtain the closed-form information of covariance of the inter-
polated results. The probabilistic descriptions of interpolation
would be of great significance for a later covariance-required
application e.g. a Kalman filter on the Lie group [53], [54].
Therefore our next task is to present a new framework for such
purpose.

In [55], Thomas gave an approximation from SE(3) to
SO(4), which is later improved in [31]. We have proposed
a new generalization such that the following mapping F from
SE(n) to SO(n+ 1), namely, SE(n) + + [56],

T =

(
R t
0 1

)
∈ SE(n)

F←→
F−1

RT ,SO(n+1) =

(
R εt

−εt⊤R 1

) (48)

holds. Note that here RT ,SO(n+1) is not strictly on SO(n) and
should be orthonormalized to XR before further computation:

argmax
XR∈SO(n+1)

tr
[
XRR⊤

T ,SO(n+1)

]
(49)

which can be solved via the proposed algorithm by forming
the following vector pairs [57], [58],

b1 = RT ,SO(n+1),1

b2 = RT ,SO(n+1),2

...
bn = RT ,SO(n+1),n

,



r1 = (1, 0, . . . , 0)⊤

r2 = (0, 1, . . . , 0)⊤

...

rn = (0, 0, . . . , 1)⊤

(50)



IEEE TRANSACTIONS ON CYBERNETICS 10

Fig. 2. The ratios of computation time from SVD, LMI and the proposed method.

TABLE VII
COMPUTATION TIME

Dimension n tSVD tLMI tProposed tSVD/tProposed tLMI/tProposed

5 5.09175700× 10−03 sec 2.95878440× 10−02 sec 7.14850000× 10−05 sec 7.12283276× 10+01 4.13902833× 10+02

10 1.86192880× 10−02 sec 3.57405530× 10−02 sec 1.78072000× 10−04 sec 1.04560447× 10+02 2.00708438× 10+02

15 2.91524970× 10−02 sec 5.29616330× 10−02 sec 2.34585000× 10−04 sec 1.24272639× 10+02 2.25767347× 10+02

20 5.16656850× 10−02 sec 2.46701489× 10−01 sec 1.11337100× 10−03 sec 4.64047339× 10+01 2.21580667× 10+02

25 7.20797970× 10−02 sec 7.83117401× 10−01 sec 8.61778000× 10−04 sec 8.36407950× 10+01 9.08722897× 10+02

30 1.10495224× 10−01 sec 2.40003185× 10+00 sec 2.08869100× 10−03 sec 5.29016614× 10+01 1.14906027× 10+03

35 1.51141937× 10−01 sec 6.04819777× 10+00 sec 4.54621700× 10−03 sec 3.32456495× 10+01 1.33038035× 10+03

40 2.03090954× 10−01 sec 1.52671507× 10+01 sec 8.92617900× 10−03 sec 2.27522834× 10+01 1.71037918× 10+03

45 2.56202188× 10−01 sec 3.24307563× 10+01 sec 2.01093880× 10−02 sec 1.27404269× 10+01 1.61271722× 10+03

50 3.12731122× 10−01 sec 6.00155415× 10+01 sec 3.10260630× 10−02 sec 1.00796263× 10+01 1.93435891× 10+03

55 3.81157892× 10−01 sec 1.04683072× 10+02 sec 4.47886660× 10−02 sec 8.51014165× 10+00 2.33726701× 10+03

60 4.78917751× 10−01 sec 1.94233782× 10+02 sec 8.93274220× 10−02 sec 5.36137437× 10+00 2.17440264× 10+03

65 5.47775943× 10−01 sec 3.12991523× 10+02 sec 1.12696783× 10−01 sec 4.86061739× 10+00 2.77728888× 10+03

70 6.46396852× 10−01 sec 4.61347369× 10+02 sec 1.55126971× 10−01 sec 4.16688889× 10+00 2.97399843× 10+03

75 7.63718827× 10−01 sec 7.12493501× 10+02 sec 2.41905543× 10−01 sec 3.15709519× 10+00 2.94533764× 10+03

80 8.53510834× 10−01 sec 1.10820564× 10+03 sec 3.26491385× 10−01 sec 2.61419098× 10+00 3.39428753× 10+03

85 1.00388324× 10+00 sec 1.68530646× 10+03 sec 4.99838141× 10−01 sec 2.00841664× 10+00 3.37170439× 10+03

90 1.19993136× 10+00 sec 2.46278443× 10+03 sec 6.58335981× 10−01 sec 1.82267322× 10+00 3.74092333× 10+03

95 1.27744737× 10+00 sec 3.06590801× 10+03 sec 8.61907923× 10−01 sec 1.48211582× 10+00 3.55711779× 10+03

100 1.40629819× 10+00 sec 4.35698895× 10+03 sec 1.14776548× 10+00 sec 1.22524872× 10+00 3.79606203× 10+03

with column vectors of RT ,SO(n+1) being

RT ,SO(n+1) =[
RT ,SO(n+1),1,RT ,SO(n+1),2, . . . ,RT ,SO(n+1),n

]
.

(51)
The covariance of XR is then given by the (40). For a series
of mapped SO(n + 1) measurements mapped from SE(n)
XR,1,XR,1, . . . ,XR,k, with their timestamps τ1, τ2, . . . , τk,
we can interpolate between the time instants k − 1 and k by

argmax
XR,k−1|k∈SO(n+1)

tr
{
XR,k−1|k[ϱXR,k−1 + (1− ϱ)XR,k]

⊤
} (52)

where ϱ is the relative weight such that

ϱ =
τk − τk−1|k

τk − τk−1
∈ (0, 1) (53)

Likewise, by setting

(b1, b2, · · · , bn) = [ϱXR,k−1 + (1− ϱ)XR,k]

r1 = (1, 0, . . . , 0)⊤

r2 = (0, 1, . . . , 0)⊤

...

rn = (0, 0, . . . , 1)⊤

(54)

one is able to compute the interpolated result on SO(n+ 1).
The covariance of XR,k−1|k can also be calculated with (40).
Then XR,k−1|k should be inversed from SO(n + 1) back to
SE(n) by the mapping F−1. The rest steps for generating
covariances of the rotational and translational parts can be
referred to [31].

We use the UR10 robotic arm to perform a generated
series of motion for over 150s while an Intel Realsense
D435i camera is attached to the end-effector of this arm
(see Fig. 3). A standard 12 × 9 chessboard is performed in
the experimental environment for distinct feature extraction.
There are inertial and visual outputs from the D435i but it has
low frequency for the fisheye camera (30 fps). Therefore, a
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visual-inertial navigation system is employed to estimate the
motion of the end-effector. Note that the hand-eye calibration
between the installation frame of the end-effector and the
sensor frame of the Realsense camera has been performed
before experimentation so that the reference transformation
from the readings of robotic arm can be mapped precisely
into the camera frame [31].

Fig. 3. The generated motion of the UR10 robotic arm.

The 1σ uncertainty of the camera measurement is set to
be within 1 pixel while the in-run covariances of the inertial
measurement unit (IMU) are

Σgyro = 1.34× 10−5I rad2

Σaccel = 2.02× 10−3I (m/s2)2,
(55)

where gyro and accel denote the gyroscope and accelerometer
respectively and the covariances are produced according to
a live Allan variance test for 1 hour [59]. For each visual
measurement, the visual-inertial state estimator computes the
state estimation along with its covariance by the IMU pre-
integration [60]. These results have low sampling frequencies
so they are interpolated uniformly to 100Hz so the reference
information provided by the robotic arm could be compared
with. The proposed algorithm is invoked to conduct such
interpolation on SE(3), which follows the equations listed
in this sub-section. The interpolated results along with their
3σ bounds are depicted in Fig. 4 and 5. In Fig. 4, ξ =
(ξx, ξy, ξz)

⊤ denotes the eigenaxis of a 3× 3 rotation matrix
R so that exp(ξ×) = R and Rξ = ξ. The covariance ΣR

actually reflects the uncertainty of ξ [61].The translation in
this case is in the 3-D form such that t = (tx, ty, tz)

⊤. From
the supplementary material, we are able to observe that the
robotic manipulator mainly moves along its x and z axes. It is
observed that using the proposed method for the interpolation
on SE(3), we are able to recover the original motion into a
more dense one without loss of probabilistic propagation. This
is reflected in Fig. 4 and 5 that all these interpolated results
are well within the 3σ bounds. As we uses the mapping from
SE(3) to SO(4) for such interpolation, the proposed method
is validated to be reliable and robust on SO(4) and can achieve
further state estimation tasks on SO(n) requiring uncertainty
descriptions.

D. Application: Covariance-Aided Lidar Mapping

We use the KITTI dataset kitti_2011_10_03_drive_
0027_synced [62] to demonstrate covariance-aided Lidar

mapping using the results from the proposed method. The
KITTI dataset contains some data from a 64-beam Velodyne
HDL-64E Lidar. The Lidar has the measurement specification
of 0.09 degree angular resolution, 2 cm distance accuracy,
which can be used for setting the measurement covariance
for further propagation. We evaluate the trajectory errors by
comparing the results with the ground-truth data in KITTI
dataset. Since the entire trajectory is lengthy, we only visualize
the first 125s results in Fig. 6. In these results, the frame-
to-frame matching is conducted via formula in (15). The
covariance results of rotation and translation are then generated
and transferred to a further pose graph optimization (PGO).
Here, we select the SE-Sync method [63] for globally optimal
PGO computation. Therefore, the numerical computation of
PGO is guaranteed to be optimal. Since successive frames are
close to each other, the correspondence can be easily found
by the random sample consensus (RANSAC), starting from
an identity pose. Thus, we do not consider the uncertainty
of the point correspondences in this work, i.e, it will be
regarded as deterministic and only pose covariance in (40) and
(41) will be taken into account. We select two representatives
dealing with covariance of ICP, i.e., works in [37] and [64],
to make comparisons. The trajectory root mean squared errors
(RMSEs) are shown in Table VIII.

TABLE VIII
RMSES OF THE ESTIMATED TRAJECTORIES

Direction Barczyk et al. [37] Censi [64] Proposed

X 2.472284 m 2.536159 m 2.421336 m
Y 2.034533 m 2.007825 m 2.016879 m
Z 1.9824760 m 1.992351 m 1.972403 m

The best candidate in each direction is marked bold in Table
VIII. It can be observed that although Censi’s method outper-
forms the proposed method on Y-axis, the overall trajectory
accuracy considering XYZ-axes of the proposed method is
the best. The reason is that both [37] and [64] estimate the
covariance of ICP by taking the Hessian and approximates
the covariance of the least-square in first-order, which will
inevitably bring about accuracy loss. The proposed method
does not need any numerical optimization and is explicit so
the closed-form covariance can be derived in an analytical
manner as well. These analytical forms give the rise to the
covariance accuracy, which has been indirectly revealed in the
accuracy of the localization after PGO.

IV. CONCLUSION

The n-dimensional rigid registration problem is revisited in
this paper. It is shown that using the Caylay transformation,
we are able to establish a linear framework for computing the
fundamental parameters. Related covariance analysis of these
parameters along with recovered rotation and translation can
be conducted flexibly due to the existence of the proposed
linear solution. It is verified that the proposed method is slower
than SVD in very high dimensions (n > 100) for a modern
computer but SVD can not provide probabilistic information
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Fig. 4. The interpolated results and their 3σ bounds for the eigenaxis ξ.

Fig. 5. The interpolated results and their 3σ bounds for the translation t.

Fig. 6. The mapping result of the proposed Lidar
registration algorithm using first 125s of the KITTI dataset
kitti_2011_10_03_drive_0027_synced [62]. The blue line
denotes the vehicle trajectory. The blue and green points denotes the local
map while red points denotes the matching result. The white points represent
the reconstructed dense map after covariance-aided pose graph optimization.

of the estimates. Finally, we propose a new method for inter-
polating measurements on the special Eucliean group SE(3),
showing that the proposed algorithm can well handle the high-
dimensional rotation orthonormalization and interpolation with
uncertainty descriptions. The current drawback of the proposed
method is evident that it consumes too many computational
resources for cases with very high dimensions. Future efforts
should be paid to seek a more computationally efficient numer-
ical framework for fast inverse or pseudo inverse of arbitrary
matrices. Source codes of this paper will be made open-
access on https://github.com/zarathustr/GLnR.
The video of this work is presented on
https://youtu.be/BwfjQ9ZAyl4.
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