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Understanding characteristics of covariance matrix is an important research topic. In quantitative trading, portfolio liquidity is a hidden dimension and important as others such as portfolio volatility. In this paper, we propose a liquidity impact measure to improve the portfolio liquidity and also a novel Cash Value at Risk to evaluate the liquidity risk from portfolio cash perspective. Experimental results on various scenarios show that our approach improve a portfolio turnover significantly and also better than others on Cash Value at Risk in almost all cases. An interesting finding is that linear shrinkage covariance estimations not only improve the covariance structure but also resolve a large partial of liquidity.

Introduction

Covariance matrix is used in several domains, e.g. econometrics or data science, therefore covariance estimation is an important research topic which try to robustify the covariance matrix, reduce estimation error and strengthen matrix structure. Particularly in quantitative trading, where the data is noisy and large, it makes the data could be seen as big data and a quantitative system with that data as a complex system. Consequently, the reliable covariance estimation plays a central role in financial economics.

In present investment practice, portfolios with minimum variance objective attach great attention since they probably have higher returns in long run. Covariance matrix used in the theoretical Minimum Variance Portfolio (MVP) is sample covariance which is a simplest estimator but has several disadvantages, such as high estimation error or illstructure when it meets the curse of dimensionality. In large dimensional covariance matrices, linear shrinkage covariance estimations which combine sample covariance matrix and other well-structured matrices show a significant improvement on portfolio volatility.

A third dimension in MVP is portfolio liquidity which is important and strongly relate to portfolio volatility. Liquidity is a complex concept, there is no definition for liquidity and also we cannot see directly the liquidity of an asset or a portfolio. Stated simply, the liquidity of an asset is an ability of trading that asset. Which means how fast to buy or sell the asset at a lowest cost, these elements are very important because it affects on investor's decisions. An asset with less expensive trading could lead to higher valuations [START_REF] Lin | Stock splits, trading continuity, and the cost of equity capital[END_REF] and high selling speed helps investors exit their position rapidly. Therefore, investors need to consider not only portfolio volatility but also portfolio liquidity.

Although there is no definition of liquidity, several studies have proposed indicators to measure the liquidity of an asset such as Sarr et al. [START_REF] Sarr | Measuring liquidity in financial markets[END_REF] described five characteristics of liquid markets:

(i) tightness: mention to low transaction cost of the market, (ii) immediacy: mention to the high speed of order execution in the market, (iii) depth: mention to the existence of limit orders in the market, (iv) breadth: mention to a small market impact of large orders, (v) resiliency: mention to a flow of new orders to correct market imbalances.

While many measures have been proposed to measure liquidity, no single measure can cover all of the above requirements. We focus on one kind of the breadth, the impact of market on portfolio performance which is easily obtained from portfolio results. While this aspect is important, the liquidity of those linear shrinkage MVPs above is still unclear, further analysis is needed to understand characteristics of them.

In this study, we propose a liquidity impact ratio and improve the portfolio liquidity by integrating our ratio into MVP optimization as a liquidity constraint. We also introduce a novel risk metric which captures an outcome of liquidity aspect in the portfolio, it uses daily ending cash of the portfolio to evaluate a Cash value at Risk (CR). Experimental results show a significant improvement on portfolio turnover and also on the CR at four alpha levels. Another contribution is those linear shrinkage estimations, by shrinking the covariance matrix it not only improve the portfolio volatility but also solve a large partial of liquidity problem in MVPs.

The rest of the paper is structured as follows. Section 2 introduces MVP optimization and covariance estimations which are used in this study, then discusses previous liquidity measures and their drawbacks. Section 3 presents our Liquidity Impact ratio and how to integrate it as a liquidity constraint in portfolio optimization. We also explain in detail the Cash Value at Risk measure for portfolio liquidity. Section 4 presents our experimental design. Finally, Section 5 concludes.

Related works

Portfolio construction and Minimum Variance Portfolio

Modern Portfolio Theory (MPT) is a mainstream theoretical approach of Portfolio Selection after Marktowitz published his essay [START_REF] Markowitz | Portfolio selection[END_REF]. To this day, researchers have analyzed various kind of characteristics and pointed out that one of the main problem of the MPT is an uncertainty of input parameters, which is expected returns and covariance matrix of the stock data [START_REF] Best | On the sensitivity of mean-variance-efficient portfolios to changes in asset means: some analytical and computational results[END_REF]. After the financial crisis of 2007-2009, active MPT portfolios showed disappointed performances and then investors looking for alternative approaches, a new passive concept of minimum variance investing is one of them and a large number of studies reported that it outperforms the active style [START_REF] Scherer | A note on the returns from minimum variance investing[END_REF]. Global Minimum Variance Portfolio (MVP) is a special case of MPT which only require covariance matrix to estimate a portfolio with lowest volatility. Given a dataset with N assets, a covariance matrix Σ of asset returns, a formula of MVP is as following:

min w w Σw s.t. w 1 = 1 (1)
where w is a weight vector. One of advantages of MVP is that the covariance matrix is less uncertain than the mean returns of asset [START_REF] Chopra | The effect of errors in means, variances, and covariances on optimal portfolio choice[END_REF], it makes the MVP is less sophisticated than the standard MPT.

Covariance matrix and Linear Shrinkage Estimations

A traditional estimator for the covariance matrix in Equation 1 is a sample covariance estimation. However, when the number of assets N greater than a number of observations, the sample covariance matrix is not well-conditioned or even singular, therefore the portfolio optimization of the MVP fail to apply. In this case, we need a well-conditioned estimator for large-dimensional covariance matrices. Recently, some linear shrinkage estimations of covariance matrices have been proposed to handle this issue. Given a target matrix F, sample covariance matrix S, a linear shrinkage estimator is constructed as:

Σ = δF + (1 -δ)S (2) 
where the δ is shrinkage intensity between 0 and 1. This estimator shrinks the sample covariance matrix toward the pre-defined target matrix F which is more structured, well-conditioned. Ledoit and Wolf proposed some shrinkage estimators, such as Shrinkage towards indentity matrix [START_REF] Ledoit | A well-conditioned estimator for large-dimensional covariance matrices[END_REF], Shrinkage towards single-index model (also known as Shrinkage to market) [START_REF] Ledoit | Improved estimation of the covariance matrix of stock returns with an application to portfolio selection[END_REF] and Shrinkage towards constant correlation model [START_REF] Ledoit | Honey, i shrunk the sample covariance matrix[END_REF].

Liquidity in MVP

The MVP with any covariance estimation above try to optimize on portfolio variance. However, liquidity risk should be as important as the portfolio variance or given equal standing with other investment styles [START_REF] Ibbotson | Liquidity as an investment style[END_REF]. There is an interesting negative relationship between liquidity and asset pricing, Amihud et al. [START_REF] Amihud | Asset pricing and the bid-ask spread[END_REF] show that expected returns are an increasing function of the bid-ask spread, i.e. illiquidity cost. Other works, such as Farmer at el. [START_REF] Farmer 5 | What really causes large price changes?[END_REF] show a strong link between liquidity and volatility. Therefore, the portfolio optimization should take the liquidity into account not only in the MVP but also in the MPT.

Even though the liquidity in portfolio is important, it is often ignored by researchers and practitioners. An extensive work of Lo et al. [START_REF] Lo | It's 11 pm-do you know where your liquidity is?: The mean-variance-liquidity frontier[END_REF] presents three ways to construct three-dimensional liquidity-integrated MPT, including: liquidity filtering, liquidity constraints and mean-variance-liquidity objective function. They also generalize several liquidity measures into five styles: i) trading volume, ii) logarithm of trading volume, iii) turnover, iv) percentage bid/ask spread and v) price impact function. Those measures base on daily data or intraday data, a later case is more accurate but a first case is more easily to obtain the data and compute the measures.

A classic example of daily-data liquidity measure is Amihud's illiquidity [START_REF] Amihud | Illiquidity and stock returns ii: Cross-section and time-series effects[END_REF], denoted as ILLIQ and formulated as follows:

ILLIQ i = 1 D D t=1 |r i,t | V i,t C i,t (3) 
where D is a number of days in a chosen period, r i,t , V i,t and C i,t are return value, trading volume and close price of an asset i at date t respectively. They interpret it as the market response to one unit of trading value, i.e. roughly as a price impact measure. By using the asset return, they captures only the price impact on the outcome of trading activities but other aspects are not under consideration. Although it proved to be one of the best proxy of liquidity, there is a large room to improve this measure. One of the drawbacks is that it can not handle zero-trading-volume days which is not impossible in the real market, specially with illiquidity assets in illiquidity markets. That is important information regarding illiquidity and even if we use an inverse variation of the Amihud, this issue still exists with zero-return days.

In order to compare liquidity quality of portfolios, which one is better in term of performance or risk, a suitable portfolio metric is necessary. Besides portfolio return and volatility, Lo et al. [START_REF] Lo | It's 11 pm-do you know where your liquidity is?: The mean-variance-liquidity frontier[END_REF] use Sharpe ratio and show a trajectory of liquidity-integrated portfolios which have higher levels of liquidity, but with lower expected return and higher volatility. It is interpretive for practitioners, but not enough in quantitative trading because they have to evaluate a trade-off between portfolio liquidity and portfolio performances (return and volatility). In a next section we will describe a new way to evaluate an outcome of the portfolio with liquidity integration.

Methodology -Liquidity aspect in Minimum Variance portfolio

Liquidity Impact ratio

By measuring the liquidity of an asset, we are more confident in our holding since we know the risk when we short an asset. In this paper, we define the liquidity as an impact of our trading action into asset's price. Therefore, we propose to estimate this impact by considering how much trading value affects a fluctuation of an asset. Given a standard daily OHLCV dataset with O i,t , H i,t , L i,t , C i,t , V i,t are open, high, low, close prices and trading volume of asset i at date t respectively. Let us define an intraday fluctuation of the given asset as following:

f i,t = max C i,t -O i,t C i,t , H i,t -L i,t C i,t . (4) 
A first element in the formula 4 can be seen as absolute daily return, it means the O i,t could be replaced by the previous close price C i,t-1 . It will be zero if the return of the asset is zero at that day, which is not rare even with high liquidity assets. The last element could be seens as bid/ask spread in intraday data, it will only be zero if all matched prices are the same. Liquidity estimation from this spread sometimes be zero, particularly in cases of low liquidity assets. In our fluctuation estimation as combination of two approaches, they are complementary to each other. Even that, the fluctuation value can still be zero if all prices are the same, i.e. O i,t = H i,t = L i,t = C i,t , in this case we assume the fluctuation is a tick size of the asset in the market.

The liquidity impact is computed as following:

l i,t = 1 W W j=1 V i,j • C i,j f i,j , (5) 
where V i,j is the volume trading of asset i at date j in a latest period with window length W . By completely using the daily stock data, our liquidity estimation could limit disadvantages of previous approaches. The liquidity impact l i of asset i can be interpreted as how much trading value could oscillate its price by 100%. For more intuition, practitioners could use an unit of 1% instead of 100%, in this case they get a sense that the price could move by 1% with l i trading value. From the definition of liquidity, the higher l i value means better liquidity asset. Base on that, given a pre-defined maximum fluctuation θ, we could estimate maximum value of our holding which will make its price fluctuate less than the threshold θ when we want to short the whole asset as soon as possible. An upper bound of the asset in our portfolio will be:

u i,t = l i,t • θ P t (6) 
where P t is a portfolio value at date t. We use this upper bound equation in order to integrate the liquidity metric into the portfolio optimization.

Liquidity constrained MVP

The MVP concentrate the portfolio on few assets which have low volatility. However, those low volatility assets are not only low volatility but also low liquidity. Low liquidity makes the volatility is not fully evaluated, therefore holding a large portion of them in our portfolio is a hidden risk. Similar to the volatility, the portfolio optimization need to take into account the liquidity risk. Considering an universe of N assets, let w = (w 1 , ..., w N ) be the vector of portfolio weight, Σ be the covariance matrix of N asset returns. In this study, we only consider a long-only portfolio so that w i ≥ 0. The MVP optimization with liquidity element could be formulated as follows:

min w w Σw s.t. w 1 = 1 w i ∈ [0, min(U, u i )] ∀i = 1, N (7) 
where u i is the above upper bound of asset i and U is a constant upper bound which is traditionally used in portfolio optimization.

Liquidity measurement for portfolios

In order to evaluate the liquidity qualification of an individual portfolio and also to compare the liquidity of multiple portfolios, we need a measure to quantify the liquidity of a given portfolio. In this study, we propose to use Cash Value at Risk as an indirect approach to evaluate the liquidity. The cash ratio is a result of portfolio's rebalacing activities, in which the cash from short orders will be used to pay for long orders. If the market could not fulfill the short orders (e.g. shorting low liquidity assets) then the portfolio doesn't have enough cash to pay for the long orders, in this case we allow it to borrow the cash to complete the long activities. Therefore, an ending cash of the portfolio could be negative. A high liquidity portfolio could balance the rebalacing, i.e. easily short assets to meet the cash requirement of long orders, and has positive cash ratio all the time, or at least has small nagative values in a few time. And vice versa, a low liquidity portfolio with large portion of low liquidity assets will have large negative cash ratio frequently. That is why we could use the cash ratio to evalute indirectly the portfolio's liquidity.

More details about the process, we backtesting a given portfolio through T dates with an initial portfolio value P 0 , i.e. an initial cash value C 0 . Each date t ∈ [1, T ] we receive the money from our short orders C short t and then with a previous cash C t-1 , it is used to pay for our long orders by C long t . The orders are placed in a previous trading date t -1 and their matched prices are the closing prices at the current date t. A current ending cash

C t = C t-1 + C short t -C long t , if C t-1 + C short t < C long t
then we allow cash deficits and borrow the money from the market. In a next trading date t+1, we dont short our holding assets by C t to pay off the deficit. However, we continue to trade previous unmatched long/short orders in order to meet expected portfolio weights, until all orders are complete or up to a next rebalancing date.

It is worth to mention that in this study we assume: i) a maximum volume we could long/short for an asset i at date t is up to its volume at that date V i,t , ii) a total weight w 1 always equals 100% which is respectively 100% portfolio value, and iii) we could borrow the money without any type of borrowing limits, i.e. unlimited amount, no interest and infinite period. These assumptions make this measure meaningful, to be more realistic, the first assumption should be more strict or add borrowing limits in the third assumption.

A Cash ratio at each date is an ending cash over a portfolio value, which is a total of a position value and the cash value. Let X be a distribution of Cash ratio values, the Cash Value at Risk (CR) at level α ∈ [0, 1] will be:

CR α (X) = -inf {x ∈ R : F X (x) > α} in which x t = C t P t , (8) 

Empirical experiments

Data

We use daily historical data of Vietnam stock market, particularly is Ho Chi Minh City Stock Exchange -HOSE. The dataset is downloaded from their website. Backtesting period is from 2013 to the end of 2019 with 1744 trading days, prior 2013 is for computing preparation. The number of assets varies across backtesting period between N = 303 and N = 387. Shortsell are not allowed according to Vietnam trading regulation. Also, we only consider assets which have at least one year of data. Data summary for each year is in Table 1. The same procedure is repeat for every last trading day in a week, we use two-year weekly data to estimate covariance matrix by a given covariance estimation. Then optimize portfolio weights by Equation 7and rebalance the portfolio to the optimal weights. In a first trading day of next week, our orders will be filled by the close price at that day. Remaining unmatched orders continue ordering in this week in order to meet the target weights, until all of them are complete or at the week's last trading day1 .

Benchmarks

To demonstrate the advantage of our approach, we design a liquid comparison of our Liquidity Impact approach, named LIM, with three other liquidity methods, including: none is a theoretical portfolio optimization which have no liquidity perspective and only use a constraint with constant U such that w i ∈ [0, U ] ∀i = 1, N , we choose U = 10%, classic is a basic liquidity integration by using average trading volume of latest W trading days to limit the upperbound as minimum of U

and 1 /W W t=1 V i,t • C i,t P i,t
, it similars with Equation 6 with f i,t = θ for all asset i, Amihud is similar with us but we replace the fluctuation f i,t in Equation 5with the absolute return value r i,t in Equation 3, Moreover, there are several parameters in those portfolios which can affect performance. In order to show up our robustness, we use different combinations of them to test over various scenarios. In our experiments, we have four main parameters, includes: method: a method of covariance matrix estimation proposed in the literature, includes i) the sample covariance matrix (sample), ii) the Shrinkage to the identity matrix (ST IM ), iii) the Shrinkage to singleindex model (SSIM ) and iv) the Shrinkage to constant correlation matrix (SCCM )2 , N : the number of assets in current universe which we will take into account, using all available assets in the market or using only a top largest assets by market capitalization. We will test some scenarios, including N = {N, 200, 100, 50}, W : the window length in the above liquidity formulas, the liquidity metric will more stable with a larger number and a smaller number let it adapts faster to current market data. We will test a wide range for this parameter, including W = {20, 250}, θ: the threshold value in our liquidity formulas, a smaller value will strictly considers high liquidity assets and a larger value also take into account illiquidity assets. Here we use θ = {1%, 5%}.

Portfolio performance measures

In this study, we use three common portfolio performance measures: the Annual Volatility σ, the Sharpe Ratio SR and a Portfolio Turnover P T which is described below. Only out-of-sample results are reported and are denominated in units of percent. Bracket under each number is p-value level of that portfolio with our portfolio which use the proposed LIM and other parameters are the same. Moreover, we also show the Cash-Ratio-at-Risk CR α at some levels of α such as 0.05%, 0.1%, 1% or 5%.

Although we do not show the hypothesis testing results for all pairwise portfolios in our experiment, we will use them when comparing portfolio strategies in our discussion section below. Particularly for the hypothesis testing of the Sharpe ratio, we follow a bootstrapping method of Ledoit and Wolf [START_REF] Ledoit | Robust performance hypothesis testing with the sharpe ratio[END_REF] to compute robustly the p-value. 3 And we only say that the difference is significant if a p-value is smaller than 5%.

Portfolio turnover. The portfolio turnover is an indicator to measure the daily changing in the portfolio weights. In the scope of the global MVP, a lower portfolio turnover is a better portfolio which shows that the previous calculations is robust and stable. The low portfolio turnover helps to reduce not only the transaction costs but also the risk of the portfolio afterwards, for example the liquidity risks. A formal formula of the portfolio turnover is as follows:

P T = 1 T -1 T -1 t=1 N i=1 |w t+1,i -w t,i | ( 9 
)
where N is a number of assets, T is a backtesting period [0, T ] and w t,i is a weight of an asset i at date t.

Analysis of results

Table 2 reports the out-of-sample portfolio performances and the corresponding level of p-value that the performance measure for that portfolio is different from that for the LIM portfolio respectively. We see that for all covariance estimation methods, our volatilities is higher than the volatilities of two basic liquidity approaches, i.e. none and classic, significantly but those are not different from the Amihud approach even at the 10% level. Similarly, our Sharpe ratios are compatible with the Amihud approach and lower than the linear shrinkage estimations while near others in sample covariance estimation. In all cases, our turnover always lower than the classic and Amihud approaches significantly. It confirms the finding in the literature that liquidity integration reduces the portfolio performance since the theoretical portfolio doesnt consider the liquidity risk.

For the Cash ratio, the LIM approach almost better than others except some cases at 1% level. There is only one portfolio that beats our cash ratios, that is ST IM portfolio with none liquidity. This exceptional portfolio has not only a lowest volatility but also a lowest portfolio turnover. 4 Moreover, in the SCCM method at 5% level, only our approach and Amihud could achieve positive cash ratios. Although an improvement of the CR at all levels for liquidity-based Amihud portfolio in sample covariance estimation are clearly visible, but in the linear shrinkage estimations at lower alpha levels (e.g. 0.05% and 0.1%) those differences with basic approaches are not clear.

On average for all alpha levels, the Cash-Ratio-at-Risk of our approach is better than the Amihud by 42.5% and by 66.08% than the theoretical none approach (without the ST IM method). Another interesting in the Table 2 is: while the Amihud liquidity in three linear shrinkage estimators improves only 4.55% on average over the sample covariance estimation, the two basic liquidity approaches in those linear shrinkage estimators (the none and the classic) improve the liquidity by 32.26% and 81.91% respectively. 5 It suggests that the linear shrinkage estimations not only shrink the covariance structure but also resolve most of the liquidity problem in the original MVP. An absolute difference between those classic liquidity in the three linear shrinkage estimations and the Amihud in the sample method is only 0.79% on average for all levels.

Table 3 reports out-of-sample performances of the SCCM portfolios on different sizes of universe. For example, by consider only top 50 assets with highest market capitalization the portfolios expect to use only 50 highest liquidity assets on the market. Similarly with the above analysis, our volatility higher than the two basic liquidity approaches but equivalent with the Amihud's volatility. However, there is no evidence to show difference of the Sharpe ratio between our LIM approach and others, except one weak case of the classic MVP on top N = 200 assets at a significance level α = 0.1. Although our turnover is lower than others in all universe sizes, its significance decreasing when the universe size is more narrow down. At higher universe sizes, the LIM 's turnover significantly lower than the classic and also the Amihud. Until at the size of 50 assets, all of portfolio turnovers are similar.

The SCCM method over all universe sizes (in the Table 3 and the last part of the Table 2) shows that our CR α values are almost the best, or be second-best in only two cases with the N = 200. Overall in those cases, our turnover is 24.55% lower than the Amihud's turnover, 84.7% and 73.65% lower than the turnover of the classic and none approaches respectively. Table 4 presents portfolio performances when we change the parameters in the liquidity formulas. Similarly with the above results, our volatility and turnover are better than the two basic approaches and undifferentiated between us and the Amihud approach. At a longer window length W = 250, our Sharpe ratio lower than the two basic but significantly higher than the Amihud. At a more risky portfolios with θ = 5%, although our Sharpe ratio is close to the Amihud but our turnover is significantly lower.

Comparing the Amihud approach between different thresholds, when the risk threshold is increased then the Cash ratios are also decreased at three over four alpha levels. On average of those differences, the threshold increased from 1% to 5% then the CR decreased 1.36%. Meanwhile, with our approach the CR slightly increased 0.06%.

Interpretations

The theoretical MVP using sample covariance matrix with no liquidity consideration in the Table 2 has the Cash Value at Risk at α = 0.05% equals -20.79%, that means there is a 0.0005 probability that our portfolio will lack of money to complete the orders by more than 20.79% of portfolio value at that day. Practitioners could explain this number as this portfolio is expected on 1 day out of 2000 days an 20.79% of portfolio value as an additional cash or more.

Another example is the MVP with the SCCM covariance estimation on top 200 assets by market cap, using W = 250, θ = 1% and our LIM approach in Table 4, at α = 0.1% the CR is -0.03%. In other words, we expects the additional cash as only 0.03% of portfolio value or more on 1 day out of 1000 days. Similarly, on 100-day periods this portfolio could keep positive cash ratio and there is only 0.05% that the cash ratio will fall by more than -0.23%.

In real world, those low percents of the additional cash are easily taken from the cash asset in the portfolio or from a cash reserve of the fund. As interpreted, a good liquidity portfolio should have the CR α less than fund's cash reserve ratio. Moreover, the CR could be seen as an estimation of portfolio's cash reserve ratio. For example at level α = 0.05%, our portfolio could reserve only 0.23% as cash and invest with 99.77% portfolio value, i.e. the total weight in our second assumption w 1 = 99.77%. Their sample portfolio above have to reserve up to 20.79% as cash and invest with only 79.21% their initial value.

Conclusion

In this study, we proposed the improved liquidity approach for MVP by taking the whole daily data into account to fully evaluate the fluctuation of assets then use it to estimate the liquidity impact LIM on the asset. And by using our novel risk metric based on cash ratio of the portfolio, which indirectly presents outcome of the liquidity, we shows that our risks on four alpha levels are almost lower than the Amihud illiquidity approach and also lower than other approaches on MVPs with four covariance estimations, including sample covariance estimation and linear shrinkage estimations. Although our results are indistinguishable from the Amihud portfolio on the two most common metrics, the volatility and the Sharpe ratio, our turnovers are almost lower than the Amihud's turnover significantly. It shows that the LIM approach robustifies the MVPs and their liquidity, i.e. reduce the risk of cash. Another contribution is about the liquidity of the linear shrinkage estimations for covariance matrices, they not only shrink the covariance structure but also strengthen the liquidity of the portfolio. Their liquidity improve-

Table 1 :

 1 Summary Statistics for HOSE dataset.

		2013 2014 2015 2016 2017 2018 2019
	Average daily return (%) 0.16 0.13 0.06 0.05 0.10 -0.02 0.02
	Standard deviation	0.08 0.03 0.04 0.03 0.03 0.03 0.03
	Average volume (10 5 )	4.53 9.03 8.12 8.88 11.84 11.19 9.66

Table 2 :

 2 Out-of-sample performance of portfolios with different covariance estimation methods and different liquidity approaches. Using all assets in the market (N = N ), use one-month data to compute the covariance matrices (W = 20) and the threshold in liquidity formulas θ = 1%.

	method liquid	σ	SR	PT CR 0.05% CR 0.1% CR 1% CR 5%
		none	8.97 (***)	68.35	7.04 (***)	-20.79 -15.47 -7.27	-3.02
	sample	classic	9.04 (***)	137.06	7.54 (***)	-11.12	-8.69 -6.02	-3.17
		Amihud 12.07 96.24	5.27 (***)	-7.33	-7.18 -1.36	-0.90
		LIM	12.17 94.92 4.23	-2.31	-2.27 -1.74	-0.44
		none	6.52 (***)	171.33 (***)	2.26 (***)	-1.56	-1.11 -0.73	-0.22
	STIM	classic	8.07 (***)	169.97 (***)	4.24 (***)	-6.68	-5.89 -3.22	-1.90
		Amihud 12.01 92.66	4.03 (***)	-4.30	-3.82 -2.29	-1.81
		LIM	12.11 90.37 3.42	-3.35	-3.27 -2.75	-1.08
		none	6.80 (***)	158.82 (*)	3.45	-4.43	-2.95 -1.56	-0.79
	SSIM	classic	8.08 (***)	175.64 (***)	5.29 (***)	-8.12	-7.79 -4.43	-2.17
		Amihud 11.77 102.25	4.66 (***)	-7.59	-7.43 -1.37	-0.75
		LIM	11.95 102.36 3.79	-2.12	-2.04 -1.53	-0.27
		none	7.49 (***)	171.80 (***)	2.64 (***)	-3.68	-3.18 -2.29	-0.83
	SCCM	classic	8.19 (***)	178.15 (**)	4.13 (***)	-7.21	-6.13 -4.34	-1.88
		Amihud 11.37 119.95	4.10 (***)	-7.53	-7.37 -1.39	0.29
		LIM	11.58 116.58 3.29	-2.44	-2.26 -0.04	0.38

Table 3 :

 3 Out-of-sample performance of SCCM portfolios on different universe sizes by taking only top N largest assets by market capitalization. Using one-month data to compute the covariance matrices (W = 20) and the threshold θ = 1%.

	N liquid	σ	SR	PT CR 0.05% CR 0.1% CR 1% CR 5%
		none	8.05 (***)	141.14	2.62 (*)	-5.58	-3.66 -1.45	-0.70
	200	classic	8.61 (***)	(*)	3.87 (**)	-7.72	-5.93 -3.83	-1.80
		Amihud 11.74 99.23	3.92 (**)	-6.18	-5.95 -1.50	0.12
		LIM	12.05 95.70 3.18	-3.92	-3.76 -1.03	-0.64
		none	9.27 (***)	89.81	2.22 (**)	-6.69	-5.09 -1.84	-0.60
	100	classic	10.05 (***)	102.53	3.32 (**)	-9.32	-9.01 -4.48	-2.08
		Amihud 13.09 86.31 3.10	-3.41	-3.00 -0.51	0.24
		LIM	13.43 84.78 2.74	-0.59	-0.59	0.10	0.29
		none	11.13 (***)	63.77 2.01	-6.91	-6.61 -3.25	-1.32
	50	classic	11.62 (***)	73.81 2.44	-8.73	-5.94 -3.15	-1.05
		Amihud 13.98 67.94 2.49	-2.62	-2.60 -0.03	0.17
		LIM	14.41 68.83 2.31	-1.41	-1.40	0.04	0.19

Table 4 :

 4 Out-of-sample performance of SCCM portfolios on top N = 200 largest market capitalization assets with different parameters, the window length W and the threshold θ.

	W θ	liquid	σ	SR	PT CR 0.05% CR 0.1% CR 1% CR 5%
		none	8.05 (***)	141.14 (**)	2.62 (***)	-5.58	-3.66 -1.45	-0.70
	250	classic	8.43 (***)	157.14 (***)	2.27 (**)	-1.43	-1.41 -0.74	-0.22
	1% Amihud 11.85	53.37 (**)	2.02	-5.28	-4.95 -0.80	0.08
	1% LIM	11.44 72.74 1.73	-0.23	-0.03	0.31	0.41
		none	8.05 (***)	141.14	2.62 (***)	-5.58	-3.66 -1.45	-0.70
	20	classic	8.61 (***)	147.06 (**)	3.87	-7.73	-5.93 -3.84	-1.80
	5% Amihud 10.22 106.96	4.77 (**)	-9.19	-5.21 -3.63	-0.93
	5% LIM	10.02 107.25 3.93	-3.75	-3.42 -1.80	-0.15

For other details of the backtesting process, see Appendix in[START_REF] Tran | K-segments under bagging approach: An experimental study on extremely imbalanced data classification[END_REF] 

These portfolios are constructed by an open-source Python library, named PyPortfo-lioOpt[START_REF] Martin | Pyportfolioopt: portfolio optimization in python[END_REF] 

[START_REF] Markowitz | Portfolio selection[END_REF] Thanks Ledoit and Wolf for publishing their code at https://www.econ.uzh.ch/en/ people/faculty/wolf/publications.html.

The ST IM method similars with the 1/N portfolio of DeMiguel[START_REF] Demiguel | A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms[END_REF], therefore it invests in a large number of assets but with a small weight on each asset. That is a reason why the ST IM has the exceptional performance.

Although the Amihud slightly improves between sample covariance estimation and the linear shrinkage covariance estimations, particularly in the sample covariance estimation, the Amihud could improves the liquidity by 50.08%.