Olivier Gimenez

Maëlis Kervellec

Jean-Baptiste Fanjul

Anna Chaine

Lucile Marescot

Yoann Bollet

Christophe Duchamp

J.-B Fanjul

Trade-off between deep learning for species identification and inference about predator-prey co-occurrence: Reproducible R workflow integrating models in computer vision and ecological statistics

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Computer vision is a field of artificial intelligence in which a machine is taught how to extract and interpret the content of an image [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF]. Computer vision relies on deep learning that allows computational models to learn from training data -a set of manually labelled images -and make predictions on new data -a set of unlabelled images [START_REF] Baraniuk | The Science of Deep Learning[END_REF][START_REF] Lecun | Deep Learning[END_REF]. With the growing availability of massive data, computer vision with deep learning is being increasingly used to perform tasks such as object detection, face recognition, action and activity recognition or human pose estimation in fields as diverse as medicine, robotics, transportation, genomics, sports and agriculture [START_REF] Voulodimos | Deep Learning for Computer Vision: A Brief Review[END_REF].

In ecology in particular, there is a growing interest in deep learning for automatizing repetitive analyses on large amounts of images, such as identifying plant and animal species, distinguishing individuals of the same 1 arXiv:2108.11509v1 [stat.AP] 25 Aug 2021 or different species, counting individuals or detecting relevant features [START_REF] Christin | Applications for Deep Learning in Ecology[END_REF][START_REF] Lamba | Deep Learning for Environmental Conservation[END_REF][START_REF] Weinstein | A Computer Vision for Animal Ecology[END_REF]. By saving hours of manual data analyses and tapping into massive amounts of data that keep accumulating with technological advances, deep learning has the potential to become an essential tool for ecologists and applied statisticians.

Despite the promising future of computer vision and deep learning, there are challenging issues toward their wide adoption by the community of ecologists (e.g. [START_REF] Wearn | Responsible AI for Conservation[END_REF]. First, there is a programming barrier as most, if not all, algorithms are written in the Python language while most ecologists are versed in R [START_REF] Lai | Evaluating the Popularity of R in Ecology[END_REF]. If ecologists are to use computer vision in routine, there is a need for bridges between these two languages (through, e.g., the reticulate package [START_REF] Allaire | Reticulate: R Interface to Python[END_REF] or the shiny package [START_REF] Tabak | Improving the Accessibility and Transferability of Machine Learning Algorithms for Identification of Animals in Camera Trap Images: Mlwic2[END_REF]). Second, recent applications of computer vision via deep learning in ecology have focused on computational aspects and simple tasks without addressing the underlying ecological questions [START_REF] Sutherland | Identification of 100 Fundamental Ecological Questions[END_REF], or carrying out statistical data analysis to answer these questions [START_REF] Gimenez | Statistical Ecology Comes of Age[END_REF]. Although perfectly understandable given the challenges at hand, we argue that a better integration of the why (ecological questions), the what (automatically labelled images) and the how (statistics) would be beneficial to computer vision for ecology (see also [START_REF] Weinstein | A Computer Vision for Animal Ecology[END_REF].

Here, we showcase a full why-what-how workflow in R using a case study on the structure of an ecological community (a set of co-occurring species) composed of the Eurasian lynx (Lynx lynx) and its two main preys. First, we introduce the case study and motivate the need for deep learning. Second we illustrate deep learning for the identification of animal species in large amounts of images, including model training and validation with a dataset of labelled images, and prediction with a new dataset of unlabelled images. Last, we proceed with the quantification of spatial co-occurrence using statistical models.

Collecting images with camera traps

Lynx (Lynx lynx) went extinct in France at the end of the 19th century due to habitat degradation, human persecution and decrease in prey availability [START_REF] Vandel | Distribution Trend of the Eurasian Lynx Lynx Lynx Populations in France[END_REF]. The species was reintroduced in Switzerland in the 1970s [START_REF] Breitenmoser | Large Predators in the Alps: The Fall and Rise of Man's Competitors[END_REF], then re-colonised France through the Jura mountains in the 1980s [START_REF] Vandel | Distribution Trend of the Eurasian Lynx Lynx Lynx Populations in France[END_REF]. The species is listed as endangered under the 2017 IUCN Red list and is of conservation concern in France due to habitat fragmentation, poaching and collisions with vehicles. The Jura holds the bulk of the French lynx population.

To better understand its distribution, we need to quantify its interactions with its main preys, roe deer (Capreolus capreolus) and chamois (Rupicapra rupicapra) [START_REF] Molinari-Jobin | Variation in Diet, Prey Selectivity and Home-Range Size of Eurasian Lynx Lynx Lynx in Switzerland[END_REF], two ungulate species that are also hunted. To assess the relative contribution of predation and hunting, a predator-prey program was set up jointly by the French Office for Biodiversity, the Federations of Hunters from the Jura, Ain and Haute-Savoie counties and the French National Centre for Scientific Research.

Animal detections were made using a set of camera traps in the Jura mountains that were deployed in the Jura and Ain counties (see Figure 1). We divided the two study areas into grids of 2.7 × 2.7 km cells or sites hereafter [START_REF] Zimmermann | Optimizing the Size of the Area Surveyed for Monitoring a Eurasian Lynx (Lynx Lynx) Population in the Swiss Alps by Means of Photographic Capture-Recapture[END_REF]) in which we set two camera traps per site (Xenon white flash with passive infrared trigger mechanisms, model Capture, Ambush and Attack; Cuddeback), with 18 sites in the Jura study area, and 11 in the Ain study area that were active over the study period (from February 2016 to October 2017 for the Jura county, and from February 2017 to May 2019 for the Ain county). The location of camera traps was chosen to maximise lynx detection. Camera traps were checked weekly to change memory cards, batteries and to remove fresh snow after heavy snowfall.

In total, 45563 and 18044 pictures were considered in the Jura and Ain sites respectively after manually droping empty pictures and pictures with unidentified species. Note that classifying empty images could be automatised with deep learning (Norouzzadeh et al. 2021;[START_REF] Tabak | Improving the Accessibility and Transferability of Machine Learning Algorithms for Identification of Animals in Camera Trap Images: Mlwic2[END_REF]. We identified the species present on all images by hand (see Table 1) using digiKam a free open-source digital photo management application (https://www.digikam.org/). This operation took several weeks of labor full time, which is often identified as a limitation of camera trap studies. To expedite this tedious task, computer vision with deep learning has been identified as a promising approach (Norouzzadeh et al. 2021;[START_REF] Tabak | Machine Learning to Classify Animal Species in Camera Trap Images: Applications in Ecology[END_REF][START_REF] Willi | Identifying Animal Species in Camera Trap Images Using Deep Learning and Citizen Science[END_REF].

Deep learning for species identification

Using the images we obtained with camera traps (Table 1), we trained a model for identifying species using the Jura study site as a calibration dataset. We then assessed this model's ability to automatically identify species on a new dataset, also known as transferability, using the Ain study site as an evaluation dataset.

Training -Jura study site

We selected at random 80% of the annotated images for each species in the Jura study site for training, and 20% for testing. We applied various transformations (flipping, brightness and contrast modifications; [START_REF] Shorten | A Survey on Image Data Augmentation for Deep Learning[END_REF]) to improve training (see Appendix). To reduce model training time and overcome the small number of images, we used transfer learning [START_REF] Yosinski | How Transferable Are Features in Deep Neural Networks?[END_REF][START_REF] Shao | Transfer Learning for Visual Categorization: A Survey[END_REF] and considered a pre-trained model as a starting point. Specifically, we trained a deep convolutional neural network (ResNet-50) architecture [START_REF] He | Deep Residual Learning for Image Recognition[END_REF]) using the fastai library (https://docs.fast.ai/) that implements the PyTorch library [START_REF] Paszke | PyTorch: An Imperative Style, High-Performance Deep Learning Library[END_REF]. Interestingly, the fastai library comes with an R interface (https://eagerai.github.io/fastai/) that uses the reticulate package to communicate with Python, therefore allowing R users to access up-to-date deep learning tools. We trained models on the Montpellier Bioinformatics Biodiversity platform using a GPU machine (Titan Xp nvidia) with 16Go of RAM. We used 20 epochs which took approximately 10 hours. The computational burden prevented us from providing a full reproducible analysis, but we do so with a subsample of the dataset in the Appendix. All trained models are available from https://doi.org/10.5281/zenodo.5164796.

We calculated three metrics to evaluate our model performance at correctly identifying species (e.g. [START_REF] Duggan | An Approach to Rapid Processing of Camera Trap Images with Minimal Human Input[END_REF]. Specifically, we relied on accuracy the ratio of correct predictions to the total number of predictions, recall a measure of false negatives (FN; e.g. an image with a lynx for which our model predicts another species) with recall = TP / (TP + FN) where TP is for true positives, and precision a measure of false positives (FP; e.g. an image with any species but a lynx for which our model predicts a lynx) with precision = TP / (TP + FP). In camera trap studies, a strategy [START_REF] Duggan | An Approach to Rapid Processing of Camera Trap Images with Minimal Human Input[END_REF]) consists in optimizing precision if the focus is on rare species (lynx), while recall should be optimized if the focus is on commom species (chamois and roe deer).

We achieved 85% accuracy during training. Our model had good performances for the three classes we were interested in, with 87% precision for lynx and 81% recall for both roe deer and chamois (Table 2).

Transferability -Ain study site

We evaluated transferability for our trained model by predicting species on images from the Ain study site which were not used for training. Precision was 77% for lynx, and while we achieved 86% recall for roe deer, 3).

To better understand this pattern, we display the results under the form of a confusion matrix that compares model classifications to manual classifications (Figure 2). There were a lot of false negatives for chamois, meaning that when a chamois was present in an image, it was often classified as another species by our model.

Overall, our model trained on images from the Jura study site did poorly at correctly predicting species on images from the Ain study site. This result does not come as a surprise, as generalizing classification algorithms to new environments is known to be difficult [START_REF] Beery | Recognition in Terra Incognita[END_REF]. While a computer scientist might be disappointed in these results, an ecologist would probably wonder whether ecological inference about the interactions between lynx and its prey is biased by these average performances, a question we address in the next section.

Spatial co-occurrence

Here, we analysed the data we acquired from the previous section. For the sake of comparison, we considered two datasets, one made of the images manually labelled for both the Jura and Ain study sites pooled together (ground truth dataset), and the other in which we pooled the images that were manually labelled for the Jura study site and the images that were automatically labelled for the Ain study site using our trained model (classified dataset).

We formatted the data by generating monthly detection histories, that is a sequence of detections (Y sit = 1) and non-detections (Y sit = 0), for species s at site i and sampling occasion t (see Figure 3).

To quantify spatial co-occurrence betwen lynx and its preys, we used a multispecies occupancy modeling approach [START_REF] Rota | A Multispecies Occupancy Model for Two or More Interacting Species[END_REF][START_REF] Clipp | A Penalized Likelihood for Multi-Species Occupancy Models Improves Predictions of Species Interactions[END_REF]) using the R package unmarked [START_REF] Fiske | unmarked: An R Package for Fitting Hierarchical Models of Wildlife Occurrence and Abundance[END_REF].

The multispecies occupancy model assumes that observations y sit , conditional on Z si the latent occupancy state of species s at site i are drawn from Bernoulli random variables Y sit |Z si ∼ Bernoulli(Z si p sit) where p sit is the detection probability of species s at site i and sampling occasion t. Detection probabilities can be modeled as a function of site and/or sampling covariates, or the presence/absence of other species, but for the sake of illustration, we will make them only species-specific here.

The latent occupancy states are assumed to be distributed as multivariate Bernoulli random variables (Dai, Ding, and Wahba 2013). Let us consider 2 species, species 1 and 2, then Z i = (Z i1 , Z i2) ∼ multivariate Bernoulli(ψ 11 , ψ 10 , ψ 01 , ψ 00) where ψ 11 is the probability that a site is occupied by both species 1 and 2, ψ 10 the probability that a site is occupied by species 1 but not 2, ψ 01 the probability that a site is occupied by species 2 but not 1, and ψ 00 the probability a site is occupied by none of them. Note that we considered species-specific only occupancy probabilities but these could be modeled as site-specific covariates. Marginal occupancy probabilities are obtained as Pr(Z i1 = 1) = ψ 11 + ψ 10 and Pr(Z i2 = 1) = ψ 11 + ψ 01 . With this model, we may also infer potential interactions by calculating conditional probabilities such as for example the probability of a site being occupied by species 2 conditional of species 1 with Pr(Z i2 = 1|Z i1 = 1) = ψ 11 ψ 11 + ψ 10 .

Detection probabilities were indistinguishable whether we used the ground truth or the classified dataset, with p lynx = 0.51(0.45, 0.58), p roe deer = 0.63(0.57, 0.68) and p chamois = 0.61(0.55, 0.67).

We also found that occupancy probability estimates were similar whether we used the ground truth or the classified dataset (Figure 4). Roe deer was the prevalent species, but lynx and chamois were also occurring with high probability (Figure 4). Because marginal occupancy probabilities were high, probabilities of co-occurrence were also estimated high (Figure 5). Our results should be interpreted bearing in mind that co-occurrence is a necessary but not sufficient condition for actual interaction. When both preys were present, lynx was more present than when they were both absent (Figure 5). Lynx was more sensitive to the presence of roe deer than that of chamois (Figure 5).

Discussion

In this paper, we aimed at illustrating a reproducible workflow for studying the structure of an animal community and species spatial co-occurrence (why) using images acquired from camera traps and automatically labelled with deep learning (what) which we analysed with statistical occupancy models accounting for imperfect species detection (why). Overall, we found that, even though model transferability could be improved, inference about the potential interactions between lynx and its preys was similar whether we analysed the ground truth data or classified data.

This result calls for further work on the trade-offs between time and resources allocated to train models with deep learning and our ability to correctly answer key ecological questions with camera-trap surveys.

In other words, while a computer scientist might be keen on spending time training models to achieve top performances, an ecologist would rather rely on a model showing average performances and use this time to proceed with statistical analyses if, of course, errors in computer-annotated images do not make ecological inference flawed. The right balance may be found with collaborative projects in which scientists from artificial intelligence, statistics and ecology agree on a common objective, and identify research questions that can pick the interest of all parties.

Our demonstration remains however empirical, and we encourage others to try and replicate our results. We also see two avenues of research that could benefit the integration of deep learning and ecological statistics.

First, a simulation study could be conducted to evaluate bias and precision in ecological parameter estimators with regard to errors in image annotation by computers. The outcome of this exercise could be, for example, guidelines informing on the confidence an investigator may place in ecological inference as a function of the amount of false negatives and false positives. Second, annotation errors could be accomodated directly in statistical models. For example, single-species occupancy models account for false negatives when a species is not detected by the camera at a site where it is present, as well as false positives when a species is detected at a site where it is not present due to species misidentification by the observer [START_REF] Miller | Improving Occupancy Estimation When Two Types of Observational Error Occur: Non-Detection and Species Misidentification[END_REF]. Pending a careful distinction between ecological vs. computer-generated false negatives and false positives, error rates could be added to multispecies occupancy models [START_REF] Chambert | Two-Species Occupancy Modelling Accounting for Species Misidentification and Non-Detection[END_REF]) and informed by recall and precision metrics obtained during model training [START_REF] Tabak | Improving the Accessibility and Transferability of Machine Learning Algorithms for Identification of Animals in Camera Trap Images: Mlwic2[END_REF].

With regard to the case study, our results should be seen only as preliminary. First, we aim at quantifying the relative contribution of biotic (lynx predation on chamois and roe deer) and abiotic (habitat quality) processes to the composition and dynamic of this ecological community. Second, to benefit future camera trap studies of lynx in the Jura mountains, we plan to train a model again using manually annotated images from both the Jura and the Ain study sites. These perspectives are the object of ongoing work.

With the rapid advances in technologies for biodiversity monitoring (Lahoz-Monfort and Magrath 2021), the possibility of analysing large amounts of images makes deep learning appealing to ecologists. We hope that our proposal of a reproducible R workflow for deep learning and statistical ecology will encourage further studies in the integration of these disciplines, and contribute to the adoption of computer vision by ecologists.

Appendix: Reproducible example of species identification on camera trap images with CPU

In this section, we go through a reproducible example of the entire deep learning workflow, including data preparation, model training, and automatic labeling of new images. We used a subsample of 467 images from the original dataset in the Jura county to allow the training of our model with CPU on a personal computer. We also used 14 images from the original dataset in the Ain county to illustrate prediction.

Training and validation datasets

We first split the dataset of Jura images in two datasets, a dataset for training, and the other one for validation. We use the exifr package to extract metadata from images, get a list of images names and extract the species from these.)) %>% # when pix has no tag select(SourceFile, FileName, Keywords) %>% mutate(Keywords = fct_recode(Keywords, "chat" = "chat forestier", "lievre" = "lièvre", "vehicule" = "véhicule", "ni" = "Non identifié")) %>% filter(!(Keywords %in% c("ni", "wo_tag")))

Then we pick 80% of the images for training in each category, the rest being used for validation.

training dataset pix_train <-labels %>% select(SourceFile, FileName, Keywords) %>% group_by(Keywords) %>% filter(between(row_number(), 1, floor(n()*80/100))) # 80% per category # validation dataset pix_valid <-labels %>% group_by(Keywords) %>% filter(between(row_number(), floor(n()*80/100) + 1, n()))

Eventually, we store these images in two distinct directories named train and valid.

create dir train/ and copy pix there, organised by categories dir.create(pix/train) # create training directory for (i in levels(fct_drop(pix_train$Keywords))) dir.create(paste0(pix/train/ ,i)) # create dir for labe for (i in 1:nrow(pix_train)){ file.copy(as.character(pix_train$SourceFile[i]), paste0(pix/train/ , as.character(pix_train$Keywords[i]))) # copy pix in corresp dir } # create dir valid/ and copy pix there, organised by categories. dir.create(pix/valid) # create validation dir for (i in levels(fct_drop(pix_train$Keywords))) dir.create(paste0(pix/valid/ ,i)) # create dir for labe for (i in 1:nrow(pix_valid)){ file.copy(as.character(pix_valid$SourceFile[i]), paste0(pix/valid/ , as.character(pix_valid$Keywords[i]))) # copy pix in corresp dir } # delete pictures in valid/ directory for which we did not train the model to_be_deleted <-setdiff(levels(fct_drop(pix_valid$Keywords)), levels(fct_drop

(pix_train$Keywords))) if (!is_empty(to_be_deleted)) { for (i in 1:length(to_be_deleted)){ unlink(paste0(pix/valid/ , to_be_deleted[i])) } }
What is the sample size of these two datasets? bind_rows("training" = pix_train, "validation" = pix_valid, .id = "dataset") %>% group_by(dataset) %>% count(Keywords) %>% rename(category = Keywords) %>% kable(caption = "Sample size (n) for the training and validation datasets.") %>% kable_styling()

Transfer learning

We proceed with transfer learning using images from the Jura county (or a subsample more exactly). We first load images and apply standard transformations to improve training (flip, rotate, zoom, rotate, ligth transform).

dls <-ImageDataLoaders_from_folder(path = "pix/", train = "train", valid = "valid", item_tfms = Resize(size = 460), bs = 10, batch_tfms = list(aug_transforms(size = 224, min_scale = 0.75), # transformation Normalize_from_stats(imagenet_stats())), num_workers = 0, ImageFile.LOAD_TRUNCATED_IMAGES = TRUE)

Then we get the model architecture. For the sake of illustration, we use a resnet18 here, but we used a resnet50 to get the full results presented in the main text. --#

Transferability

In this section, we show how to use our freshly trained model to label images that were taken in another study site in the Ain county, and not used to train our model. First, we get the path to the images.

fls <-list.files(path = "pix/pixAin", full.names = TRUE, recursive = TRUE)

Then we carry out prediction, and compare to the truth.

predicted <-character(3) categories <-interp$vocab %>% str_replace_all ("[[:punct:]]", " ") %>% str_trim() %>% str_split(" ") %>%

Figure 2 :Figure 3 :

 23 Figure2: Confusion matrix comparing automatic to manual species classifications. Species that were predicted by our model are in columns, and species that are actually in the images are in rows.

Figure 4 :

 4 Figure 4: Marginal occupancy probabilities for all three species, lynx, roe deer and chamois). Parameter estimates are from a multispecies occupancy model using either the ground truth dataset (in red) or the classified dataset (in blue-grey).

Figure 5 :

 5 Figure 5: Lynx occupancy probability conditional on the presence or absence of its preys (roe deer and chamois). Parameter estimates are from a multispecies occupancy model using either the ground truth dataset (in red) or the classified dataset (in blue-grey).

 learn <-cnn_learner(dls = dls, arch = resnet18(),

Table 1 :

 1 Species identified in the Jura and Ain study sites with samples size (n). Only first 10 species with most images are shown.

					B. Ain county
					46.10°N
	A. Jura county		
	46.80°N				46.05°N
	46.75°N				46.00°N
	46.70°N			
					45.95°N
	46.65°N			
					45.90°N
	46.60°N			
					45.85°N
	5.8°E	5.9°E	6.0°E	6.1°E
					45.80°N
					5.35°E 5.40°E 5.45°E 5.50°E 5.55°E 5.60°E 5.65°E 5.70°E
		Figure 1: Study area, grid and camera trap locations.
		Species in Jura study site	n Species in Ain study site	n
		human			31644 human	4946
		vehicule			5637 vehicule	4454
		dog			2779 dog	2310
		fox			2088 fox	1587
		chamois			919 rider	1025
		wild board			522 roe deer	860
		badger			401 chamois	780
		roe deer			368 hunter	593
		cat			343 wild board	514
		lynx			302 badger	461

Table 2 :

 2 Model training performance. Images from the Jura study site were used for training.

	species	precision recall
	badger	0.78	0.88
	red deer	0.67	0.21
	chamois	0.86	0.81
	cat	0.89	0.78
	roe deer	0.67	0.81
	dog	0.78	0.84
	human	0.99	0.79
	hare	0.32	0.52
	lynx	0.87	0.95
	fox	0.85	0.90
	wild boar 0.93	0.88
	vehicule	0.95	0.98

Table 3 :

 3 Model transferability performance. Images from the Ain study site were used for assessing transferability.

		precision recall
	badger	0.71	0.89
	rider	0.79	0.92
	red deer	0.00	0.00
	chamois	0.82	0.08
	hunter	0.17	0.11
	cat	0.46	0.59
	roe deer	0.67	0.86
	dog	0.77	0.35
	human	0.51	0.93
	hare	0.37	0.35
	lynx	0.77	0.89
	marten	0.05	0.04
	fox	0.90	0.53
	wild board	0.75	0.94
	cow	0.01	0.25
	vehicule	0.94	0.51

our model performed poorly for chamois with 8% recall (Table

Table 4 :

 4 Species considered, and number of images with these species in them.

	Keywords	n
	humain	143
	vehicule	135
	renard	58
	sangliers	33
	chasseur	17
	chien	14
	lynx	13
	chevreuil	13
	chamois	12
	blaireaux	10
	chat	8
	lievre	4
	fouine	1
	cavalier	1

Table 5 :

 5 Sample size (n) for the training and validation datasets. Now we are ready to train our model. Again, for the sake of illustration, we use only 2 epochs here, but used 20 epochs to get the full results presented in the main text. With all pictures and a resnet50, it took 75 minutes per epoch approximatively on a Mac with a 2.4Ghz processor and 64Go memory, and less than half an hour on a machine with GPU. On this reduced dataset, it took a bit more than a minute per epoch on the same Mac. Note that we save the model after each epoch for later use.

	dataset	category	n
	training	humain	114
	training	vehicule	108
	training	chamois	9
	training	blaireaux	8
	training	sangliers	26
	training	renard	46
	training	chasseur	13
	training	lynx	10
	training	chien	11
	training	chat	6
	training	chevreuil	10
	training	lievre	3
	validation humain	29
	validation vehicule	27
	validation chamois	3
	validation blaireaux	2
	validation sangliers	7
	validation renard	12
	validation chasseur	4
	validation lynx	3
	validation chien	3
	validation fouine	1
	validation chat	2
	validation chevreuil	3
	validation lievre	1
	validation cavalier	1

 We may dig a bit deeper in training performances by loading the best model, here model_1.pth, and display some metrics for each species.We may extract the categories that get the most confused.

	## ##	(downsample): Sequential((1): Sequential(
	## ##	(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False) (0): AdaptiveConcatPool2d(
	## ##		(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (ap): AdaptiveAvgPool2d(output_size=1)
	## ##) (mp): AdaptiveMaxPool2d(output_size=1)
	## ##))
	## ##	(1): BasicBlock((1): Flatten(full=False)
	## ##	(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
	## ##	(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): Dropout(p=0.25, inplace=False)
	## ##	(relu): ReLU(inplace=True) (4): Linear(in_features=1024, out_features=512, bias=False)
	## ##	(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (5): ReLU(inplace=True)
	## ##	(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (6): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
	## ##) (7): Dropout(p=0.5, inplace=False)
	## ##) (8): Linear(in_features=512, out_features=12, bias=False)
	# 0 ## ## ## 1 ## ##) one_cycle (6): Sequential(2.447199) 1.736201 (0): BasicBlock(0.850911 0.666055 ## ## (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) 0.760417 0.239583 01:24 0.781250 0.218750 01:25 ## interp <-ClassificationInterpretation_from_learner(learn) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ## interp$print_classification_report() (relu): ReLU(inplace=True) epoch train_loss valid_loss accuracy error_rate ## 1 0 ## (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 2.447199 0.8509111 0.7604167 0.2395833 ## 2 1 1.736201 0.6660554 0.7812500 0.2187500 ## (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ## (downsample): Sequential(interp %>% most_confused()
	learn$load("model_1") ## Sequential(## (0): Sequential(## (0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) ## (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ## (2): ReLU(inplace=True) ## (3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) ## (4): Sequential(## (0): BasicBlock(## (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ## (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ## (relu): ReLU(inplace=True) ## (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ## (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ##) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ##) (relu): ReLU(inplace=True) ##) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ## (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) ## (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (0): BasicBlock(## (relu): ReLU(inplace=True) (5): Sequential(## (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)) ## (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)) ## (1): BasicBlock((bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ##) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ##) (relu): ReLU(inplace=True) ## (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ## (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False) (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ## (downsample): Sequential((1): BasicBlock(## (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)) ## (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False) ## ## V1 V2 V3 (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ## ## humain vehicule 4) ## ## chasseur humain 3) ## ## blaireaux renard 1 (1): BasicBlock(## ## blaireaux sangliers 1 (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ## ## chat renard 1 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ## ## chat sangliers 1 (relu): ReLU(inplace=True) ## ## chevreuil chien 1 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ## ## chevreuil renard 1 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ## ## chien chamois 1) ## ## chien sangliers 1) ## ## humain chasseur 1 (7): Sequential(## ## lievre renard 1 (0): BasicBlock(## ## renard blaireaux 1 (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) ## ## renard sangliers 1 (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ## ## sangliers renard 1 (relu): ReLU(inplace=True) ## (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ## vehicule humain 1

Table 6 :

 6 Comparison of the predictions vs. ground truth. %>% as.integer() -> index # extract relevant info predicted[i] <-categories[index + 1] # match it with categories } data.frame(truth = c("lynx", "roe deer", "wild boar"), prediction = predicted) %>% kable(caption = "Comparison of the predictions vs. ground truth.") %>% kable_styling()

	truth	prediction
	lynx	chevreuil
	roe deer	chamois
	wild boar sangliers
	unlist()	
	for (i in 1:length(fls)){	
	result <-learn %>% predict(fls[i]) # make prediction
	result[[3]] %>%	
	str_extract("\\d+")	

Acknowledgments

We warmly thank Mathieu Massaviol, Remy Dernat and Khalid Belkhir for their help in using GPU machines on the Montpellier Bioinformatics Biodiversity platform, Julien Renoult for helpful discussions, Delphine Dinouart and Chloé Quillard for their precious help in manually tagging the images, and Vincent Miele for having inspired this work, and his help and support along the way. We also thank the staff of the Federations of Hunters from the Jura and Ain counties, hunters who helped to find locations for camera traps and volunteers who contributed in collecting data. Last, we thank Auvergne-Rhône-Alpes Region, Ain and Jura departmental Councils, The French National Federation of Hunters, French Environmental Ministry based in Auvergne-Rhone-Alpes and Bourgogne Franche-Comté Region and the French Office for Biodiversity for funding the Lynx Predator Prey Program. This work was also partly funded by the French National Research Agency (grant ANR-16-CE02-0007).

files) is available from https://github.com/oli viergimenez/computo-deeplearning-occupany-lynx

Session information

R version 4. 1.0 (2021-