Jin Wu

Member, IEEE Miaomiao Wang

Hassen Fourati
email: hassen.fourati@gipsa-lab.grenoble-inp.fr

Hui Li

Yilong Zhu

Member, IEEE Chengxi Zhang

Member, IEEE Yi Jiang

Xiangcheng Hu

Senior Member, IEEE Ming Liu

) J Wu

Generalized n-Dimensional Rigid Registration: Theory and Applications

Keywords: Point-cloud Registration, Robotic Perception, Navigation, Rigid Transformation, Covariance Analysis

published or not. The documents may come L'archive ouverte pluridisciplinaire

I. INTRODUCTION

A. Background and Related Works

Point-cloud registration has been extensively developed in the past few decades and widely employed in various fields including robotic perception, automated reconstruction, computer aided design (CAD), etc. [START_REF] Liu | Robotic Online Path Planning on Point Cloud[END_REF]- [START_REF] Xie | Variance-Minimization Iterative Matching Method for Free-Form Surfaces -Part II : Experiment and Analysis[END_REF]. The points can either be measured by a 2-D/3-D laser scanner, or by a time-offlight (TOF) sensor, or even by scene reconstruction from monocular/binocular cameras [START_REF] Paloj | Integrated Time-of-Flight Laser Radar[END_REF], [START_REF] Liu | Topological Mapping and Scene Recognition with Lightweight Color Descriptors for An Omnidirectional Camera[END_REF]. The basic purpose of the point-cloud registration is to find out the rigid/affine/nonrigid transformations between two measured point sets, while most registration problems can be considered as locally rigid ones as much as possible [START_REF] Bai | Nonrigid Point Set Registration by Preserving Local Connectivity[END_REF], [START_REF] Li | Robust Point Set Registration Using Signature Quadratic Form Distance[END_REF]. By virtue of this aim, many engineering processes require the point-cloud registration, including spacecraft attitude determination, autonomous navigation, simultaneous localization and mapping (SLAM), etc. [START_REF] Tahri | Efficient Iterative Pose Estimation Using an Invariant to Rotations[END_REF]- [START_REF] Qin | VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator[END_REF]. Thus, the principle of point-cloud registration is to seek the most appropriate correspondences along with an optimal transformation to match the two point sets. Note that the point numbers of the two sets do not have to be consistent, so such problem is usually non-convex during matching. For rigid point-cloud registration, the best correspondences and the optimal rigid transformation are usually unified with the iterative closest point (ICP, [START_REF] Besl | A Method for Registration of 3-D Shapes[END_REF]). In ICP, the correspondences can be figured out iteratively by means of brute-force searching or aided by a kD tree, with a given transformation guess. The rigid transformation is often obtained via closed-form solutions, e.g., singular value decomposition (SVD, [START_REF] Arun | Least-Squares Fitting of Two 3-D Point Sets[END_REF], [START_REF] Umeyama | Least-Squares Estimation of Transformation Parameters Between Two Point Patterns[END_REF]), eigendecomposition (EIG, [START_REF] Horn | Closed-form Solution of Absolute Orientation Using Unit Quaternions[END_REF]), dual quaternion method [START_REF] Walker | Estimating 3-D Location Parameters Using Dual Number Quaternions[END_REF], etc. [START_REF] Wu | Fast Symbolic 3-D Registration Solution[END_REF]. ICP is practical and efficient but suffers from local minima during iterations. Therefore, some efforts have been paid to find the global optimum of such problem, e.g., the Go-ICP [START_REF] Yang | Go-ICP: A Globally Optimal Solution to 3-D ICP Point-Set Registration[END_REF]. Mainstream ICP variants mainly deal with the 3-D registration case while the high-dimensional one is actually needed for some other cases, such as the localization of sensor networks [START_REF] Sanyal | A Scalable ADMM Algorithm for Rigid Registration[END_REF], [START_REF] Sanyal | On a Registration-Based Approach to Sensor Network Localization[END_REF].

The main work presented in this paper is to show the closed-form solution and its covariance analysis of such highdimensional rigid registration problem. To describe the shape of rigid transformations, special orthogonal groups and special Euclidean groups are usually invoked [START_REF] Hashim | Nonlinear Stochastic Attitude Filters on the Special Orthogonal Group 3: Ito and Stratonovich[END_REF], [START_REF] Hashim | Nonlinear Pose Filters on the Special Euclidean Group SE(3) with Guaranteed Transient and Steady-state Performance[END_REF]. Studying the control problems based on such manifolds has become popular in recent years, involving some results on feedback control laws, optimization hull, motion planning, etc. [START_REF] Markdahl | Exact Solutions to A Class of Feedback Systems on SO(n)[END_REF]- [START_REF] Biggs | Motion Planning on A Class of 6-D Lie Groups via A Covering Map[END_REF]. The specific problem of n-dimensional rigid registration can be solved via the SVD or linear matrix inequality (LMI) [START_REF] Du | Affine Iterative Closest Point Algorithm for Point Set Registration[END_REF], [START_REF] Ruiter | On the Solution of Wahba's Problem on SO(n)[END_REF]. However, as both these methods suffer from the existence of high nonlinearity, a covariance analysis guaranteeing reliable quality control may be not feasible at the current stage.

The engineering background for the presented study is that, apart from those nonlinear observers on the 3-D special orthogonal groups [START_REF] Mahony | Nonlinear Complementary Filters on The Special Orthogonal Group[END_REF], [START_REF] Berkane | On the Design of Attitude Complementary Filters on SO(3)[END_REF], higher dimensional registration techniques have been ultilized by the authors in [START_REF] Wu | Hand-eye Calibration: 4-D Procrustes Analysis Approach[END_REF] to solve the robotic hand-eye calibration between robotic gripper and attached camera, of the type AX = XB with A, B being known and X being unknown. It is revealed that a mapping from 3-D special Euclidean group to the 4-D special orthogonal group will be of convenience in solving such problem. In the 4-D case, the authors propose the unit octonion method for point-cloud registration but this is not extendable regarding registration with arbitrary dimensions. As hand-eye calibration has received extensive research during the past several decades [START_REF] Tsai | A New Technique for Fully Autonomous and Efficient 3-D Robotics Hand/Eye Calibration[END_REF]- [START_REF] Condurache | Orthogonal Dual Tensor Method for Solving the AX = XB Sensor Calibration Problem[END_REF], the proposed n-dimensional case may benefit future related works. It is also noticed that, for the 3-D case, Barczyk et al. have derived the closed form of the ICP matching covariance and the results have been later fused with inertial measurement using an invariant Kalman filter [START_REF] Barczyk | Invariant EKF Design for Scan Matching-Aided Localization[END_REF]. As mentioned above, the 3-D and 4-D cases are all specific ones that can not give mandatory information for the extension to n-dimensional ones. Therefore the main challenge confronted is to find an efficient universal parameterization approach for the registration on n-dimensional Euclidean space.

B. Contributions

Following above problems in n-dimensional registration, this paper proposes a new formulation as linear solution. Major contributions are:

• Based on Caylay transformation, linear results regarding the registration problem have been derived. The developed method provides a new perspective other than existing ones like SVD. • Computational burden has been significantly decreased by simplifying related computation steps via specific matrix manipulations. With this technique the online efficiency of the algorithm has been improved. • The uncertainty descriptions of the derived solution are also derived which gives the quantization of the quality of registration with given noisy point clouds. Following these contributions, through simulation and experimental results, we also show the advantages of the proposed method in algorithmic implementation and efficiency, compared with representatives like LMI, SVD and other applications.

C. Outline

This paper is structured as follows: Section II presents the problem formulation and introduces our proposed linear solution and covariance analysis. Section III consists of experiments, results and comparisons while concluding remarks are drawn in Section IV.

D. Notations

The n-dimensional Euclidean vector space is described with R n . We use R n×m to denote the real space containing all matrices with row dimension of n and column dimension of m. The identity matrix has the notation of I and owns a certain size according to the context. X ⊤ , X -1 mean the transpose and inverse of a given matrix X respectively in which the inverse exists when X is square and nonsingular. We use tr to represent the trace of a square matrix. The adj denotes the adjoint matrix. ∥•∥ stands for the l 2 norm in the Euclidean space such that ∥x∥ =

√

x ⊤ x for any given column vector x. rank(X) depicts the row rank information of X. For the three dimensional Lie algebra, the special orthogonal group SO(3) contains all the orthonormal rotation matrices in R 3×3 . It is extended to n-dimensional Euclidean space with the SO(n) whose identity is expressed with

X ∈ SO(n) ⇒ XX ⊤ = X ⊤ X = I, det(X) = 1.
The so(3) contains all skew-symmetric matrices x × from any 3-dimensional vector x = (x 1 , x 2 , x 3) ⊤ such that the cross product between any two 3-dimensional vectors x, y is equivalent to x × y = x × y = -y × x. The generalization of so(3) from 3-D space to the n-D space is so(n). Note that any element on the group so(n) is a skew-symmetric matrix and can be exponentially mapped to a unique rotation matrix on

SO(n). With a n(n-1) 2 -D vector x = x 1 , x 2 , . . . , x n(n-1) 2 ⊤
, the associated skew-symmetric matrix is defined in (1) so that x × ∈ so(n).

x × =                   0 -x n(n-1) 2
x n(n-1)

2 -1 • • • (-1) n-2 x 2n-3 (-1) n-1 x n-1 * 0 -x n(n-1) 2 -2 • • • (-1) n-3 x 2n-4 (-1) n-2 x n-2 * * . . . • • •
(1) The inverse map, i.e., the wedge operation ∧ from the n × n skew-symmetric matrix to the n(n-1)

2

-D vector is denoted as

x ∧ × = x.

II. HIGH-DIMENSIONAL REGISTRATION: SOLUTION AND COVARIANCES A. Problem Formulation

The generalized rigid registration problem can be characterized with the following optimization [START_REF] Besl | A Method for Registration of 3-D Shapes[END_REF],

arg min R∈SO(n),t∈R 3 L = N i=1 w i ∥b i -Rr i -t∥ 2 (3)
in which R is the n-dimensional rotation matrix; t represents the Euclidean translation vector in the R n . The rotation and translation, together, namely the homogeneous transformation R t 0 1 ∈ SE(n) in the special Euclidean group SE(n), relates N vector pairs {b i , r i |i = 1, 2, . . . , N } in the body frame b and reference frame r together. Here the relationship between vector pairs is expressed with the normalized weight

w i , such that N i=1 w i = 1.
The weights actually denote the uncertainty characteristics of the data to be aligned. However, in practice, when there are large amount of points, e.g. for the Lidar mapping, there is no criteria to determine the weights.

In that case, the weights are computed equally as w i = 1/N . The problem (3) will always be convex by introducing the unit quaternion for representation of R in SO(3) [START_REF] Wu | Generalized Linear Quaternion Complementary Filter for Attitude Estimation from Multi-Sensor Observations : An Optimization Approach[END_REF]. The uniqueness of the problem can be found in [START_REF] Umeyama | Least-Squares Estimation of Transformation Parameters Between Two Point Patterns[END_REF]. The problem is a least-square one and can be solved with many techniques [START_REF] Mohammadi | A Divergence-Free Generalized Moving Least Squares Approximation with its Application[END_REF]. When the dimension increases, the quaternion will be no longer feasible to give adequate description of rotations.

Let us think about the general rotation representation and factorization that is independent of the dimension n. For any orthonormal rotation matrix with dimension of three, one has Rξ = ξ, where ξ = (ξ 1 , ξ 2 , ξ 3) ⊤ is called the eigenaxis of R.

While for the rotation in SO(3), the Rodrigues formula can be accordingly derived as R = cos θI +(1-cos θ)ξξ ⊤ +sin θξ × , where θ is the intermediate rotation angle about the eigenaxis ξ.

The high-dimensional extension of Rodrigues formula is in a sophisticated form since the cross-product of vectors are only proven to exist in three and seven dimensional Euclidean spaces [START_REF] Massey | Cross Products of Vectors in Higher Dimensional Euclidean Spaces[END_REF]. Moreover, the Rodrigues formula is nonlinear and can hardly offer convenience for rotation computation. However, the Cayley transformation, i.e.,

R = (I + G) -1 (I -G) (4)
with G denoting an n-dimensional skew-symmetric matrix, always holds for the rotation factorization. Such technique has been invoked for solving the Wahba's problem that is a special case of (3) with n = 3, t = 0 and ∥b i ∥ = ∥r i ∥ = 1 forming a spacecraft attitude estimator called OLAE [START_REF] Mortari | Optimal Linear Attitude Estimator[END_REF]. With different data dimensions n > 3, the problem significantly varies. The matrices I + G and I -G are often invertible, but will suffer from singularities when all Euler angles approach ±π, which is a special case. However, in engineering, there is almost no such a coincident case for n-dimensional registration, because of the noise of the input data. Therefore, we assume here that I + G and I -G are strictly invertible. In the following parts, we are going to present the proposed linear solution and associated covariance analysis.

B. Proposed Linear Solution

Let us define the centers of the mass of the point sets as:

b = N i=1 w i b i , r = N i=1 w i r i (5)
with b i , r i ∈ R n . For large numbers of points, without loss of generality, the covariance of each point can be unified with Σ = Σ bi = Σ ri . Then the rotation-only problem is converted to the following optimization arg min

R∈SO(n) L = N i=1 w i b i -b -R(r i -r) 2 (6)
With the virtue of (4) and defining bi = b i -b, ri = r i -r and the error vector e i = bi -Rr i , one always expect the error to be zero, such that

e i = bi -(I + G) -1 (I -G)r i = 0. (7)
The right item can be further expressed as

bi = (I + G) -1 (I -G) ri ⇒ (I + G) bi = (I -G) ri ⇒ G bi + ri = ri -bi . (8
) Note that in [START_REF] Mortari | Optimal Linear Attitude Estimator[END_REF], the above equation can be further derived to bi + ri

× g = bi -ri (9)
where G is replaced by G = g × ∈ so(3). The equation can be obtained by symbolic manipulation using MATLAB, Maple or Mathematica. That is to say the minimization (6) is transformed into arg min

G ⊤ =-G L = N i=1 w i ∥Gx i -d i ∥ 2 (10)
where

x i = bi + ri d i = ri -bi . (11
)
For the n-dimensional G, we need to determine the n(n-1)/2 items inside G such that

G(g) = g ⊗ =          0 g 1 g 2 • • • g n-1 -g 1 0 g n • • • g 2n-3 -g 2 g n . . . • • • 0 g n(n-1) 2 -g n-1 -g 2n-3 • • • -g n(n-1) 2 0          (12)
with g = g 1 , g 2 , . . . , g n(n-1)

2

⊤

and G being a linear function of g. It can be noticed that although the linear mapping g ⊗ is also on so(n), it does not require the specific arrangements of elements and signs that are needed inside the mapping from G to g × in [START_REF] Liu | Robotic Online Path Planning on Point Cloud[END_REF]. Therefore, g ⊗ is more flexible than g × in representing G (see skewdec command in MATLAB software for some details). Then for arbitrary Gx i in [START_REF] Wu | Fast Linear Quaternion Attitude Estimator Using Vector Observations[END_REF], we can always find a corresponding matrix P n (x i) satisfying G(g)x i = P n (x i)g. This can be achieved via many concurrent mathematical tools. For instance, in the MATLAB, we

P 4 (x i) =     x i,2 x i,3 x i,4 0 0 0 -x i,1 0 0 x i,3 x i,4 0 0 -x i,1 0 -x i,2 0 x i,4 0 0 -x i,1 0 -x i,2 -x i,3     P 5 (x i) =       x i,2 x i,3 x i,4 x i,5 0 0 0 0 0 0 -x i,1 0 0 0 x i,3 x i,4 x i,5 0 0 0 0 -x i,1 0 0 -x i,2 0 0 x i,4 x i,5 0 0 0 -x i,1 0 0 -x i,2 0 -x i,3 0 x i,5 0 0 0 -x i,1 0 0 -x i,2 0 -x i,3 -x i,4       (2)
P ⊤ 4 (x i)P 4 (x i) =               x 2 i,1 + x 2 i,2 xi,2xi,3 xi,2xi,4 xi,2xi,3 x 2 i,1 + x 2 i,3 xi,3xi,4 xi,2xi,4 xi,3xi,4 x 2 i,1 + x 2 i,4 S 1 x 2 i,2 + x 2 i,3 xi,3xi,4 xi,3xi,4 x 2 i,2 + x 2 i,4 S 2 x 2 i,3 + x 2 i,4 S 3               (14)
can use equationsToMatrix function to obtain instant expression of P i . The optimization (10) is then solved by

∂L ∂g = 0 ⇒ g ⊤ N i=1 w i P ⊤ (x i)P (x i) - N i=1 w i d ⊤ i P (x i) = 0 ⇒ N i=1 w i P ⊤ (x i)P (x i)g = N i=1 w i P ⊤ (x i)d i . (13)
It is obvious that the solution is linear and it follows:

g = H -1 v (15)
with

H = N i=1 w i P ⊤ (x i)P (x i) v = N i=1 w i P ⊤ (x i)d i . (16)
Then the rotation is reconstructed by

R = (I + g ⊗) -1 (I -g ⊗) . (17)
As a convention, the translation can be determined with t = b -Rr [START_REF] Arun | Least-Squares Fitting of Two 3-D Point Sets[END_REF]. Now that we have already known

P (x i) ∈ R n× n(n-1)

2

. The time complexity of the matrix inversion varies from O(n 2.373) to O(n 3) using optimized Coppersmith-Winograd method and the Schoolbook multiplication respectively [START_REF] Bürgisser | Algebraic Complexity Theory[END_REF]. The matrix

H ∈ R n(n-1) 2 × n(n-1) 2
will consume huge load of time to compute its inversion with increasing order n → +∞. Thus the emerging task is to figure out a faster matrix inversion of H by dimension reduction through the following properties.

C. Fast Matrix Inversion

The diagonal zero elements of G make P (x i) a matrix with row-rank of n -1, which also leads to

rank P ⊤ (x i)P (x i) = n -1. (18)
With increasing point numbers, we have

rank (H) ⩽ N i=1 rank w i P ⊤ (x i)P (x i) = N (n -1) . (19
)
That is to say only a few pairs of points can hardly obtain accurate registration result of R and t. This requirement is easy to be satisfied as the point numbers are usually far larger than the dimension so as to guarantee the global observability of parameters to be estimated.

Here we define P n (x i) as the P (x i) for n-dimensional registration problem. By examples we can see the contents of P n (x i) with various dimensions in (2). Then we can summarize the generalized form for n-dimensional case, i.e.,

P n (x i) =        n 2 x ⊤ i n 3 x ⊤ i -xi,1I . . . n n-1 x ⊤ i -xi,2I . . . -xi,nI        (20)
where k j x i denotes the partial column vector consisting of sequential components of x i from index j up to index k. With the aid of explicit form of matrix such as those in (2), one can immediately infer that P ⊤ n (x i)P n (x i) takes following form

P ⊤ n (x i)P n (x i) =     S1 . . . S2 Sn-2     (21)
in which S 1 , S 2 , • • • , S n-2 are symmetric positive semidefinite matrices. Taking the fourth-order transformation as example, the matrix manipulation is shown in [START_REF] Arun | Least-Squares Fitting of Two 3-D Point Sets[END_REF]. Moreover, for S k we have the following eigenvalues

λ S k = x 2 i,k , x 2 i,k , . . . , x 2 i,k , n j=k x 2 i,j (n-k) eigenvalues. (22)
Then S k is positive semidefinite as all its eigenvalues are nonnegative. Therefore the sum H is also symmetry-preserving and positive semidefinite and takes the summed form of [START_REF] Sanyal | On a Registration-Based Approach to Sensor Network Localization[END_REF].

Invoking the Sherman-Morrison-Woodbury formula

(A + BDC) -1 = A -1 -A -1 B D -1 + CA -1 B -1 CA -1
(23) where A, D and D -1 + CA -1 B are nonsingular matrices, we have

A B C D -1 = A -BD -1 C -1 -A -1 B D -CA -1 B -1 -D -1 C A -BD -1 C -1 D -CA -1 B -1 Notice that D -CA -1 B -1 = D -1 + D -1 C A -BD -1 C -1 BD -1 , (24)
we actually need to pay more attention to solving

A -1 , D -1 and A -BD -1 C -1 . Here A -1 and A -BD -1 C -1
have the same dimension and require the complexity of O[(n -1) 3]. Empirically, we found that all S k matrices for k = 1, 2, . . . are strictly invertible when the problem (4) is valid, i.e., 1) the measurement number N is greater than than the unknown degree n(n -1)/2 + n; 2) not all the points are coplanar or colinear. Then following the mapping of H to A B C D , we can see that D here is also in the form of H, i.e., the sum of multiple [START_REF] Sanyal | On a Registration-Based Approach to Sensor Network Localization[END_REF]. In this way, H can be iteratively built up by smaller matrix blocks and the final computation comes from these blocks.

In numerical calculation of H -1 , H may always suffer from very tiny or very large determinant values. At such time, the inverse of H will be influenced by the numerical loss. Using the above proposed fast blocked-matrix inversion, we may find out that A -1 , D -1 and A -BD -1 C -1 are required. While seen from (21), one can obviously notice that A, D are positive semidefinite. That is to say in engineering tasks, with sufficient point numbers, A, D will be exactly positive definite and this solver is able to obtain much more robust blocked inversions. By taking matrix manipulations including addition and multiplication, H -1 can be accurately recovered. This shows the better robustness of this approach than conventional numerical schemes for computing H -1 .

D. Singularity Avoidance

In [START_REF] Horn | Closed-form Solution of Absolute Orientation Using Unit Quaternions[END_REF], each independent component P ⊤ (x i)P (x i) is singular due to the rank shown in [START_REF] Wu | Fast Symbolic 3-D Registration Solution[END_REF]. However, with the sum of hetrogeneous matrices P ⊤ (x i)P (x i), the matrix gradually reaches to full-rank state, which has been described in [START_REF] Yang | Go-ICP: A Globally Optimal Solution to 3-D ICP Point-Set Registration[END_REF]. When some extreme cases occur, H will be singular and the proposed fast inversion in the last subsection will also be trivial. The extreme case mainly covers:

1) Lack of mandatory point numbers [START_REF] Wu | Fast Linear Quaternion Attitude Estimator Using Vector Observations[END_REF].

2) Collinear reference vectors [START_REF] Wu | Recursive Linear Continuous Quaternion Attitude Estimator from Vector Observations[END_REF].

3) Dominant weights [START_REF] Markley | Wahba's Problem with One Dominant Observation[END_REF]. Each of these factors shown above will lead to numerical problem such that the matrix H is rank-deficient. In fact for almost all extreme cases, the determination of rotation would be meaningless as the observability of angles has been significantly distorted. Studying the extreme performance for the proposed method is to prevent the computation from numerical crash, e.g., the existence of Not-a-Number (NaN). For instance, when H is singular, the determinant will be very small which generates very large values of H -1 by

H -1 = adj(H)/ det(H) (25)
Then inserting the large values into (4) results in another huge numerical loss. Under such circumstance, we should replace the original inversion with the pseudo inverse [START_REF] Gebre-Egziabher | MAV Attitude Determination by Vector Matching[END_REF]

g = H + v.
Here H + is the Moore-Penrose generalized inverse of H.

E. Covariance Analysis

There are some assumptions for us to derive the covariances of the obtained results in previous sub-sections:

1) The measured points from one point set contain no correlated covariance between each other. 2) The two point sets for registration have independent noise distribution.

These assumptions are based on the fact that current Lidar sensor outputs huge loads of points, such as Velodyne VLP-16 Lidar can have 300, 000 points per second. Thus one can hardly describe individual correlation inside points. We use ⟨•⟩ to represent the operation of expectation and δ is employed to represent an perturbed infinitesimal induced by input noises from b i and r i . In this sub-section, high-order (second-order or higher) infinitesimals are ignored for their tiny impacts in the error propagation. Then the difference of H is

δH = N i=1 wiP ⊤ (xi + δxi) P (xi + δxi) - N i=1 wiP ⊤ (xi) P (xi) = N i=1 wi P ⊤ (δxi) P (xi) + P ⊤ (xi) P (δxi) + P ⊤ (δxi) P (δxi) ≈ N i=1
wi P ⊤ (δxi) P (xi) + P ⊤ (xi) P (δxi) .

(26) Note that for each sub-item J i , it follows that

J i = w i P ⊤ (δx i) P (x i) + P ⊤ (x i) P (δx i) . (27)
It can be decomposed linearly in δx i , such that

J i = K 1 (x i) δx i , K 2 (x i) δx i , • • • , K n(n-1) 2 (x i) δx i . (28
) For instance when n = 4, the matrices are

K 1 (x i) = w i         2x i,1 2x i,2 0 0 0 x i,3 x i,2 0 0 x i,4 0 x i,2 -x i,3 0 -x i,1 0 -x i,4 0 0 -x i,1 0 0 0 0         K 2 (x i) = w i         0 x i,3 x i,2 0 2x i,1 0 2x i,3 0 0 0 x i,4 x i,3 x i,2 x i,1 0 0 0 0 0 0 -x i,4 0 0 -x i,1         K3 (xi) = wi        0 xi,4 0 xi,2 0 0 xi,4 xi,3 2xi,1 0 0 2xi,4 0 0 0 0 xi,2 xi,1 0 0 xi,3 0 xi,1 0        K4 (xi) = wi        -xi,3 0 -xi,1 0 xi,2 xi,1 0 0 0 0 0 0 0 2xi,2 2xi,3 0 0 0 xi,4 xi,3 0 -xi,4 0 -xi,2        K5 (xi) = wi        -xi,4 0 0 -xi,1 0 0 0 0 xi,2 xi,1 0 0 0 0 xi,4 xi,3 0 2xi,2 0 2xi,4 0 xi,3 xi,2 0        K6 (xi) = wi        0 0 0 0 -xi,4 0 0 -xi,1 xi,3 0 xi,1 0 0 -xi,4 0 -xi,2 0 xi,3 xi,2 0 0 0 2xi,3 2xi,4        .
The noise-perturbed system is given as follows,

(H + δH) (g + δg) = v + δv ⇒ δHg + (H + δH) δg = δv ⇒ δg = H + (δv -δHg) (30)
where

δHg = N i=1 Jig = N i=1 n(n-1) 2 j=1 gjKj (xi) δxi = N i=1    n(n-1) 2 j=1 gjKj (xi)    δxi.
(31) We obtain

Σg = δgδg ⊤ = H + (δv -δHg) (δv -δHg) ⊤ H + = H + δvδv ⊤ + δHgg ⊤ δH -δHgδv ⊤ -δvg ⊤ δH H + = H +    Σv+ N i=1    n(n-1) 2 j=1 gjKj (xi)    Σx i × N i=1    n(n-1) 2 j=1 gjK ⊤ j (xi)   - N i=1    n(n-1) 2 j=1 gjKj (xi)    δxiδv ⊤ - δxiδv ⊤ N i=1    n(n-1) 2 j=1 gjK ⊤ j (xi)       H + (32)
in which

Σv = δvδv ⊤ ≈ N i=1 w 2 i P ⊤ (δxi) di + P ⊤ (xi) δdi P ⊤ (δxi) di + P ⊤ (xi) δdi ⊤ = N i=1 w 2 i P ⊤ (di) Σx i P (di) -P ⊤ (xi) Σ x i ,d i P (di) - P ⊤ (di) Σ x i ,d i P (xi) + P ⊤ (xi) Σ d i P (xi) (33)
and

δx i δv ⊤ = δx i N i=1 w i P ⊤ (δx i) d i + P ⊤ (x i) δd i ⊤ = N i=1 w i δx i d ⊤ i P (δx i) + δx i δd ⊤ i P (x i) = N i=1 w i δx i δd ⊤ i P (x i) -δx i δx ⊤ i P (d i) = N i=1 w i [Σ xi,di P (x i) -Σ xi P (d i)], (34)
provided that

δv = N i=1 w i P ⊤ (δx i) d i + P ⊤ (x i) δd i (35)
and

Σ xi,di = δx i δd ⊤ i = δ bi + δr i δr i -δ bi ⊤ = δ bi δr ⊤ i + δr i δr ⊤ i -δ bi δ b⊤ i -δr i δ b⊤ i = δ bi δr ⊤ i + δr i δr ⊤ i -δ bi δ b⊤ i -δr i δ b⊤ i = Σ ri -Σ bi . (36)
In particular, when bi and ri have the same statistical distribution, especially in the cases with huge numbers of points, the covariance of g is

Σg = H + ×         N i=1 wi P ⊤ (di) Σx i P (di) + P ⊤ (xi) Σ d i P (xi) + N i=1    n(n-1) 2 j=1 gjKj (xi)    Σx i N i=1    n(n-1) 2 j=1 gjK ⊤ j (xi)            H + .
(37) While in applications we always need uncertainty description of R. In this way, one may derive

(I + G) R = I -G [I + G (g + δg)] (R + δR) = I -G (g + δg) ⇒ (R + δR) + G (g + δg) (R + δR) = I -G (g + δg) ⇒ δR + GδR + G (δg) R = -G (δg) ⇒ δR = -(I + G) -1 δg ⊗ (R + I) . (38
)
Let us write R + I in columns as R + I = (s 1 , s 2 , . . . , s n).

Then one has

δg ⊗ (R + I) = [P (s 1) δg, P (s 2) δg, • • • , P (s n) δg] . (39) Finally the covariance of R is Σ R = δRδR ⊤ = (I + G) -1 δg ⊗ (R + I) (R + I) ⊤ δg ⊗ (I + G) -1 ⊤ = (I + G) -1 n k=1 P (s k) δgδg ⊤ P ⊤ (s k) (I + G) -1 ⊤ = (I + G) -1 n k=1 P (s k) ΣgP ⊤ (s k) (I + G) -1 ⊤ . (40)
Likewise, the error model of t is δt = δb-δRr -Rδr, which leads to

Σt ≈ Σ b + RΣrR ⊤ + (I + G) -1 δg ⊗ (R + I) r r⊤ (R + I) ⊤ δg ⊗ (I + G) -1 ⊤ ≈ Σ b + RΣrR ⊤ + (I + G) -1 n k=1 P (r k s k) ΣgP ⊤ (r k s k) (I + G) -1 ⊤ . (41)

III. EXPERIMENTAL RESULTS

A. Accuracy and Robustness

The algorithmic flow is show in Algorithm 1. For the subsections III.A and III.B, we simulate the following vector pairs

b i = R true r i + t true + ε, i = 1, 2, . . . , N (42)
Algorithm 1 The Generalized Linear n-Dimensional Registration.

Require: Point clouds with N pairs of measurements r i and b i for i = 1, 2, . . . , N .

Step 1:

Compute mean points b = n i=1 a i b i , r = n i=1 a i r i .
Step 2: Compute H matrix and v vector using [START_REF] Sanyal | On a Registration-Based Approach to Sensor Network Localization[END_REF]. If N is large, use results in (25) ∼ (30) to simplify the process.

Step 3: Compute required elements of g in (20) and then compute the rotation using [START_REF] Hashim | Nonlinear Stochastic Attitude Filters on the Special Orthogonal Group 3: Ito and Stratonovich[END_REF].

Step 4: Reconstruct the translation by t = b -C r.

Step 5: Compute the covariances of R and t by (46) and (47) respectively.

where ε ∼ N (0, εI) is the zero-mean random perturbation subject to Gaussian distribution and R true , t true are true reference rotation matrix and translation vector. ε here is called the noise density that decides the magnitude of the noise. The accuracy of the n-dimensional registration will be affected by the value of ε, i.e., with larger ε the estimation accuracy will be worse. Six cases with different values of ε are simulated uniformly where the point number N = 100000 to guarantee the avarage statistical performance. The following error criterion is invoked,

ϵ = 1 N N i=1 ∥b i -Rr i -t∥ 2 . (43
)
We pick up the SVD [START_REF] Du | Affine Registration of Point Sets Using ICP and ICA[END_REF] and LMI [START_REF] Ruiter | On the Solution of Wahba's Problem on SO(n)[END_REF] approaches for comparison. The SVD uses the following principle with SVD of Z such that

R = U diag [1, 1, . . . , det(U V)] V ⊤ (44)
U ΠV ⊤ = Z Z = 1 N N i=1 b i -b (r i -r) ⊤ (45
)
where Π is the diagonal matrix containing all singular values of Z. The LMI is based on the following optimization arg max

R∈SO(n) tr(RZ ⊤) (46)
subject to I R ⊤ R I ≥ 0. (47)
All these algorithms are implemented using the C++ programming language of the standard 2014 and compiled with the GNU gcc 7.0 compiler. We use Eigen library to compute the SVD and related matrix manipulations. The GpoSolver is adopted for the solution of LMI [START_REF] Heller | GpoSolver: A MATLAB/C++ Toolbox for Global Polynomial Optimization[END_REF]. Each algorithm is executed for 100 times for mean errors. Simulations on different dimensions are also reflected in the presented tables.

The results are shown in Table I, II, III, IV, V and VI. One can see that with low values of ε, all the algorithms are able to generate accurate registration results. Among them, the SVD owns the best precision and the proposed method ranks the second. With growing ε, the noise also grows, inducing higher errors to the model [START_REF] Bürgisser | Algebraic Complexity Theory[END_REF]. The proposed algorithm now has the same accuracy with that of SVD while the LMI gradually performs badly. The reason is that SVD and the proposed algorithm share the same optimization framework and all belong to analytical solutions. However, LMI converts the rigid-registration loss function into a polynomial optimization one that requires sophisticated nonlinear solver. As SVD has been regarded as a highly reliable algorithm [START_REF] Markley | Attitude Determination Using Vector Observations and the Singular Value Decomposition[END_REF], [START_REF] Forbes | Linear-Matrix-Inequality-Based Solution to Wahba's Problem[END_REF], that is to say the proposed method is stable and reliable in this sense.

B. Computational Efficiency

There is slight impact of the point numbers on the computational efficiency since the complexity of the algorithm is linear with respect to the point numbers, as shown in [START_REF] Umeyama | Least-Squares Estimation of Transformation Parameters Between Two Point Patterns[END_REF]. For high-order matrices, the proposed matrix inversion will gradually be slower than SVD. This is because the proposed one has the complexity of O[1 2 n(n -1)] 3 while that of the SVD is O(n 3). Choosing the slowest algorithm as a basic reference, the realistic time complexity of the other algorithms should be compentated for specific machines. This leads to the modified time complexity expressions for the proposed method and SVD i.e. O(a i n 3) with a i the compensation constant for i-th algorithm. For instance, if we implement the matrix operations with the famous Eigen library using C++ programming language on a MacBook Pro 2017 13" with CPU of i7-4core 3.5GHz, the measured mean values (100 times) are a 2 /a 1 = 1.667 × 10 5 and a 3 /a 1 = 6.25 × 10 6 . Then the plots of time complexity can be shown in Fig. 1. The unaltered matrix inversion using Eigen is very slow in high dimensions and has very large slopes as the dimension n increases. It should be noted that a i is determined by the machine and employed library. For lower dimensions, the computation time would be much lower than the SVD as lowdimensional matrix inversions can usually be obtained with algebraic results instantly. The intersection point between the proposed method and SVD is n = 112. A detailed comparison showing the exact in-run performance of the computation time is presented in Table VII where t denotes the evaluated computation time.

We may see that with increasing dimension n, the computational complexity also increases. At the initial stage, the SVD is quite slower than the proposed method and the LMI is always the slowest since it needs nonlinear optimizations. However, when n becomes larger, the matrix manipulations of the proposed method also turn to be more and more time-consuming. This leads to the deceasing ratio of t SVD /t Proposed . That is to say, for very large n, SVD will be faster and the LMI will be even more complex than the proposed method, as indicated by t LMI /t Proposed (also see Fig. 2). Note that there are very few cases that n is larger than 100, the proposed method is more practical than SVD in most cases since it also owns information of covariances.

C. Application: Covariance-Preserving Interpolation on special Euclidean group SE(n)

The special Euclidean group SE(n) is a simultaneous precise description of the rotation and translation, which has been extensively used in rigid-body state estimation and control [START_REF] Hashim | Nonlinear Pose Filters on the Special Euclidean Group SE(3) with Guaranteed Transient and Steady-state Performance[END_REF], [START_REF] Wang | Hybrid Pose and Velocity-bias Estimation on SE(3) Using Inertial and Landmark Measurements[END_REF], [START_REF] Baldwin | Complementary Filter Design on the Special Euclidean Group SE(3)[END_REF]. Also, in the field of robotics, SE(n) plays important roles in camera egomotion estimation, handeye calibration, motion planning and etc. [START_REF] Biggs | Motion Planning on A Class of 6-D Lie Groups via A Covering Map[END_REF], [START_REF] Wu | Hand-eye Calibration: 4-D Procrustes Analysis Approach[END_REF], [START_REF] Gao | Complete Solution Classification for the Perspective-Three-Point Problem[END_REF]. However, in engineering applications, the measurements on SE(n) are usually restricted by low sampling frequency and asynchronous data transmission. Therefore, interpolated result between two successive measurements on SE(n) will be vital to such systems. The interpolation of SE(n) is sometimes dependent on the interpolation on SO(n). Belta and Kumar studied the interpolation on SE(3) using SVD, where the rotation and translation are simultaneously interpolated for optimal approximation with error of SE(3) geodesics. Because of the internal nonlinearity of SVD, it is very hard for the users to obtain the closed-form information of covariance of the interpolated results. The probabilistic descriptions of interpolation would be of great significance for a later covariance-required application e.g. a Kalman filter on the Lie group [START_REF] Bonnabel | Symmetry-Preserving Observers[END_REF], [START_REF] De Ruiter | Discrete-Time SO(n)-Constrained Kalman Filtering[END_REF]. Therefore our next task is to present a new framework for such purpose.

In [START_REF] Thomas | Approaching Dual Quaternions from Matrix Algebra[END_REF], Thomas gave an approximation from SE(3) to SO(4), which is later improved in [START_REF] Wu | Hand-eye Calibration: 4-D Procrustes Analysis Approach[END_REF]. We have proposed a new generalization such that the following mapping F from SE(n) to SO(n + 1), namely, SE(n) + + [START_REF] Wu | SE(n)++: An Efficient Solution to Multiple Pose Estimation Problems[END_REF],

T = R t 0 1 ∈ SE(n) F ←→ F -1 R T ,SO(n+1) = R εt -εt ⊤ R 1 (48)
holds. Note that here R T ,SO(n+1) is not strictly on SO(n) and should be orthonormalized to X R before further computation: [START_REF] Forbes | Linear-Matrix-Inequality-Based Solution to Wahba's Problem[END_REF] which can be solved via the proposed algorithm by forming the following vector pairs [START_REF] Bar-Itzhack | New Method for Extracting the Quaternion from a Rotation Matrix[END_REF], [START_REF] Wu | Optimal Continuous Unit Quaternions from Rotation Matrices[END_REF], with column vectors of R T ,SO(n+1) being

arg max X R ∈SO(n+1) tr X R R ⊤ T ,SO(n+1)
           b 1 = R T ,SO(n+1),1 b 2 = R T ,SO(n+1),2 . . . b n = R T ,SO(n+1),n ,              r 1 = (1, 0, . . . , 0) ⊤ r 2 = (0, 1, . . . , 0) ⊤ . . . r n = (0, 0, . . . , 1) ⊤ (50)
R T ,SO(n+1) = R T ,SO(n+1),1 , R T ,SO(n+1),2 , . . . , R T ,SO(n+1),n . (51)
The covariance of X R is then given by the [START_REF] Massey | Cross Products of Vectors in Higher Dimensional Euclidean Spaces[END_REF]. For a series of mapped SO(n + 1) measurements mapped from SE(n) X R,1 , X R,1 , . . . , X R,k , with their timestamps τ 1 , τ 2 , . . . , τ k , we can interpolate between the time instants k -1 and k by arg max

X R,k-1|k ∈SO(n+1) tr X R,k-1|k [ϱX R,k-1 + (1 -ϱ) X R,k] ⊤ (52
)
where ϱ is the relative weight such that

ϱ = τ k -τ k-1|k τ k -τ k-1 ∈ (0, 1) (53)
Likewise, by setting

(b 1 , b 2 , • • • , b n) = [ϱX R,k-1 + (1 -ϱ) X R,k]              r 1 = (1, 0, . . . , 0) ⊤ r 2 = (0, 1, . . . , 0) ⊤ . . . r n = (0, 0, . . . , 1) ⊤ (54)
one is able to compute the interpolated result on SO(n + 1).

The covariance of X R,k-1|k can also be calculated with [START_REF] Massey | Cross Products of Vectors in Higher Dimensional Euclidean Spaces[END_REF]. Then X R,k-1|k should be inversed from SO(n + 1) back to SE(n) by the mapping F -1 . The rest steps for generating covariances of the rotational and translational parts can be referred to [START_REF] Wu | Hand-eye Calibration: 4-D Procrustes Analysis Approach[END_REF].

We use the UR10 robotic arm to perform a generated series of motion for over 150s while an Intel Realsense D435i camera is attached to the end-effector of this arm (see Fig. 3). A standard 12 × 9 chessboard is performed in the experimental environment for distinct feature extraction. There are inertial and visual outputs from the D435i but it has low frequency for the fisheye camera (30 fps). Therefore, a visual-inertial navigation system is employed to estimate the motion of the end-effector. Note that the hand-eye calibration between the installation frame of the end-effector and the sensor frame of the Realsense camera has been performed before experimentation so that the reference transformation from the readings of robotic arm can be mapped precisely into the camera frame [START_REF] Wu | Hand-eye Calibration: 4-D Procrustes Analysis Approach[END_REF]. The 1σ uncertainty of the camera measurement is set to be within 1 pixel while the in-run covariances of the inertial measurement unit (IMU) are

Σ gyro = 1.34 × 10 -5 I rad 2 Σ accel = 2.02 × 10 -3 I (m/s 2) 2 , (55)
where gyro and accel denote the gyroscope and accelerometer respectively and the covariances are produced according to a live Allan variance test for 1 hour [START_REF] El-Sheimy | Analysis and Modeling of MEMS based Inertial Sensors Using Allan Variance[END_REF]. For each visual measurement, the visual-inertial state estimator computes the state estimation along with its covariance by the IMU preintegration [START_REF] Forster | On-Manifold Preintegration for Real-time Visual -Inertial Odometry[END_REF]. These results have low sampling frequencies so they are interpolated uniformly to 100Hz so the reference information provided by the robotic arm could be compared with. The proposed algorithm is invoked to conduct such interpolation on SE(3), which follows the equations listed in this sub-section. The interpolated results along with their 3σ bounds are depicted in Fig. 4 and5. In Fig. 4, ξ = (ξ x , ξ y , ξ z) ⊤ denotes the eigenaxis of a 3 × 3 rotation matrix R so that exp(ξ ×) = R and Rξ = ξ. The covariance Σ R actually reflects the uncertainty of ξ [START_REF] Nguyen | On the Covariance of X in AX = XB[END_REF].The translation in this case is in the 3-D form such that t = (t x , t y , t z) ⊤ . From the supplementary material, we are able to observe that the robotic manipulator mainly moves along its x and z axes. It is observed that using the proposed method for the interpolation on SE(3), we are able to recover the original motion into a more dense one without loss of probabilistic propagation. This is reflected in Fig. 4 and 5 that all these interpolated results are well within the 3σ bounds. As we uses the mapping from SE(3) to SO(4) for such interpolation, the proposed method is validated to be reliable and robust on SO(4) and can achieve further state estimation tasks on SO(n) requiring uncertainty descriptions.

D. Application: Covariance-Aided Lidar Mapping

We use the KITTI dataset kitti_2011_10_03_drive_ 0027_synced [START_REF] Geiger | Vision Meets Robotics: The KITTI Dataset[END_REF] to demonstrate covariance-aided Lidar mapping using the results from the proposed method. The KITTI dataset contains some data from a 64-beam Velodyne HDL-64E Lidar. The Lidar has the measurement specification of 0.09 degree angular resolution, 2 cm distance accuracy, which can be used for setting the measurement covariance for further propagation. We evaluate the trajectory errors by comparing the results with the ground-truth data in KITTI dataset. Since the entire trajectory is lengthy, we only visualize the first 125s results in Fig. 6. In these results, the frameto-frame matching is conducted via formula in [START_REF] Umeyama | Least-Squares Estimation of Transformation Parameters Between Two Point Patterns[END_REF]. The covariance results of rotation and translation are then generated and transferred to a further pose graph optimization (PGO). Here, we select the SE-Sync method [START_REF] Rosen | SE-Sync: A Certifiably Correct Algorithm for Synchronization over the Special Euclidean Group[END_REF] for globally optimal PGO computation. Therefore, the numerical computation of PGO is guaranteed to be optimal. Since successive frames are close to each other, the correspondence can be easily found by the random sample consensus (RANSAC), starting from an identity pose. Thus, we do not consider the uncertainty of the point correspondences in this work, i.e, it will be regarded as deterministic and only pose covariance in (40) and (41) will be taken into account. We select two representatives dealing with covariance of ICP, i.e., works in [START_REF] Barczyk | Invariant EKF Design for Scan Matching-Aided Localization[END_REF] and [START_REF] Censi | An Accurate Closed-Form Estimate of ICP' s Covariance[END_REF], to make comparisons. The trajectory root mean squared errors (RMSEs) are shown in Table VIII. The best candidate in each direction is marked bold in Table VIII. It can be observed that although Censi's method outperforms the proposed method on Y-axis, the overall trajectory accuracy considering XYZ-axes of the proposed method is the best. The reason is that both [START_REF] Barczyk | Invariant EKF Design for Scan Matching-Aided Localization[END_REF] and [START_REF] Censi | An Accurate Closed-Form Estimate of ICP' s Covariance[END_REF] estimate the covariance of ICP by taking the Hessian and approximates the covariance of the least-square in first-order, which will inevitably bring about accuracy loss. The proposed method does not need any numerical optimization and is explicit so the closed-form covariance can be derived in an analytical manner as well. These analytical forms give the rise to the covariance accuracy, which has been indirectly revealed in the accuracy of the localization after PGO.

IV. CONCLUSION

The n-dimensional rigid registration problem is revisited in this paper. It is shown that using the Caylay transformation, we are able to establish a linear framework for computing the fundamental parameters. Related covariance analysis of these parameters along with recovered rotation and translation can be conducted flexibly due to the existence of the proposed linear solution. It is verified that the proposed method is slower than SVD in very high dimensions (n > 100) for a modern computer but SVD can not provide probabilistic information showing that the proposed algorithm can well handle the highdimensional rotation orthonormalization and interpolation with uncertainty descriptions. The current drawback of the proposed method is evident that it consumes too many computational resources for cases with very high dimensions. Future efforts should be paid to seek a more computationally efficient numerical framework for fast inverse or pseudo inverse of arbitrary matrices. Source codes of this paper will be made openaccess on https://github.com/zarathustr/GLnR. The video of this work is presented on https://youtu.be/BwfjQ9ZAyl4.

Fig. 1 .

 1 Fig. 1. Time complexity performances of various algorithms.

Fig. 2 .

 2 Fig. 2. The ratios of computation time from SVD, LMI and the proposed method.

Fig. 3 .

 3 Fig. 3. The generated motion of the UR10 robotic arm.

Fig. 4 .

 4 Fig. 4. The interpolated results and their 3σ bounds for the eigenaxis ξ.

Fig. 5 .

 5 Fig. 5. The interpolated results and their 3σ bounds for the translation t.

 Fig. 6. The mapping result of the proposed Lidar registration algorithm using first 125s of the KITTI dataset kitti_2011_10_03_drive_0027_synced [62]. The blue line denotes the vehicle trajectory. The blue and green points denotes the local map while red points denotes the matching result. The white points represent the reconstructed dense map after covariance-aided pose graph optimization.

 Proposed t SVD /t Proposed t LMI /t Proposed 5 5.09175700 × 10 -03 sec 2.95878440 × 10 -02 sec 7.14850000 × 10 -05 sec 7.12283276 × 10 +01 4.13902833 × 10 +02 10 1.86192880 × 10 -02 sec 3.57405530 × 10 -02 sec 1.78072000 × 10 -04 sec 1.04560447 × 10 +02 2.00708438 × 10 +02 15 2.91524970 × 10 -02 sec 5.29616330 × 10 -02 sec 2.34585000 × 10 -04 sec 1.24272639 × 10 +02 2.25767347 × 10 +02 20 5.16656850 × 10 -02 sec 2.46701489 × 10 -01 sec 1.11337100 × 10 -03 sec 4.64047339 × 10 +01 2.21580667 × 10 +02 25 7.20797970 × 10 -02 sec 7.83117401 × 10 -01 sec 8.61778000 × 10 -04 sec 8.36407950 × 10 +01 9.08722897 × 10 +02 30 1.10495224 × 10 -01 sec 2.40003185 × 10 +00 sec 2.08869100 × 10 -03 sec 5.29016614 × 10 +01 1.14906027 × 10 +03 35 1.51141937 × 10 -01 sec 6.04819777 × 10 +00 sec 4.54621700 × 10 -03 sec 3.32456495 × 10 +01 1.33038035 × 10 +03 40 2.03090954 × 10 -01 sec 1.52671507 × 10 +01 sec 8.92617900 × 10 -03 sec 2.27522834 × 10 +01 1.71037918 × 10 +03 45 2.56202188 × 10 -01 sec 3.24307563 × 10 +01 sec 2.01093880 × 10 -02 sec 1.27404269 × 10 +01 1.61271722 × 10 +03 50 3.12731122 × 10 -01 sec 6.00155415 × 10 +01 sec 3.10260630 × 10 -02 sec 1.00796263 × 10 +01 1.93435891 × 10 +03 55 3.81157892 × 10 -01 sec 1.04683072 × 10 +02 sec 4.47886660 × 10 -02 sec 8.51014165 × 10 +00 2.33726701 × 10 +03 60 4.78917751 × 10 -01 sec 1.94233782 × 10 +02 sec 8.93274220 × 10 -02 sec 5.36137437 × 10 +00 2.17440264 × 10 +03 65 5.47775943 × 10 -01 sec 3.12991523 × 10 +02 sec 1.12696783 × 10 -01 sec 4.86061739 × 10 +00 2.77728888 × 10 +03 70 6.46396852 × 10 -01 sec 4.61347369 × 10 +02 sec 1.55126971 × 10 -01 sec 4.16688889 × 10 +00 2.97399843 × 10 +03 75 7.63718827 × 10 -01 sec 7.12493501 × 10 +02 sec 2.41905543 × 10 -01 sec 3.15709519 × 10 +00 2.94533764 × 10 +03 80 8.53510834 × 10 -01 sec 1.10820564 × 10 +03 sec 3.26491385 × 10 -01 sec 2.61419098 × 10 +00 3.39428753 × 10 +03 85 1.00388324 × 10 +00 sec 1.68530646 × 10 +03 sec 4.99838141 × 10 -01 sec 2.00841664 × 10 +00 3.37170439 × 10 +03 90 1.19993136 × 10 +00 sec 2.46278443 × 10 +03 sec 6.58335981 × 10 -01 sec 1.82267322 × 10 +00 3.74092333 × 10

			TABLE VII	
			COMPUTATION TIME
	Dimension n	t SVD	t LMI	t

+03 95 1.27744737 × 10 +00 sec 3.06590801 × 10 +03 sec 8.61907923 × 10 -01 sec 1.48211582 × 10 +00 3.55711779 × 10 +03 100 1.40629819 × 10 +00 sec 4.35698895 × 10 +03 sec 1.14776548 × 10 +00 sec 1.22524872 × 10 +00 3.79606203 × 10 +03

TABLE VIII RMSES

 VIII OF THE ESTIMATED TRAJECTORIES

	Direction Barczyk et al. [37]	Censi [64]	Proposed
	X	2.472284 m	2.536159 m	2.421336 m
	Y	2.034533 m	2.007825 m	2.016879 m
	Z	1.9824760 m	1.992351 m	1.972403 m

ACKNOWLEDGMENT

This research was initiated in Late 2017 and has been supported by Shenzhen Science, Technology and Innovation Comission (SZSTI) JCYJ20160401100022706, and in part by National Natural Science Foundation of China under the grants of No. U1713211. We also would like to thank Prof. Xiao-Jun Wu from Jiangnan University for providing some platforms for experimentation.

This research was supported by Shenzhen Science, Technology and Innovation Comission (SZSTI) JCYJ20160401100022706, in part by National Natural Science Foundation of China under the grants of No. U1713211. Recommended by Associate Editor X X.