
HAL Id: hal-03648264
https://hal.science/hal-03648264v2

Submitted on 21 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dominer pour calculer l’hyperbolicité des graphes
David Coudert, André Nusser, Laurent Viennot

To cite this version:
David Coudert, André Nusser, Laurent Viennot. Dominer pour calculer l’hyperbolicité des graphes.
AlgoTel 2022 - 24èmes Rencontres Francophones sur les Aspects Algorithmiques des Télécommunica-
tions, May 2022, Saint-Rémy-Lès-Chevreuse, France. �hal-03648264v2�

https://hal.science/hal-03648264v2
https://hal.archives-ouvertes.fr

Dominer pour calculer l’hyperbolicité des
graphes†

David Coudert1 et André Nusser2 et Laurent Viennot3
1Université Côte d’Azur, Inria, CNRS, I3S, France
2BARC, University of Copenhagen, Denmark
3Paris University, Inria, CNRS, Irif, France

L’hyperbolicité est un paramètre de graphe mesurant l’écart entre la métrique des distances dans le graphe et celle d’un
arbre. Cette propriété peut se calculer en temps$ (=4) et en espace$ (=2). En effet, les principales approches consistent
à considérer tous les quadruplets du graphe, ou bien se basent sur des produits de matrices, et ne passent pas à l’échelle.
Dans cet article, nous proposons et évaluons une approche qui utilise une hiérarchie d’ensembles dominants à distance
: pour réduire l’espace de recherche. Cette technique, comparée aux meilleurs algorithmes pratiques existants, nous
permet de calculer l’hyperbolicité de graphes d’une taille sans précédent, jusqu’à un million de sommets.

Mots-clefs : Algorithmes de graphes; hyperbolicité; domination; ingénierie algorithmique

1 Introduction
Hyperbolicity is a graph parameter introduced by Gromov [Gro87] to measure how different the distances

in a graph are to distances in a tree. It is used to classify complex networks and to design efficient routing
schemes as it provides information on the dispersion of the shortest paths (distance between the vertices of
two shortest paths from B to C). Hyperbolicity is usually defined through a 4-points condition that associates
to each quadruple a X-value defined through distances between the four nodes (see Section 2). The hyper-
bolicity of a graph is the maximum of the X-values over all quadruples in the graph. This definition trivially
results in a Θ(=4) algorithm for computing hyperbolicity, and the best known theoretical complexity is
$ (=3.69), relying on an optimized (max,min)-matrix product [FIV15]. However, the algorithms exhibiting
the best performances in practice have time complexity in O(=4) [BCCM15, CCL15, CNV21a].

The quest for computing the hyperbolicity of large graphs has lead to several breakthroughs in the last
years. Indeed, the first attempts are based on brute force implementations of the trivial Θ(=4) algorithm
enabling to compute the hyperbolicity of graphs with few hundreds of nodes on a single core [CH12] and up
to 8 000 nodes using massive parallelism (up to 1 000 cores) [ASHM13]. The first noticeable progress is due
to [CCL15] which introduces pruning techniques to drastically reduce the number of quadruples to consider.
With the addition of refined pruning techniques [BCCM15], it enables to compute the hyperbolicity of
graphs with up to 50 000 nodes. Furthermore, this algorithm is orders of magnitude faster using a single core
than the running times reported in [ASHM13]. However, this algorithm reaches a memory bottleneck as it
has space complexity in O(=2). To go beyond this bottleneck, [CNV21a] engineered an algorithm, along
with suitable data structures, that consumes significantly less memory while offering good performances in
practice. It enables to compute the hyperbolicity of graphs with more than 100 000 nodes. Nonetheless, the
memory usage of this algorithm is still high, which limits its scalability. In this paper (extended abstract
of [CNV22]), we propose a new approach that uses a hierarchy of distance-: dominating sets to both reduce
memory usage and further prune the search space, resulting in an algorithm enabling to compute for the
first time the hyperbolicity of graphs with up to a million nodes.
†This work has been supported by the French government, through the UCAJEDI Investments in the Future project managed by

the National Research Agency (ANR) with the reference number ANR-15-IDEX-01, the ANR project Multimod with the reference
number ANR-17-CE22-0016 and the ANR project Distancia with reference number ANR-17-CE40-0015. André Nusser is part of
BARC, Basic Algorithms Research Copenhagen, supported by the VILLUM Foundation grant 16582.

David Coudert et André Nusser et Laurent Viennot

2 Definitions and notations
We consider only finite, connected, unweighted and simple undirected graphs. However, the results

presented in this paper extend easily to weighted graphs. The graph � = (+, �) has = = |+ | vertices
and < = |� | edges. Given two vertices D and E, a DE-path of length ℓ ≥ 0 is a sequence of vertices
(D = E0E1 . . . Eℓ = E), such that {E8 , E8+1} is an edge for every 8. In particular, a graph � is connected if
there exists a DE-path for all pairs D, E ∈ + , and in such a case the distance d(D, E) is defined as the minimum
length of a DE-path in �.

Domination. Given an integer : > 0, we say that a node D :-dominates a node E if d(D, E) ≤ : . We
define a :-dominating set of � as a set � ⊆ + of nodes such that any node E ∈ + is :-dominated by some
node D ∈ �. Given a :-dominating set �, we associate to any node E ∈ + such a :-dominating node � (E)
in �, and � (E) is called the associated dominator of E. We denote �−1 (D) as the set of vertices that are
:-dominated by D ∈ �, i.e., �−1 (D) = {E ∈ + : � (E) = D}. For each node D ∈ �, we define its domination
radius as :D = maxE∈�−1 (D) d(D, E). When a node E is :-dominated by several nodes of �, the choice of its
associated dominator � (E) can be arbitrary. However, we will typically choose � (E) as a closest node to E
in � as a heuristic to obtain smaller values of :D for D ∈ �.

Hyperbolicity. This notion has been introduced to measure how the shortest-path metric space (+, d) of
a connected graph � = (+, �) deviates from a tree metric when its vertices are mapped to the vertices of
an edge-weighted tree. This additive stretch of the distances, denoted X, is called the hyperbolicity of the
graph and a graph is said to be X-hyperbolic if it satisfies the 4-point condition below.

Definition 1 (4-points Condition, [Gro87]) Let � be a connected graph. For every quadruple D, E, G, H
of vertices of �, we define X(D, E, G, H) as half of the difference between the two largest sums among (1 =
d(D, E) + d(G, H), (2 = d(D, G) + d(E, H), and (3 = d(D, H) + d(E, G).

The hyperbolicity of �, denoted by X(�), is equal to maxD,E,G,H∈+ (�) X(D, E, G, H). Moreover, given a
value X, we say that � is X-hyperbolic whenever X(�) ≤ X.

Note that if � is a tree or a clique, we have X(�) = 0. If � is a cycle of order = = 4? + Y, with ? ≥ 1 and
0 ≤ Y < 4, then X(�) = ?−1/2 if Y = 1, and X(�) = ? otherwise. If� is an =×< grid, with 2 ≤ = ≤ <, then
we have X(�) = = − 1. Other definitions of hyperbolicity have been proposed [BRSV13, dLHG90, Gro87]
and differ only by a small constant factor.

3 Approach
We first show in Lemma 1 how to obtain an additive 4: approximation of hyperbolicity from a :-

dominating set, and then show how to use it to prune the search space and design an exact algorithm.

Lemma 1 ([CNV22]) Given a :-dominating set � of � and a quadruple D′, E′, G ′, H′ ∈ + with respective
associated dominators D, E, G, H ∈ �, we have X(D, E, G, H) − 4 ≤ X(D′, E′, G ′, H′) ≤ X(D, E, G, H) + 4 where
 4 = :D + :E + :G + :H ≤ 4: .

Algorithm. We can now present an exact algorithm that exploits the notion of :-domination to prune the
search space and significantly reduce the memory usage compared to the algorithms proposed in [BCCM15,
CCL15, CNV21a]. It takes as input a connected graph � and a sequence :8 , :8−1, · · · , :0 of domination
distances, with 8 ≥ 0 and :8 = : > :8−1 > · · · > :0 = 0. The main idea is to use nested dominating sets
�8 , . . . , �0 = + with respective domination distances :8 , . . . , :0 for exploring in a recursive manner the
quadruples of the graph while maintaining a lower bound X! on X(�) based on the quadruples scanned so
far. This lower bound is used in accordance with Lemma 1 to prune the exploration, that is, skip quadruples
for which we can infer that their X(·) value is X! at most.

More precisely, the algorithm first starts by scanning the quadruples in the coarsest dominating set �8
(with largest domination distance :8). Then, thanks to Lemma 1, we know that if a quadruple D, E, G, H ∈ �8
is such that X(D, E, G, H)+4:8 ≤ X! , then all quadruples D′, E′, G ′, H′ it dominates, that is such that � (D′) = D,
� (E′) = E, � (G ′) = G and � (H′) = H, must satisfy X(D′, E′, G ′, H′) ≤ X! and can be skipped. Otherwise, if
X(D, E, G, H)+4:8 > X! , then D, E, G, H may dominate a quadruple D′, E′, G ′, H′ such that X(D′, E′, G ′, H′) > X! .
We thus start a recursive exploration of the quadruples dominated by D, E, G, H as follows. We scan those

Dominer pour calculer l’hyperbolicité des graphes

that are in the next level dominating set �8−1. For that purpose, we use for each node F ∈ �8 the pre-
computed list �8−1,F of nodes it dominates in �8−1. We then similarly skip the quadruples D′, E′, G ′, H′ for
which X(D′, E′, G ′, H′) + 4:8−1 ≤ X! . Otherwise, we proceed recursively for smaller and smaller domination
radii : 9 with 0 < 9 < 8 as long as the condition of Lemma 1 requiring further exploration is satisfied for
: 9 . For that purpose, similar pre-computed lists for lower levels are stored. We also use other lemmas,
generalizing to some extent the approach of [BCCM15], and 4 instead of 4: as in Lemma 1, to prune even
more quadruples. These lemmas are omitted for the sake of brevity and can be found in [CNV22].

4 Experimental evaluation
We consider web graphs (NotreDame, web-BerkStan, web-Stanford), road networks (t.CAL, t.FLA,

roadNet-PA), a 3D triangular mesh (buddha), a graph from a computer game (froz), and a grid-like graph
from VLSI (z-alue7065). We also use synthetic graphs (grid300-10, grid500-10) which are square
grids with respective sides 301 and 501 where 10% of the edges have been randomly deleted. Each graph
is taken as an undirected unweighted graph and we consider only its largest biconnected component. The
data is available from [CNV21b]. The chosen graphs have a large number of nodes compared to the graph
sizes that were feasible for previous algorithms. Furthermore, our approach relies on the fact that pruning
of quadruples is actually possible. Thus, the graphs that we consider do not exhibit a very low hyperbolicity
— the lowest is 8 (NotreDame).

To evaluate the improvement of our algorithm over previous work, we compare to [CNV21a], which
was shown to outperform the algorithm of [BCCM15]. See [CNV21a, Figures 1 and 2] for a comparison
of the running time and memory consumption of [BCCM15] and [CNV21a]. In particular, the memory
consumption of [BCCM15] is prohibitive for all the graph sizes considered in this work except for the
graph z-alue7065, which we mainly use to conduct experiments with different parameter choices.

The code of the algorithms (in C++) is available online [CNV21b]. Important implementation details are
given in [CNV22]. For instance, we use a hub labeling of the graph to answer distance queries [AIY13] and
we cache some distances in small matrices to reduce the number of queries to the hub labeling. We define
the sequence of domination distances of the hierarchy of dominating sets using two parameters: the largest
domination distance : and the ratio A by which it is reduced in each round. This sequence is thus defined
as :8 = : , :8−1 = b:8/Ac, . . . , :0 = b:1/Ac = 0. Note that the value of 8 is implicitly given by the number
of steps until this process reaches zero. In our experiments, we have chosen values of parameters : and A
providing good running times. The question of how to automatically choose these parameters is open.

We use a computer equipped with Intel Xeon Gold 6240 CPUs operating at 2.6 GHz and 192 GB RAM.
All computations were conducted using a single thread. Running times reported in Table 1 include all steps
of the program, from reading the data to returning the result. A time limit of 60 hours and a memory limit
of 192 GB was set for the algorithm of [CNV21a] as it would not terminate anyway for large instances.

The most noticeable points on the experiments reported in Table 1 are:
• For NotreDame, web-Stanford and web-BerkStan, we reduce the memory consumption compared

to [CNV21a] by factors of 16.2, 7.2, and 23.1. The running time is reduced by factors of 18.1, 549.9,
and 1104, i.e., up to 3 orders of magnitude.
• Computing the hyperbolicity of t.CAL, t.FLA-w, roadNet-PA, buddha and froz was not feasible

using previous algorithms but it can be computed using our approach. Especially, we are able to compute
the hyperbolicity of a real-world graph with more than a million nodes for the first time. We want to
highlight that the memory consumption of our algorithm is below 25 GB for all graphs except buddha.
Even in the cases where the algorithm of [CNV21a] hits the time limit of 60 hours and not the memory
limit, increasing the time limit most probably does not make these graphs attainable, as the lower and
upper bounds are still very far from matching.
• Our algorithm fails to outperform previous work in grid-like graphs (grid300-10, grid500-10,
z-alue7065). This is probably due to the notion of far-apart pairs used in [BCCM15, CNV21a],
which we do not use in our approach. Computing the hyperbolicity iterating over far-apart pairs is
very fast on grid-like graphs as they contain only very few far-apart pairs — a perfect grid actually just
contains two far-apart pairs, which also form the quadruple whose X-value yields its hyperbolicity.

David Coudert et André Nusser et Laurent Viennot

TABLE 1: Experiments on various graphs using algorithm [CNV21a] with time limit of 60h (which is 216 000 seconds)
and memory limit of 192GB and the algorithm proposed in this paper. Skulls (A) indicate that the time or memory
limit was reached before terminating, in which case we report the best found lower and upper bounds on hyperbolicity.

Graph Algorithm [CNV21a] This paper
nodes # edges time (s) memory hyperb. time (s) memory hyperb. k r

NotreDame 134 958 833 732 4 514 53.02 GB 8.0 249 3.27 GB 8.0 2 2
web-Stanford 181 906 1 676 077 8 249 23.28 GB 23.0 15 3.22 GB 23.0 8 2
web-BerkStan 489 296 5 939 242 65 134 76.93 GB 23.0 59 3.33 GB 23.0 4 4
t.CAL 1 267 004 1 671 989 29 358 A [379.0, 1025.5] 119 055 22.00 GB 506.5 50 1.5
t.FLA 691 175 941 893 A 143.3 GB [81.0, 818.0] 1 199 907 18.04 GB 229.5 25 1.5
roadNet-PA 863 105 1 313 732 A 148.2 GB [109.0, 370.5] 1 357 512 23.32 GB 170.5 20 1.5
buddha 543 652 1 631 574 A 88.35 GB [93.0, 211.5] 134 421 52.84 GB 112.0 8 1.5
froz 749 520 2 895 228 A 106.4 GB [387.5, 599.0] 16 011 11.74 GB 401.5 27 1.5
grid300-10 90 211 162 152 10 1.08 GB 280.0 23 5.28 GB 280.0 10 1.5
grid500-10 250 041 449 831 95 2.99 GB 463.0 98 6.14 GB 463.0 10 2
z-alue7065 34 040 54 835 33 431.18 MB 138.0 1 927 3.48 GB 138.0 2 2

References
[AIY13] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast exact shortest-path distance queries on

large networks by pruned landmark labeling. In ACM SIGMOD International Conference on
Management of Data - SIGMOD, pages 349–360, 2013.

[ASHM13] Aaron B. Adcock, Blair D. Sullivan, Oscar R. Hernandez, and Michael W. Mahoney. Evaluat-
ing OpenMP tasking at scale for the computation of graph hyperbolicity. In 9th International
Workshop on OpenMP - IWOMP, volume 8122 of LNCS, pages 71–83, 2013.

[BCCM15] Michele Borassi, David Coudert, Pierluigi Crescenzi, and Andrea Marino. On computing the
hyperbolicity of real-world graphs. In European Symposium on Algorithms - ESA, volume
9294 of Lecture Notes in Computer Science, pages 215–226. Springer, September 2015.

[BRSV13] Sergio Bermudo, José M. Rodríguez, José M. Sigarreta, and Jean-Marie Vilaire. Gromov
hyperbolic graphs. Discrete Mathematics, 313(15):1575–1585, 2013.

[CCL15] Nathann Cohen, David Coudert, and Aurélien Lancin. On computing the gromov hyperbolicity.
ACM Journal of Experimental Algorithmics, 20:1–18, 2015.

[CH12] John Chakerian and Susan Holmes. Computational tools for evaluating phylogenetic and hier-
archical clustering trees. Journal of Computational and Graphical Statistics, 21(3):581–599,
2012.

[CNV21a] David Coudert, André Nusser, and Laurent Viennot. Enumeration of far-apart pairs by decreas-
ing distance for faster hyperbolicity computation. Research report, Inria ; I3S, Université Côte
d’Azur, April 2021. https://hal.inria.fr/hal-03201405/.

[CNV21b] David Coudert, André Nusser, and Laurent Viennot. Hyperbolicity (version 2.0). https:
//gitlab.inria.fr/dcoudert/hyperbolicity/, 2021.

[CNV22] David Coudert, André Nusser, and Laurent Viennot. Hyperbolicity Computation through Dom-
inating Sets. In SIAM Symposium on Algorithm Engineering and Experiments - ALENEX,
pages 78–90, January 2022.

[dLHG90] Pierre de La Harpe and Etienne Ghys. Sur les groupes hyperboliques d’après Mikhael Gromov,
volume 83. Progress in Mathematics, 1990.

[FIV15] Hervé Fournier, Anas Ismail, and Antoine Vigneron. Computing the gromov hyperbolicity of
a discrete metric space. Information Processing Letters, 115(6):576–579, 2015.

[Gro87] Micha Gromov. Hyperbolic groups. In Essays in Group Theory, volume 8 of Mathematical
Sciences Research Institute Publications, pages 75–263. Springer, 1987.

https://hal.inria.fr/hal-03201405/
https://gitlab.inria.fr/dcoudert/hyperbolicity/
https://gitlab.inria.fr/dcoudert/hyperbolicity/

	Introduction
	Definitions and notations
	Approach
	Experimental evaluation

