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The phenomena of the rotating grating have been studied and have the varieties application. The diffraction normal order 𝑚 ! that is at the intersection of the grating's normal vector and the screen is introduced and is the function of the incident angle of light, the grating spacing and wavelength.

We suggest the following: (1) the diffraction normal order 𝑚 ! and the zeroth order (𝑚 = 0) divide a diffraction pattern into three portions; each portion corresponds to a range of diffraction orders, 𝑚 " , terms of 𝑚 and 𝑚 # ; (4) the diffraction pattern of a rotating grating is non-uniform.

𝑚 "" , 𝑚 """ , and is described by specific equation, respectively; (2) the number of the diffraction orders "m" in each portion is determined by the incident angle of light, the grating spacing, and wavelength;

(3) the diffraction angles and positions of the diffraction orders of each portion can be presented in 

! ! = 3 ! ! = 2 ! !! = 1 ! = 0 ! !!! = -1

Introduction

The diffraction pattern of a grating is described by the grating equations that states that a grating of spacing "d", when a light beam incident at an angle to the grating, creates a diffraction pattern with diffraction orders, "m", at discrete angles 𝜃 $ . The diffraction angle, 𝜃 $ , is measured from the grating normal. The phenomena are referred as "conical pattern" [START_REF] Harvey | Description of Diffraction Grating Behavior in Direction Cosine Space[END_REF][START_REF] Braig | An EUV beam-splitter based on conical grazing incidence diffraction[END_REF] or as "tilted grating" [START_REF] Ninad | Novel cases of diffraction of light from a grating: Theory and experiment[END_REF] or as "oblique incident light beam" [START_REF] Heuberger | Light diffraction from a phase grating at oblique incidence in the intermediate diffraction regime[END_REF] or as "twisted grating" [START_REF]Interference and Diffraction[END_REF] or as "rotating grating" rotating CW and CCW around one, two and three axes sequentially [START_REF] Peng | Double Slit Experiment Still Has Much to Offer (6): Curved, Expanded and Inclined Interference Patterns -Dynamic Double Slit/Cross-Double Slit Experiments[END_REF][START_REF] Peng | Double Slit Experiment Still Has Much to Offer (7): Particle Nature of Photons, Normal Diffraction Pattern and Curved Diffraction Pattern Emerging in Same Grating Experiment[END_REF][START_REF] Peng | Double Slit Experient Still Has Much to Offer (9): ---Continuously Curved Diffraction Patterns of 2D-Cross-Grating Experiments[END_REF][START_REF] Peng | Non-Uniform, Curved, Expanded and Inclined Diffraction Pattern of 1D-Grating Experiments ---Rotating Grating Around Three Axes[END_REF][START_REF] Peng | Non-Uniform Diffraction Pattern of 2D-Cross-Grating -Rotating Grating Around Three Axes[END_REF][START_REF] Peng | Math Model of Rotating Grating -CW/CCW Rotation Angle-Dependence[END_REF].

The standard grating equation for the rotating grating has the form

𝑑𝑠𝑖𝑛(𝜃 % ) ± 𝑑𝑠𝑖𝑛(𝜃 $ ) = 𝑚𝜆
where the "+" and "-" are used when 𝜃 % and 𝜃 $ are on the same side and opposite side of the grating normal. And treating all angles as positive.

However, it has been pointed out that for the single diffraction pattern of a given grating, to study systematically the chrematistics of the grating pattern and to understand the optical meaning, the pattern may be divided into different portions based on the different locations of the different diffraction orders [START_REF] Peng | Math Model of Rotating Grating -CW/CCW Rotation Angle-Dependence[END_REF]. To describe a diffraction pattern clearly, different grating equations may be used for different portions.

First, introducing the normal diffraction order 𝑚 ! , hereafter referred it as the "normal order", that is the function of the grating spacing, wavelength and the incident angle of light. Then we show the followings in detail: [START_REF] Harvey | Description of Diffraction Grating Behavior in Direction Cosine Space[END_REF] the normal order 𝑚 ! and the zeroth order 𝑚 = 0 divide a diffraction pattern into three portions; each portion corresponds to a range of diffraction orders "m", and is described by specific equations, respectively; (2) the number of the diffraction orders "m" in each portion is determined by the grating spacing, wavelength and the incident angle of light; [START_REF] Ninad | Novel cases of diffraction of light from a grating: Theory and experiment[END_REF] characterizing the diffraction angle and positions of the diffraction orders of each portion; (4) the diffraction pattern of a rotating grating is non-uniform.

Experimental Setup and Right-hand Rule

Experimental Setup Figure 1 shows the setup. The laser light propagates along negative X direction.

The slits of the grating are along the Y axis. Next section shows how we divide the diffraction pattern of a rotated grating into three portions, and each portion is described by corresponding equation.

We have shown [START_REF] Peng | Double Slit Experiment Still Has Much to Offer (6): Curved, Expanded and Inclined Interference Patterns -Dynamic Double Slit/Cross-Double Slit Experiments[END_REF][START_REF] Peng | Double Slit Experiment Still Has Much to Offer (7): Particle Nature of Photons, Normal Diffraction Pattern and Curved Diffraction Pattern Emerging in Same Grating Experiment[END_REF] that when the grating is rotated around two or three axes, the CW rotations and CCW rotations make different. Let us define the normal diffraction order 𝑚 ! (hereafter denoted as "normal order") and its position. Figure 3 is used to define the normal order 𝑚 ! , which shows that the grating rotates CCW around the Y axis by 𝜃 % (according to the right-hand rule, Figure 2), which is equivalent to the light beam shining on the grating at the oblique angle 𝜃 % . The line OO' is the grating normal, the point O' is on the screen. The "𝐵𝐷 = 𝑑" is the spacing between two slits of the grating. The beam-1 and beam-2 travelling along path-1 and path-2, respectively, and meet at the point 𝑂'. After passing the grating, there is no path deference between two beams, i.e., 𝐷𝑂 ' = 𝐵𝑂′. The O" corresponds to the diffraction zeroth-order 𝑚 = 0. The O' corresponds to the normal order 𝑚 ! . Denote 𝑂𝑂" = 𝐿.

Grating Equations for

We define 𝑚 ! > 0 and 𝜃 % > 0 for the CCW rotation of the grating. The standard grating equation, 𝑑𝑠𝑖𝑛(𝜃 % ) + 𝑑𝑠𝑖𝑛(𝜃 $ ) = 𝑚𝜆, becomes,

𝑑𝑠𝑖𝑛(𝜃 % ) = 𝑚𝜆. (1a) 
Definition of normal order 𝒎 𝑵 :

𝑚 ! = ( ) 𝑠𝑖𝑛(𝜃 % ) (1b) 
Eq. 1b defines the normal order 𝒎 𝑵 . The 𝑚 ! is not necessary to be an integer.

Example-3-1: Figure 4 shows examples of Eq. 1b, where different spacings are in terms of # slits/mm, different incident angle is 𝜃 % , and the red laser of wavelength 𝜆 = 0.65 𝜇𝑚 is used. Therefore, the first diffraction order positioned above 𝑚 ! is 𝑚 = 2. There is only one diffraction order between the zeroth order 𝑚 = 0 and the normal order 𝑚 ! , which is 𝑚 = 1. Normal order m N vs. spacing, wavelength (650nm) and incident angle (Eq. 1b)

m_N: at θi=30 degree m_N: at θi=45 degree m_N: at θi=60 degree m_N: at θi=75 degree Example-3-3 (Figure 4): for 𝑑 = 100 *%+,-$$ = 10𝜇𝑚, 𝜆 = 0.65𝜇𝑚, 𝜃 % = 60 # , 𝑠𝑖𝑛60 # = 0.866, 𝑚 ! = 13.3. Therefore, the first diffraction order positioned above 𝑚 ! is 𝑚 = 14. There is 13 of diffraction orders between the zeroth order 𝑚 = 0 and the normal order 𝑚 ! , which are 𝑚 = 1 -13.

Experiment-3-1 to -3-3 show that the larger the spacing d, the larger the value of the normal order 𝑚 ! and thus, the larger the number of the diffraction orders between 𝑚 and 𝑚 ! .

Position of normal order 𝒎 𝑵 on the screen

Let's define the position of the normal order 𝑚 ! (Figure 3):

ℎ $! = 𝑂′𝑂". (2) 
The point O' corresponds to the position of 𝑚 ! . The position ℎ ! of 𝑚 ! is at the intersection of the grating normal and the screen. Calculating the position ℎ ! , we have,

ℎ $! = 𝐿 𝑡𝑎𝑛(𝜃 % ) (3a) ℎ $! = 𝐿 𝑚 ! ) (./-0 " . ( 3b 
)
Figure 5. Position ℎ $! of normal order vs. incident angle 𝜃 % (Eq. 3a)

Example-3-4 (Figure 5): for a relatively small incident angle, for example, 𝜃 % ≤ 30 # , we approximately have a linear relation between ℎ $! and 𝜃 % , ℎ $! ≈ 𝐿𝜃 % .

To express ℎ $! in terms of the normal order 𝑚 ! , Eq. (1b) gives

𝑠𝑖𝑛(𝜃 % ) = 12+(0 " ) 5[12+(0 " )] # 89 = 𝑚 ! ) ( . (4) 
Solving Eq. ( 4), we obtain

𝑡𝑎𝑛(𝜃 % ) = 𝑚 ! $ % ; 9<=$ ! $ % > # (5) 
Substituting Eq. ( 5), Eq. (3a) becomes

ℎ $! = 𝑚 ! ? $ % ; 9<=$ ! $ % > # (3c) 
The ℎ $! can be expressed by 𝑚 ! (Eq. 3c) or by 𝜃 % (Eq. 3a) or by both 𝑚 ! and 𝜃 % (Eq. 3b). Positin h mN of normal order m N (Eq. 3a)

Dividing Diffraction Pattern into Three Portions

Now let us divide the diffraction pattern of a CCW rotating grating into three portions.

First portion: the first portion 𝑚 " is above 𝑚 ! , i.e., 𝑚 " > 𝑚 ! > 𝑚, where 𝑚 = 0

Second portion: the second portion 𝑚 "" is between 𝑚 ! and 𝑚, i.e., 𝑚 ! > 𝑚 "" > 𝑚.

Third portion: the third portion is below 𝑚 = 0, i.e., 𝑚 """ < 𝑚 and 𝑚 """ < 0.

The subscripts "I, II and II" indicate First-, Second-and Third portion respectively.

The first portion and second portion are divided by the normal order 𝑚 ! . The second portion and third portion are divided by the zeroth-order 𝑚 = 0.

Figure 6. Schematic of three portions

The plan of the article: start from (1) the first portion 𝑚 " with angle 𝜃 $" ; then (2) reduce 𝜃 $" to zero, i.e., go to the normal order 𝑚 ! ; then (3) go to second portion 𝑚 "" with angle 𝜃 $"" ; then (4) enlarging 𝜃 $"" to 𝜃 % , i.e., 𝜃 $"" goes to the zero order 𝑚 = 0; then (5) go to third portion by enlarging 𝜃 $"" to 𝜃 $""" .

Grating Equations for First Portion:

𝒎 𝑰 > 𝒎 𝑵 > 𝟎

Grating Equations

When 𝑚 " > 𝑚 ! > 0, 𝑌 $" is above 𝑂', i.e., the incident angle 𝜃 % and diffraction angle 𝜃 $" are on the same side of grating normal (Figure 7). Where 𝑌 $" is the position of the diffraction order 𝑚 " . The path-difference (phase difference) is,

𝐴𝐵 + 𝐵𝐶.
For far field, path-1, 𝑂𝑌 $" and path-2 can be treated as approximately parallel to each other. Where 𝐴𝐵 = 𝑑𝑠𝑖𝑛(𝜃 % ) and 𝐵𝐶 = 𝑑𝑠𝑖𝑛(𝜃 $" ). 

A B O D ! ! ! ! Path-1 Path-2 " " " "" " """ " # " = 0 ! $" ! $"" ! $"""
𝑑𝑠𝑖𝑛(𝜃 % ) + 𝑑𝑠𝑖𝑛(𝜃 $" ) = 𝑚 " 𝜆. ( 6 
)
𝜃 $" = 𝑎𝑟𝑐𝑠𝑖𝑛 P𝑚 " ) ( -𝑠𝑖𝑛 (𝜃 % )Q. ( 7a 
)
Substituting Eq. (1b) into Eq. ( 6), we obtain the grating equations in terms of 𝑚 " and 𝑚 ! (Figure 8).

𝑑𝑠𝑖𝑛(𝜃

$" ) = 𝜆[𝑚 " -𝑚 ! ] (8) 
𝜃 $" = 𝑎𝑟𝑐𝑠𝑖𝑛 P ) ( (𝑚 " -𝑚 ! )Q (7b)
Example-3-5 (Figure 8): let us consider an example: 𝜆 = 0.65 𝜇𝑚, the incident angle 

𝜃 % = 45 # , For 𝑑 9### , 𝑚 ! = 1.09, then 𝑚 " = 2 For 𝑑 A## , 𝑚 ! = 2.

Limitation of Number of Diffraction Orders 𝒎 𝑰

Eq. (7a) and Eq. (7b) limit the value and numbers of the integer diffraction orders 𝑚 " .

Since 𝑠𝑖𝑛(𝜃 $" ) ≤ 1, thus Eq. 8 gives

) ( [𝑚 " -𝑚 ! ] < 1, namely 𝑚 " < ( ) + 𝑚 ! (9a)
Substituting Eq. (1b) into Eq. (9a), the number of diffraction orders "𝑚 " " is proportional to spacing d and satisfy

𝑚 " < ( ) [1 + 𝑠𝑖𝑛𝜃 % ] (9b) 
Example-3-6 (Figure 9): let us consider an example: 𝜆 = 0.65 𝜇𝑚, the incident angles Eq. 9b (Figure 9) shows the maximum values of the diffraction orders 𝑚 " of the grating with different densities of slits and different incident angles. The grating with low density of slits has larger value of diffraction orders 𝑚 " . On the contrary, the grating with high density of slits has a smaller value of diffraction orders.

𝜃 % = 30 # ,

Position of Diffraction Orders 𝒎 𝑰 on Screen

Next, let us calculate the positions of the diffraction orders 𝑚 " on the screen (Figure 10).

For 𝐿 ≫ 𝑑, the three rays r, 𝑟 9 and 𝑟 G are essentially treated as being parallel, thus, 𝜃 ≈ 𝜃 $" .

Denoting h $" = 𝑌 $ 𝑂", we have

h $" = 𝐿 tan(θ H + θ IJ ) (10) 
The spacing between two adjacent diffraction orders is 

∆ℎ $"B<G ≡ h $"B -h $"G = 𝐿 [tan(θ H + θ IJB ) -tan(θ H + θ IJG )] = 0.83
Distance between diffraction orders 3 and 4 is

∆ℎ $"K<B ≡ h $"K -h $"B = 𝐿 [tan(θ H + θ IJK ) -tan(θ H + θ IJB )] = 6.63
Therefore, the distances between two adjacent diffraction orders are non-uniform.

Grating Equations for Second Portion:

𝒎 𝑵 > 𝒎 𝑰𝑰 > 𝟎

Grating Equations

When 0 < 𝑚 "" < 𝑚 ! , 𝑌 $ is in between the point 𝑂' and the point O", i.e., the incident angle 𝜃 % and diffraction angle 𝜃 $"" are on the opposite sides of the grating normal, and 𝜃 % > 𝜃 $"" (Figure 11). Where 𝐴𝐵 > 𝐷𝐶, 𝐴𝐵 = 𝑑𝑠𝑖𝑛(𝜃 % ), 𝐷𝐶 = 𝑑𝑠𝑖𝑛(∠𝐶𝐵𝐷) = 𝑑𝑠𝑖𝑛(𝜃 $"" ), 𝜃 % > 𝜃 $"" and 𝑚 "" > 0.

The grating equation for this situation in terms of 𝜃 % and 𝜃 $"" is

𝑑𝑠𝑖𝑛(𝜃 % ) -𝑑𝑠𝑖𝑛(𝜃 $"" ) = 𝑚 "" 𝜆. (12) 
Substituting Eq. (1b) into Eq. ( 12), we have the grating equation in terms of 𝑚 "" and 𝑚 # ,

𝑠𝑖𝑛(𝜃 $"" ) = ) ( [𝑚 ! -𝑚 "" ] (13a) 
𝜃 $"" = arcsin P

) ( (𝑚 ! -𝑚 "" )Q (13b)
The larger the value of the integer "𝑚 "" ", i.e., 𝑌 $"" moves to O', the smaller the diffraction angle 𝜃 $"" .

Example-3-8 (Figure 12): let us consider an example: 𝜆 = 0.65 𝜇𝑚, the incident angle 𝜃 % = 45 # .

Addition to Figure 8, Figure 12 shows the diffraction angles vs. the diffraction orders 𝑚 " and 𝑚 "" .

Figure 12. Diffraction angles vs. the combination of diffraction orders 𝑚 " and 𝑚 "" When a diffraction order is closer to the normal order 𝑚 ! , its diffraction angle is smaller.

For 𝑑 9### = 9$$ 9### *%+,-= 1 𝜇𝑚, 𝑚 ! = 1.09, 𝑚 "" = 1 For 𝑑 A## , 𝑚 ! = 2.18, 𝑚 "" = 1,2 A B O O' D ! ! ! "## ! "## d ! ! " "## C Path-

Limitation of Number of Diffraction Orders 𝒎 𝑰𝑰

Note that Eq. (13a) limits the value of "𝑚 "" ". Since 0 < 𝑠𝑖𝑛(𝜃 $"" ) < 1, thus Eq. 13a gives 0 <

) (

[𝑚 ! -𝑚 "" ] < 1, namely, the integer diffraction orders "𝑚 "" " satisfy

𝑚 "" > 𝑚 ! - ( ) (14a) 
𝑚 ! > 𝑚 "" (14b) 
Substituting Eq. (1b) into Eq. (14a), the integer diffraction orders "𝑚 "" " has to satisfy

𝑚 "" > ( ) [𝑠𝑖𝑛(𝜃 % ) -1] (14c) 
By definition, the integer 𝑚 "" > 0, Eq. 14c is satisfied, which is what we discussed in Section 3.3, i.e., 0 < 𝑚 "" < 𝑚 ! . (14d)

Position of Diffraction Orders 𝒎 𝑰𝑰 on Screen

Next let us determine the position of the diffraction order 𝑚 "" .

For 𝐿 ≫ 𝑑, the three rays 𝑌 $"" 𝑂, 𝑌 $"" 𝐷 and 𝑌 $"" 𝐵 are essentially treated as being parallel, thus,

∠𝑌 $"" 𝑂𝑂′ ≈ 𝜃 $"" . (15) 
Denoting 𝑂"𝑌 $"" = ℎ $"" , we have

ℎ $"" = 𝐿 tan (𝜃 % -𝜃 $"" ) (16) 
The spacing between two adjacent diffraction orders is

∆ℎ $"" = 𝐿 [tan(θ H -θ IJJ89 ) -tan(θ H -θ IJJ )]. (17) 
Therefore, the diffraction pattern of the rotating grating is nonuniform. (1) Using Eq. 14c to determine 𝑚 "" . We have 𝑚 "" = 1.

Example

(2) Using Eq. 13b, 𝜃 $"" = arcsin P (3) ℎ $"" = 𝐿 tan(𝜃 % -𝜃 $"" ) = 𝐿 tan 19. 9 # = 0.36𝐿

Grating Equations for 𝒎 = 𝟎

The path difference before passing through the grating is 𝐴𝐵 = 𝑑𝑠𝑖𝑛𝜃 % . The path difference after passing through the grating is 𝐶𝐷 = 𝑑𝑠𝑖𝑛𝜃. Figure 13 shows that 𝜃 $# = 𝜃 = 𝜃 % , so 𝐴𝐵 = 𝐶𝐷, i.e., 𝐴𝐵 -𝐶𝐷 = 0, the net path difference is zero. Thus, the grating equation is

𝑑𝑠𝑖𝑛𝜃 % -𝑑𝑠𝑖𝑛𝜃 $# = 0 = 𝑚𝜆, (18) 
𝑚 = 0.
The diffraction order 𝑚 = 0 separates the Second portion (described in Section 3.4) and third portion.

Grating Equations for Third

Portion: 𝒎 𝑰𝑰𝑰 < 𝟎

Grating Equations

When 𝑌 $ is below the point O" (𝑚 = 0), we define 𝑚 """ < 0. The incident angle 𝜃 % and diffraction angle 𝜃 $""" are on the opposite sides of the grating normal, and 𝜃 $""" ≥ 𝜃 % (Figure 14). The diffraction angle for the third portion starts from 𝜃 $""" = 𝜃 % , which leads to the zeroth order 𝑚 = 0, and then gradually increase, such that 𝑚 """ = -1, -2 ….

We have the path difference,

𝐴𝐵 -𝐷𝐶.

Where 𝐴𝐵 < 𝐷𝐶, 𝐴𝐵 = 𝑑𝑠𝑖𝑛(𝜃 % ) and 𝐷𝐶 = 𝑑𝑠𝑖𝑛(∠𝐶𝐵𝐷) = 𝑑𝑠𝑖𝑛(𝜃 $""" ).

Figure 14. Schematic of Third Portion of CCW rotating grating

The grating equation for this situation in terms of 𝜃 % and 𝜃 $""" is

A B O O' D ! ! ! ! Path-1 Path-2 Path-1 Path-2 m = 0 O" C ! "# ! Grating A B O O' D ! ! ! "### d ! ! " "### C Path-1 Path-2 Path-1 Path-2 O" ! "###
Grating 𝑑𝑠𝑖𝑛(𝜃 % ) -𝑑𝑠𝑖𝑛(𝜃 $""" ) = 𝑚 """ 𝜆.

(19) Substituting Eq. (1b) into Eq. ( 19), we have the grating equation in terms of 𝑚 """ and 𝑚 ! ,

𝑠𝑖𝑛(𝜃 $""" ) = ) ( [𝑚 ! -𝑚 """ ] (20a) 𝜃 $""" = arcsin P ) ( (𝑚 ! -𝑚 """ )Q (20b)
Note that the third portion starts from O" and contain the diffraction orders below O".

Limitation of Number of Diffraction Orders 𝒎 𝑰𝑰𝑰

Note that Eq. (20a) limits the value of "𝑚 """ ". Since 0 ≤ 𝑠𝑖𝑛(𝜃 $""" ) ≤ 1, thus Eq. 20a gives

0 < ) ( [𝑚 ! -𝑚 """ ] < 1. (21a) 𝑚 """ > P𝑚 ! - ( ) Q, (21b) 
𝑚 """ > ( ) [𝑠𝑖𝑛𝜃 % -1]. (21c) 
Example-3-10: At the zeroth order 𝑚 = 0, 𝜃 $""" = 𝜃 % = 45 # .

For 𝜃 % = 45 # , 𝑑 9### , 𝑚 ! = 1.09, 𝑚 """ ≥ 𝑚 ! -( ) = -0.45. Thus 𝑚 """ = 0.

For 𝜃 % = 45 # , 𝑑 A## , 𝑚 ! = 2.18, 𝑚 """ ≥ 𝑚 ! -( ) = -0.9. Thus 𝑚 """ = 0.

For 𝜃 % = 45 # , 𝑑 B## , 𝑚 ! = 3.62, 𝑚 """ ≥ 𝑚 ! - ( ) = -1.5.
Thus 𝑚 """ = -1.

For 𝜃 % = 45 # , 𝑑 G## , 𝑚 ! = 5.44, 𝑚 """ ≥ 𝑚 ! - ( ) = -2.25. Thus 𝑚 """ = -1, -2.
For 𝜃 % = 45 # , 𝑑 9## , 𝑚 ! = 10.88, 𝑚 """ ≥ 𝑚 ! -( ) = -4.5. Thus 𝑚 """ = -1, -2, -3, -4.

Figure15. Diffraction angles vs. diffraction orders 𝑚 " , 𝑚 "" and 𝑚 """

Addition to Figure 12, Figure15 shows the diffraction angles vs. diffraction orders 𝑚 " , 𝑚 "" and 𝑚 """ .

Position of Diffraction Orders 𝒎 𝑰𝑰𝑰 on Screen

We denote the position of diffraction orders 𝑚 """ on screen 𝑂"𝑌 $""" = ℎ $""" . Figure 16 shows, for 𝐿 ≫ 𝑑, path-1, 𝑂𝑌 $""" and path-2 can be treated as parallel, and thus ∠𝑌 $""" 𝑂𝑂" = 𝜃 $""" -𝜃 % Thus, the position of diffraction orders 𝑚 """ is ℎ $""" = -𝐿 𝑡𝑎𝑛(𝜃 $""" -𝜃 % ).

(

) 22 
Note that the minus sign indicates that the point 𝑌 $""" is below the point O".

Example-3-11:

For 𝑑 A## , 𝜃 % = 30 # . 𝑚 ! = ( ) 𝑠𝑖𝑛(𝜃 % ) = 1.53, 𝑚 """ ≥ 𝑚 ! - ( )
= -1.53. Using Eq. 21c to determine 𝑚 """ . We have 𝑚 """ = -1. Using Eq. 20b, 𝜃 $""" = arcsin P

) ( (𝑚 ! -𝑚 """ )Q = 55. 6 # .
Using Eq. 22, ℎ $""" = -𝐿 tan(𝜃 $""" -𝜃 % ) = -0.48𝐿

Experiment-3-1:

For the grating of 𝑑 A## , the incident angle is 𝜃 % = 30 # , then 𝑚 ! = 1.53. The experimental result is shown in Figure 15. O"

! ! Grating ! ! = 3 ! ! = 2 ! !! = 1 ! = 0 ! !!! = -1
From Eq. 7a, 𝜃 $" = 𝑎𝑟𝑐𝑠𝑖𝑛 P𝑚 " ) ( -𝑠𝑖𝑛 (𝜃 % )Q, for 𝑚 " = 4, we obtain 𝜃 $"<K = 53 # . Eq. 10, h $" = 𝐿 tan(θ H + θ IJ ), gives the position of h $" from the position of the zeroth order,

h $"<K = 8𝐿
Let us compare with the diffraction orders 𝑚 " = 3 and 𝑚 " = 2.

For 𝑚 " = 3, we obtain 𝜃 $"<B = 28 # and h $"<B = 1.6𝐿.

For 𝑚 " = 2, we obtain 𝜃 $"<G = 8. 68 # and h $"<G = 0.8𝐿.

For 𝑚 "" = 1, we obtain 𝜃 $"" = 10. 1 # and h $"" = 0.36𝐿.

For 𝑚 """ = -1, we obtain 𝜃 $""" = 55. 6 # and h $""" = -0.48𝐿.

The diffraction order 𝑚 " = 4 is much far from the zeroth order and much dimmer to be detected.

Grating Equations for Rotating CW Grating Around Y axis

When the grating is rotating around one axis, say the Y axis, there is no difference between CW and CCW rotations. However, we have shown that when the grating is rotated around two or three axes sequentially, the CW and CCW rotations make different.

Normal Diffraction Order "𝒎 𝑵 "

Definition of Normal Diffraction Order "𝒎 𝑵 " for CW rotating Grating

Figure 18 shows that the grating rotates CW around the Y axis by 𝜃 % , which is equivalent to the light beam shining on the grating at the oblique angle 𝜃 % . The line OO' is the grating normal. The spacing between two slits is "d". The beam-1 and beam-2 along path-1 and path-2, respectively, meet at the point 𝑂' . After passing the grating, there is no path deference between two beams, i.e., 𝐷𝑂 ' = 𝐵𝑂′.

The O" corresponds to the zeroth order 𝑚 = 0. The O' corresponds to 𝑚 ! .

We define 𝑚 ! < 0 for the CW rotating grating. For the CCW rotating grating, 𝑚 ! > 0 in Eq. 1b.

For the case of 𝐿 ≫ 𝑑, path-1, OO' and path-2 are approximately parallel to each other. For the light beams arriving at the point O' on the grating normal, the diffraction angle 𝜃 $ ! = 0. The "AB" is the path-deference of light propagating along path-1 and path-2, ∠𝑂′𝑂𝑂" = 𝜃 % , we have

𝑑𝑠𝑖𝑛(𝜃 % ) = -𝑚 ! 𝜆. (23a) 
Definition of the normal order 𝒎 𝑵 : 𝜃 % > 0.

𝑚 ! = - ( ) 𝑠𝑖𝑛(𝜃 % ). (23b) 

Position of normal order 𝒎 𝑵 on screen

Defining 𝑂′𝑂" = ℎ $! , then we define

ℎ $! = -𝐿 𝑡𝑎𝑛(𝜃 % ). (24a) 
The ℎ $! is determined by the 𝜃 % and ℎ $! < 0.

Eq. 24a has the same form as Eq. 3a. However, ℎ $! > 0 in Eq. 3a for the CCW rotating grating.

To find 𝑡𝑎𝑛(𝜃 % ) in terms of the diffraction order m and 𝑚 ! , Eq. (23a) gives

𝑡𝑎𝑛(𝜃 % ) = -𝑚 ! ) ( ; 9<=<$ ! $ % > # (25) 
Using Eq. ( 25), Eq. (24a) becomes

ℎ $! = 𝑚 ! ? ( ) ; 9<=$ ! $ % > # < 0 (24b) 
Note that for CCW rotating grating, the normal order 𝑚 ! is on the positive side of the zeroth order 𝑚 = 0, while for CW rotating grating, the normal order 𝑚 ! is on the negative side of the zeroth order.

Dividing Diffraction Pattern into Three Portions

Now let us divide the diffraction pattern of a CW rotating grating into three portions (Figure 19). 

! ! Path-1 Path-2 O" ! ! Grating " = 0 " " " ## " # " ### ! !" ! !"" ! !""" ! !
First portion: the first portion is above O", i.e., 𝑚 " > 𝑚, where 𝑚 = 0, thus 𝑚 " > 0.

Second portion: the second portion is between 𝑚 ! and 𝑚 = 0, i.e., 𝑚 > 𝑚 "" > 𝑚 ! , 𝑚 "" < 0.

Third portion: the third portion is below 𝑚 ! , i.e., 𝑚 """ < 𝑚 ! < 0.

The subscripts "I, II and II" indicate First-, Second-and Third portion respectively.

The first portion and second portion are divided by the zeroth order 𝑚 = 0. The second portion and third portion are divided by the normal-order 𝑚 ! .

First Portion:

𝒎 𝑰 > 𝟎

Grating Equation

When 𝑚 " > 0, 𝑌 $" is above 𝑂", i.e., 𝜃 $" > 𝜃 % (Figure 20). The incident angle 𝜃 % and diffraction angle 𝜃 $" are on the opposite sides of the grating normal, and 𝜃 $" > 𝜃 % . The diffraction angle for the first portion starts from 𝜃 $" = 𝜃 % , which leads to the zeroth order 𝑚 = 0, and then gradually increase 𝜃 $" , such that 𝑚 " = 1, 2 ….

We have the path difference,

𝐷𝐶 -𝐴𝐵,

where 𝐷𝐶 > 𝐴𝐵, 𝐴𝐵 = 𝑑𝑠𝑖𝑛(𝜃 % ) and 𝐷𝐶 = 𝑑𝑠𝑖𝑛(∠𝐶𝐵𝐷) = 𝑑𝑠𝑖𝑛(𝜃 $" ). ℎ $" = 𝑂"𝑌 $" . 

(𝑚 " -𝑚 ! )Q (27b) ℎ $" = 𝐿 tan (𝜃 $" -𝜃 % ) (28) 
The larger the value of the integer "𝑚 " ", the larger the diffraction angle 𝜃 $" and the larger the position "ℎ $" ". O" ! #

Limitation on number of diffraction order 𝒎 𝑰

Eq. 26 and Eq. 27a limit the value of "𝑚 " ", since 𝑠𝑖𝑛(𝜃 $" ) ≤ 1, thus, Lowering 𝑌 $" again, 𝑌 $" becomes 𝑌 $"" that is between O' and 𝑂". So 0 > 𝑚 "" > 𝑚 ! , i.e., 𝜃 $"" < 𝜃 % . The incident angle 𝜃 % and diffraction angle 𝜃 $"" are on the opposite sides of the grating normal. The path difference is,

𝑚 " < ( ) [1 -𝑠𝑖𝑛(𝜃 % )] (29a 

𝐷𝐶 -𝐴𝐵,

where 𝐷𝐶 < 𝐴𝐵, 𝐴𝐵 = 𝑑𝑠𝑖𝑛(𝜃 % ) and 𝐷𝐶 = 𝑑𝑠𝑖𝑛(∠𝐶𝐵𝐷) = 𝑑𝑠𝑖𝑛(𝜃 $"" ), ℎ $"" = 𝑂"𝑌 $"" (Figure 22). (30)

𝑠𝑖𝑛(𝜃 $"" ) = ) ( [𝑚 "" -𝑚 ! ] (31a) 𝜃 $"" = arcsin P ) ( (𝑚 "" -𝑚 !) Q (31b) ℎ $"" = -𝐿 tan (𝜃 % -𝜃 $"" ) (32) 
Eq. (31a) limits the value of "𝑚 "" ". Since 𝑠𝑖𝑛(𝜃 $"" ) ≤ 1, thus, When 𝑌 $""" is below 𝑂', i.e., 𝑚 ! > 𝑚 """ , the incident angle 𝜃 % and diffraction angle 𝜃 $""" are on the same side of the grating normal. Defining 𝑂"𝑦 $""" = ℎ $""" . We have the path difference (Figure 23),

𝐴𝐵 + 𝐵𝐶,

where 𝐴𝐵 = 𝑑𝑠𝑖𝑛(𝜃 % ) and 𝐵𝐶 = 𝑑𝑠𝑖𝑛(𝜃 $""" ).

Figure 23. Schematic of Third portion of CW rotating grating

The grating equation is,

𝑑𝑠𝑖𝑛(𝜃 % ) + 𝑑𝑠𝑖𝑛(𝜃 $""" ) = -𝑚 """ 𝜆. ( 34 
)
Substituting Eq. (23b) into Eq. (34), we obtain

𝑠𝑖𝑛(𝜃 $""" ) = ) ( [𝑚 ! -𝑚 """ ] (35a) 
𝜃 $""" = arcsin P

) ( (𝑚 ! -𝑚 """ )Q (35b) ℎ $""" = -𝐿 𝑡𝑎𝑛(𝜃 % + 𝜃 $""" ) (36) 
Eq. (35a) limits the value of "𝑚 """ ", since 𝑠𝑖𝑛(𝜃 $""" ) ≤ 1, thus

𝑚 """ > 𝑚 ! - ( ) . (37) 

Summary and Discussion

A B O O' ! ! ! ! " "### C ! "### Path-1 Path-2 Path-1 Path-2 ! "### ! ! O"

Grating

For the diffraction pattern of a grating rotating CW and CCW around one axis that parallels the slits of the grating, we break the pattern into 3 portions. The three portions are divided by the normal order 𝑚 ! and the zeroth-order, 𝑚 = 0, respectively, then describe each portion respectively.

We show that (1) Each portion is described by specific equations; " ""

" = 0 = 0 A B O O' D ! ! ! ! Path-1 Path-2 Path-1 Path-2 ! ! m = 0 ! ! O" Grating A B O O' ! ! d Path-1 Path-1 Path-2 Path-2 O" ! ! Grating D 𝑑𝑠𝑖𝑛(𝜃 $" ) + 𝑑𝑠𝑖𝑛(𝜃 % ) = 𝑚 " 𝜆, 𝑑𝑠𝑖𝑛(𝜃 $" ) -𝑑𝑠𝑖𝑛(𝜃 % ) = 𝑚 " 𝜆. 𝜃 $" = 𝑎𝑟𝑐𝑠𝑖𝑛 P ) ( (𝑚 " -𝑚 ! )Q, 𝜃 $" = arcsin P ) ( (𝑚 " + 𝑚 ! )Q h $" = 𝐿 tan(θ H + θ IJ ), ℎ $" = 𝐿 tan (𝜃 $" -𝜃 % ) 𝑚 " < ( ) + 𝑚 ! , 𝑚 " < ( ) -𝑚 ! 4 
) Second portion:

CCW rotation: 𝑚 ! > 𝑚 "" > 0, CW rotation: 0 > 𝑚 "" > 𝑚 ! 𝑑𝑠𝑖𝑛(𝜃 % ) -𝑑𝑠𝑖𝑛(𝜃 $"" ) = 𝑚 "" 𝜆 𝑑𝑠𝑖𝑛(𝜃 $"" ) -𝑑𝑠𝑖𝑛(𝜃 % ) = 𝑚 "" 𝜆 𝜃 $"" = arcsin P

) ( (𝑚 ! -𝑚 "" )Q 𝜃 $"" = arcsin P ) ( (𝑚 ! -𝑚 "" )Q ℎ $"" = 𝐿 tan (𝜃 % -𝜃 $"" ) ℎ $"" = 𝐿 tan (𝜃 % -𝜃 $"" )
𝑚 "" > 𝑚 ! - = arcsin < 𝜆 𝑑 (𝑚 ! -𝑚 """ )?

Order: 𝑚 𝑚 ! = -𝑑 𝜆 𝑠𝑖𝑛𝜃 # 𝑚 " < 𝑑 𝜆 + 𝑚 ! 𝑚 "" > 𝑚 ! -𝑑 𝜆 𝑚 """ > 𝑚 ! -𝑑 𝜆

Position: h

ℎ $! = -𝐿 𝑡𝑎𝑛(𝜃 # ) h $" = 𝐿 𝑡𝑎𝑛(𝜃 $" -𝜃 # ) ℎ $"" = -𝐿 tan (𝜃 # -𝜃 $"" ) ℎ $""" = -𝐿 𝑡𝑎𝑛(𝜃 $""" + 𝜃 # )
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 1 Figure 1. Schematic Setup Right-Hand Rule: Figure 2 shows the right-hand rule for determine CW and CCW rotation of the grating along an axis.
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 2 Figure 2. Right-Hand Rule for determining Rotation Direction
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Figure 3 .

 3 Figure 3. Schematic of normal order "𝑚 ! " In the case of 𝐿 ≫ 𝑑, path-1, OO' and path-2 are approximately parallel to each other. For the light beams arriving at the point O' on the grating normal, the diffraction angle 𝜃 $ ! = 0. The "AB" is the path-deference between path-1 and path-2.
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 432 Figure 4. Correlation of 𝑚 ! (m_N), d, 𝜆 and incident angle 𝜃 % (Eq. 1b) Example-3-2 (Figure 4): for 𝑑 = 1000 *%+,-$$ = 1𝜇𝑚, 𝜆 = 0.65𝜇𝑚, 𝜃 % = 60 # , we have 𝑚 ! = 1.3.
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 7 Figure 7. Schematic of First Portion of CCW rotating grating The standard grating equation for this situation is

2 , 5 For 8 ForFigure 8

 2588 Figure 8 Correlation of diffraction angle 𝜃 $" , 𝑚 " , 𝑚 ! , d, 𝜆 (650nm), at 𝜃 % = 45 # .

11 )Figure 10 .

 1110 Figure 10. Schematic of Position of diffraction order 𝑚 " Example-3-7: For a given grating of 𝑑 = 500 *%+,-$$ = 2 𝜇𝑚, 𝜆 = .65 𝜇𝑚, the incident angle is 𝜃 % =

Figure 11 .

 11 Figure 11. Schematic of Second Portion of CCW rotating grating We have the path difference, 𝐴𝐵 -𝐷𝐶,
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 35 orders: m I and m II Diffraction angles of First-portion and Second-portion vs. wavelength (650nm), spacing, incident angle and diffraction orders (Eq. 7b and Eq. 13b) 1000 lines/mm 500 lines/mm 300 lines/mm 200 lines/mm 100 lines/mm For 𝑑 B## , 𝑚 ! = B.BB×#.E#E .FA = 3.62, 𝑚 "" = 1,2,𝑑 G## , 𝑚 ! = A×#.E#E .FA = 5.44, 𝑚 "" = 1,2,3,4,𝑑 9## , 𝑚 ! = 9#×#.E#E .FA = 10.88, 𝑚 "" = 1,2,3,4,5,6,7,8,9,10
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 39 For a given grating of 𝑑 = 500 *%+,-$$ = 2 𝜇𝑚, 𝜆 = 0.65 𝜇𝑚, the incident angle is 𝜃 % = 30 # , then we have 𝑚 ! =

Figure 13 .

 13 Figure 13. Schematic of zeroth order of CCW rotating grating
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 16 Figure 16. Schematic of deriving position of diffraction orders 𝑚 """
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 171 Figure 17. Experiment-3-1: Picture of diffraction ordersThe total number of the diffraction orders is 𝑚 """ + 𝑚 "" + 𝑚 " + 𝑚(= 0) =6:𝑚 " < ( ) [1 + 𝑠𝑖𝑛𝜃 % ] = 4.6thus, 𝑚 " = 2, 𝑚 " = 3, 𝑚 " = 4,

Figure 18 .

 18 Figure 18. Schematic of normal diffraction order "𝑚 ! " of CW rotating grating

Figure 19 .

 19 Figure 19. Schematic of First-, Second and Third Portions of CW rotating grating

Figure 20 .

 20 Figure 20. Schematic of First Portion of CW rotating grating The diffraction equations are, 𝑑𝑠𝑖𝑛(𝜃 $" ) -𝑑𝑠𝑖𝑛(𝜃 % ) = 𝑚 " 𝜆.(26)𝑠𝑖𝑛(𝜃 $" ) = ) ( [𝑚 " -𝑚 ! ](27a)𝜃 $" = arcsin P ) (

4 . 4 .

 44 Grating Equation for: 𝒎 = 𝟎Lowering 𝑌 $" until reaching O". The line OO" is the zeroth order that dividing the first portion and the second portion (Figure21).
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 2145 Figure 21. Schematic of zeroth order dividing First and Second PortionsThe diffraction angle is equal to the incident angle, 𝜃 $" = 𝜃 % .

Figure 22 .

 22 Figure 22. Schematic of Second portion of CW rotating grating The diffraction equations are,

4 . 4 .

 44 Grating Equation for Third Portion: 0 > 𝑚 ! > 𝑚 """

( 2 ) 1 ) 2 ) 3 )

 2123 The distances between two adjacent diffraction orders are non-uniform; (3) The number of the diffraction orders is limited by the spacing of the grating, wavelength and the incident angle. Let us summarize the contents of this article below. Zero order 𝒎 = 𝟎: CCW and CW rotations CCW rotation CW rotation 𝑑𝑠𝑖𝑛𝜃 % -𝑑𝑠𝑖𝑛𝜃 $# = 0 = 𝑚𝜆 The equations describing the diffraction orders of both the CW and CCW rotation of the grating are the same. 𝒎 𝑵 : normal diffraction order (normal order) CCW rotation: 𝑚 ! > 0, CW rotation: 𝑚 ! First portion:CCW rotation: 𝑚 " > 𝑚 ! > 0: CW rotation: 𝑚 " > 0 > 𝑚 !

  Third portionCCW rotation: 𝑚 ! > 0 > 𝑚 """ , CW rotation: 0 > 𝑚 ! > 𝑚 """ % ) -𝑑𝑠𝑖𝑛(𝜃 $""" ) = 𝑚 """ 𝜆, 𝑑𝑠𝑖𝑛(𝜃 % ) + 𝑑𝑠𝑖𝑛(𝜃 $""" ) = 𝑚 """ 𝜆 𝜃 $""" = arcsin P) ( (𝑚 ! -𝑚 """ )Q 𝜃 $""" = arcsin P ) ( (𝑚 """ -𝑚 ! )Q ℎ $""" = -𝐿 𝑡𝑎𝑛(𝜃 $""" -𝜃 % ) ℎ $""" = -𝐿 𝑡𝑎𝑛(𝜃 % + 𝜃 $""" ) 𝑚 """ > 𝑚 ! -( ) 𝑚 """ > 𝑚 ! -( ) CCW Rotating Grating: 𝑚 ! > 0 Grating Definition of 𝑚 ! 𝑚 ! > 0 First Portion: 𝑚 " 𝑚 " > 𝑚 ! Second Portion: 𝑚 "" 𝑚 "" < 𝑚 ! , 𝑚 "" > 0Third Portion: 𝑚 """ 𝑚 """ < 0Equation 𝑚 ! = 𝑑 𝜆 𝑠𝑖𝑛𝜃 # 𝑠𝑖𝑛𝜃 # + 𝑠𝑖𝑛𝜃 $" = 𝑚 " 𝜆 𝑑 𝑠𝑖𝑛𝜃 $" = 𝜆 𝑑 [𝑚 " -𝑚 ! ] 𝑠𝑖𝑛𝜃 # -𝑠𝑖𝑛𝜃 $"" = 𝑚 "" 𝜆 𝑑 𝑠𝑖𝑛𝜃 $"" = 𝜆 𝑑 [𝑚 ! -𝑚 "" ] 𝑠𝑖𝑛𝜃 # -𝑠𝑖𝑛𝜃 $""" = 𝑚 """ = 𝐿 𝑡𝑎𝑛(𝜃 # ) h $" = 𝐿 𝑡𝑎𝑛(𝜃 # + 𝜃 $ ) ℎ $"" = 𝐿 𝑡𝑎𝑛(𝜃 # -𝜃 $"" ) ℎ $""" = -𝐿 𝑡𝑎𝑛(𝜃 $""" -𝜃 # )CW Rotating Grating:𝑚 ! < 0 Grating Definition of 𝑚 ! 𝑚 ! < 0First Portion: 𝑚 " 𝑚 " > 0 Second Portion: 𝑚 "" 𝑚 "" > 𝑚 ! , 𝑚 "" < 0Third Portion: 𝑚 """ 𝑚 """ < 𝑚 ! Equation 𝑚 ! = -𝑑 𝜆 𝑠𝑖𝑛(𝜃 # ) 𝑠𝑖𝑛𝜃 $" -𝑠𝑖𝑛𝜃 # = 𝑚 " 𝜆 𝑑 𝑠𝑖𝑛𝜃 $" = 𝜆 𝑑 [𝑚 " -𝑚 ! ]𝑠𝑖𝑛𝜃 $"" -𝑠𝑖𝑛𝜃 # = 𝑚 "" 𝜆 𝑑 𝑠𝑖𝑛𝜃 $"" = 𝜆 𝑑 [𝑚 "" -𝑚 ! ] 𝑠𝑖𝑛𝜃 # + 𝑠𝑖𝑛𝜃 $"""

  45 # , 60 # , 75 # , and the spacing of the grating 𝑑 is 1000 lines/mm, 300 lines/mm, 200 lines/mm, 100 lines/mm and 50 lines/mm respectively.

Figure 9. Ranges of diffraction order 𝑚 " are determined by 𝜃 % , d and 𝜆 (Eq. 9b)