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Abstract 15 

Areas exhibiting high levels of predations on livestock generate conflicts between humans 16 

and large carnivores. Managers generally seek to identify these hotspots, in order to diagnose 17 

the causes that lead to hotspot formations and to provide financial or technical support to the 18 

involved livestock owners. When locating depredation hotspots, previous studies have not 19 

adjusted for livestock availability, making it difficult for managers to discriminate hotspots 20 

resulting from underlying livestock clusters from those due to other factors such as 21 

environmental factors. We studied hotspots of wolf depredation on sheep in France from the 22 

beginning of the natural wolf recolonisation in 1994 up to 2018. For each year, we applied the 23 

Ripley’s K-function and Ripley’s Kinhom to determine the general depredation spatial pattern 24 

and the Kulldorff statistic to locate depredation hotspots. We showed that omitting livestock 25 

availability in these analyses led to flawed inference about the depredation pattern, and 26 

resulted in a substantial number of unidentified hotspots, including pastoral surfaces with low 27 
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sheep availability. Our methodology provides reliable information for managers to understand 28 

the depredation pattern over space and time and to allocate resources.  29 

Keywords 30 

Human-carnivore conflict, depredation hotspot, conservation resource allocation, gray wolf, 31 

clustering analysis 32 

1. Introduction 33 

Predation on domestic prey by large carnivores, hereafter depredation, is the main driver of 34 

conflicts between humans and large carnivores (Lute et al., 2018). The financial and social 35 

costs associated to depredations reduce acceptance of these species and lead to retaliatory 36 

killings (Abade et al., 2014). Understanding the spatial and temporal patterns of depredation 37 

is a major challenge in large carnivore conservation to mitigate current conflicts and prevent 38 

future ones (Miller, 2015). To do so, two complementary approaches can be applied, namely 39 

the spatial correlation analysis and risk modelling. The spatial correlation analysis quantifies 40 

the level of clustering or regularity (i.e. repulsion) of a depredation pattern (Baddeley et al., 41 

2015; Hoffmann et al., 2019) and enables the identification of hotspots or coldspots where 42 

events are unusually aggregating or scarce, respectively. Risk modelling aims at estimating 43 

the spatial risk of depredation, by quantifying the relationship between ecological or non-44 

ecological features and depredation numbers or occurrences (Miller, 2015).  45 

The spatial correlation analysis is often presented as a preliminary step to risk modelling and 46 

as of limited interest if applied alone (Gastineau et al., 2019; Hoffmann et al., 2019). This 47 

may explain why risk modelling is more popular (e.g. Bradley & Pletscher, 2005; Fowler, 48 

Belant, & Beyer, 2019) than spatial correlation analyses in the scientific literature. However, 49 

risk models only reflect the depredation-factor relationships at a given point in time and 50 
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space. These relationships may evolve because predator-prey systems are dynamic and 51 

carnivores can adapt their predation behaviour according to environmental or livestock 52 

management changes (Miller, 2015). This is especially true for (re)colonising large carnivore 53 

populations of plastic species such as the grey wolf (Canis lupus) which can embrace a large 54 

range of habitats (Llaneza et al., 2012; Mech and Boitani, 2003). Risk models developed for 55 

this species were either restricted to a unique region and type of habitat (e.g. Clark et al., 56 

2020) or showed a low predictive power when applied to habitats that differ from those 57 

originally used in the analysis (Hanley et al., 2018). Therefore, the outcomes of risk models 58 

are hardly transposable to other areas or on long-term periods, which makes their adoption by 59 

managers difficult (Miller, 2015). In contrast, information about current or past hotspot 60 

locations provided by spatial correlation analyses can directly help managers when allocating 61 

conservation resources such as subsidies of preventive measures or when investigating the 62 

causes of depredation in situ. Prioritising conservation efforts on depredation hotspots is 63 

indeed recommended as recurrences of high levels of attacks in the same areas are likely to 64 

trigger negative attitudes (Stahl et al., 2001).  65 

So far, several analyses of spatial correlation have been developed to identify depredation 66 

hotspots. The simplest one consists in defining an arbitrary threshold for a selected indicator 67 

like the number of depredations which, if reached, turns the spatial unit into a hotspot. Units 68 

can be administrative areas (e.g. Dhungana et al., 2019) or simple shapes like circles (Stahl et 69 

al., 2001). To avoid arbitrary thresholds, some studies have applied spatial statistical analyses 70 

(e.g. Gastineau et al., 2019; Hoffmann et al., 2019; Packer et al., 2019) where depredation 71 

events are considered as a spatial point pattern, i.e. a dataset of observed spatial locations of a 72 

biological process (Baddeley et al., 2015). The areas exhibiting significantly more 73 

depredation events than expected under Complete Spatial Randomness (CSR) are statistically 74 

identified as hotspots. To gain understanding of the biological process, the spatial statistical 75 
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analyses can also be conducted to determine the summarised spatial structure of the pattern, 76 

i.e. the range of distances over which the pattern generally exhibits clustering, randomness or 77 

regularity (Baddeley et al., 2015), as in Kushnir et al. (2014). 78 

 79 

While studies on depredation risk modelling generally controlled for spatio-temporal 80 

livestock availability (e.g. Balbuena-Serrano et al., 2021; Fowler et al., 2019), quantitative 81 

studies of spatial correlation did not. The reason was that the statistical method they used did 82 

not allow it or because the relevant data were not available. Yet the spatial pattern of 83 

depredation is inherent to livestock risk exposure. Not only are conflicts exclusive to areas 84 

where carnivore and livestock distributions overlap, but they are also dependent on livestock 85 

availability, which is itself a by-product of livestock counts and time spent in a specific area. 86 

If livestock availability is ignored, it is difficult to disentangle the hotspots based on high 87 

levels of livestock availability from the hotspots where livestock densities are low but 88 

predation rates disproportionally high. In the latter cases, conflicts may be favoured by factors 89 

linked to, e.g., the environment, the predator or the husbandry practices which can be 90 

identified and managed to some extent.  91 

The grey wolf has been naturally recolonising France since the early 1990s from the Italian 92 

Apennines. Since then, wolves have been expanding and densifying in the south-east part of 93 

France (Louvrier et al., 2018). The recolonisation has come along with a gradually increasing 94 

number of depredations, with more than 3,000 attacks on livestock in 2018, 90% of wolf 95 

attacks being on sheep (Ovis aries). French authorities have so far focused on hotspots to 96 

manage the conflict by subsidising preventive measures according to the level and recurrence 97 

of depredation events at the town level (Ministère de l’Agriculture et de l’Alimentation, 98 

2019), but without accounting for sheep availability at risk to identify hotspots.  99 
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Here, we aimed at conducting spatial statistical correlation analyses of wolf predations on 100 

sheep in south-east France, while accounting for sheep risk exposure. First, we determined the 101 

summarised spatial structure of the depredation pattern and second, we located the significant 102 

depredation hotspots. We compared how the adjustment for sheep availability in space and 103 

time affected the results. We conducted annual analyses, from 1994 to 2018, to study the 104 

temporal variations in depredation patterns and in hotspot locations throughout wolf 105 

recolonisation. We also explored the depredation patterns at a local scale, within the historic 106 

area of wolf recolonisation. The aims of the local scale analysis were to increase perceptibility 107 

of wolf territorial behaviour in the results, and to observe if years of wolf presence changed 108 

the depredation pattern over time compared to the regional scale where the colonisation 109 

process was still ongoing. Finally, we discuss the management implications of our results. 110 

2. Materials and methods 111 

2.1 Study area and study period  112 

The study area covered the two south-east regions of France, Provence-Alpes-Côte-d’Azur 113 

and Auvergne-Rhône-Alpes, and included all the French Alps and the east part of Massif 114 

Central mountains (102 483 km², Fig. A.1). Apart from the highest altitudes which are 115 

without forests, habitats range from bush to coniferous forest under Mediterranean climate in 116 

the south, to mixed forest in the north and the east.  117 

We analysed the summarised spatial structure of the depredation pattern at two scales of the 118 

study area. First, the analyses were applied over the whole study area, i.e. the regional scale. 119 

Second, the analyses were applied over a sub-area of the study area, located in the very south-120 

east of the study area (2 146 km², Fig. A.1), i.e. the local scale. The local scale overlapped the 121 

Mercantour National Park and its surroundings (hereafter ‘MNP’), which is a mountainous 122 
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area characterised by a succession of alpine vegetation levels along a wide altitudinal range, 123 

from 600 to 3 200 m, and by an important pastoral activity for meat production. The MNP is 124 

the oldest place where wolves and pastoralism are co-occurring in the country since wolf 125 

recolonisation in the 1990’s from Italy. 126 

In accordance with wolf biology, we defined the annual periods over which the analyses were 127 

applied as biological years y, starting from the 1st of April of year y-1 (i.e. wolf pup birth) to 128 

the 31st March of year y. The whole study period covered biological years (hereafter, ‘years’) 129 

from 1995 to 2018.  130 

2.2 Depredation records 131 

Approximately three quarters of the depredations occurred between June and October, when 132 

most of sheep flocks were grazing in pastures. Up to 2019, the French Ministry of Ecology 133 

compensated for any killed farmed animal for which wolf responsibility could not be 134 

discarded, regardless of preventive measures. Each claim was controlled and checked in the 135 

field by an accredited governmental agent who used a standardized protocol (Duchamp et al., 136 

2012). Therefore, most if not all depredations were reported if noticed, and the risk of false 137 

claims was low. We restricted the clustering analyses to depredations on sheep only as they 138 

constituted 90% of depredations on livestock. An event of depredation corresponded to at 139 

least one killed or wounded sheep by wolves. Because grazing activity may extend outside the 140 

official pastoral limits, or because of geolocation approximations, some depredation events 141 

were not located inside the geolocated pastoral surfaces (22% of the annual dataset on 142 

average). We excluded the depredations farther away from 500 meters of any pastoral surface 143 

(10% of the annual dataset on average) and assigned the remainder to their nearest pastoral 144 

surface.  145 
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2.3 Wolf distribution 146 

The Wolf-Lynx French Network managed by the French Biodiversity Agency is in charge of 147 

the national wolf monitoring in France. Its field experts are trained to opportunistically collect 148 

presence signs all year along, such as biological samples (mainly faeces, combined with 149 

genetic analysis), tracks or direct observations, which are geolocated and validated according 150 

to a standardized protocol (Duchamp et al., 2012; Louvrier et al., 2018). The annual wolf 151 

distribution was determined by combining the annual presence signs and all wolf depredations 152 

(i.e. on any type of livestock, including all those located outside the pastures) within the study 153 

area. Wolf presence during year y was reported on a 10x10 km cell grid, and defined as the 154 

collection of at least one presence sign or one depredation in the cell from y-1 to y-3 and from 155 

y-2 to y (see Marboutin et al., 2011). The use of depredation data to estimate the wolf 156 

distribution was necessary to identify the pastures that were at the edges of the wolf 157 

recolonisation area. Indeed, depredations (along with visual observations) are generally the 158 

first detections of wolves that settle in newly recolonized areas in France (Duchamp et al., 159 

2012).  160 

2.4 Spatio-temporal sheep availability 161 

Around 1 500 000 sheep are bred for meat or milk production each year in the study area 162 

(IDELE, 2018). During the summer period, a large part of these flocks becomes transhumant 163 

and moves to high-altitude pastures in the Alps. Otherwise, sheep are grazing in low- or mid-164 

altitude pastures around farms. Sheep are in sheds during the whole winter except in the south 165 

where climate is mild (Gervasi et al., submitted).  166 

Two georeferenced censuses of the pastoral surfaces in the study area were carried out in 167 

1996-1997 and in 2012-2014 by the National Research Institute of Science and Technology 168 

for the Environment and Agriculture (IRSTEA). For each pastoral surface, information about 169 
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the grazing livestock count per species and the annual number of grazing days was included. 170 

One or several herds, of one or multiple livestock species, could feed on a pastoral surface. 171 

We restricted the dataset to pastoral surfaces with grazing sheep, regardless of whether other 172 

species of livestock were present (Fig. B.1). For both censuses, the spatio-temporal sheep 173 

availability was inhomogeneous across the study area (Fig. B.1), particularly for grazing time 174 

between the north and the south of the regional scale due to climate differences and resulting 175 

grass phenology. The pastoral surfaces of the first census and of the second census were 176 

respectively 2.7 km² and 1.9 km² on average, and they hosted 606 sheep (sd=649) and 516 177 

sheep (sd=547), during 146 days (sd=96) and 202 days (sd=96) per year on average.  178 

For each year y, we identified the set of pastoral surfaces at depredation risk for both scales by 179 

selecting the pastoral surfaces which overlapped, even partially, with the wolf distribution. 180 

For years between 1995 to 2005, we used the 6 488 pastoral surfaces with sheep from the 181 

oldest census, and for years between 2006 to 2018, we used the 12 438 pastoral surfaces with 182 

sheep from the latest census. The oldest census did not include pastures in the west of the 183 

study area (i.e. outside the Alpine area), which explains the lower number of pastures 184 

compared to the latest census. However, the wolf distribution from 1995 to 2005 was mainly 185 

restricted to the east of the study area, within the Alpine area (Fig. B.2), where pastoral 186 

information in the oldest census was available. For example, using the latest census instead of 187 

the oldest census only provided a difference of 6.7% on average in the numbers of pastoral 188 

surfaces at depredation risk at the regional scale from 1995 to 2005. Thus, we considered this 189 

gap was of little impact.  190 

IRSTEA did not carry out the census process every year for two reasons. First, the census 191 

process was the result of a long period of work, exceeding a year of work. The field work, 192 

which consisted in meetings with local contact persons, corresponded to 750 full working 193 

days on its own for the second census (F. Bray, pers. com.). Second, the use of pastoral 194 
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surfaces by farmers was relatively stable over time, because the environmental characteristics 195 

(area, topography, type of vegetation, weather…) of a pasture restricted the herd size the 196 

pasture could host and the time of grazing. Moreover, the large but limited number of pastures 197 

caused hard competition between livestock owners for access to pastoral resources. Livestock 198 

owners tended to secure their access by renting or buying these surfaces for a long period of 199 

time (C. Duchamp, pers. com.). For all these reasons, we assumed the information on spatio-200 

temporal sheep distribution of a census was valid for several years before and after the census.  201 

2.5 Analysis 1: Summarised spatial structure of wolf depredations  202 

For each year y, we analysed at the regional and local scales the summarised spatial structure 203 

of the wolf depredation pattern considering sheep availability by using Ripley’s Kinhom 204 

(Baddeley et al., 2015). We used the package spatstat (Baddeley and Turner, 2005) in R 4.0.2 205 

(R Core Team, 2019) to perform the analysis. 206 

First, we simulated the expected depredation pattern under CSR considering sheep 207 

availability. The simulated pattern was composed of n points called ‘controls’, in opposition 208 

to the n annual observed depredations called ‘cases’. The distribution of controls was 209 

simulated on a grid of 200x200 m cells over the pastoral surfaces at depredation risk, 210 

according to an inhomogeneous Poisson Point Process (PPP). In this model, the number of 211 

controls falling into a cell g was expected to be equal to the intensity !(#) defined as: 212 

!(#) = exp(a + b	 × log	(121!) + c	 × log	(4567!)) 213 

where 121! and 4567! were the numbers of sheep and of grazing days of the pastoral surface 214 

u covered by g, and a, b and c were model parameters to be estimated. Covariates were log-215 

transformed because of their skewed distributions. Thus, the controls were more likely to fall 216 
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into the cells covering pastoral surfaces with high numbers of 121! and 4567!. For each year, 217 

we simulated 499 control patterns through this model. 218 

Second, we computed Kinhom for the pattern of n cases. This function drew a circle of radius r 219 

around each depredation i covering more or less neighbouring depredations {j}. Then, the 220 

function summed the values 1 (!(#")!9##:)⁄   for all pairs of depredations i-j within this 221 

circle, !(#") and !(##) being the intensity values of the cell(s) containing i and j respectively. 222 

Because the unit of measurement of ! was in ind/cell (i.e. ind/0.04km²), Kinhom returned a 223 

surface for each tested r. If the pattern was randomly distributed considering sheep 224 

availability, the surface should equal the surface of the circle, <=$. Consequently, at a specific 225 

r, if the Kinhom value of the observed depredation pattern was higher or lower than <=$, we 226 

could conclude that the depredations were respectively forming hotspots or coldspots of 227 

radius r. A large set of continuous radiuses r was tested. 228 

However, the smaller the dataset, the larger the likelihood of differences from the expected 229 

number of points within a circle, even if the dataset has a random pattern. Therefore, a Kinhom 230 

value which differed from <=$ was not necessarily the result of a non-randomly point pattern, 231 

but could be due to stochastic effects. To take this into account, we also computed Kinhom for 232 

the 499 control patterns and selected the 50th-lowest and 50th-highest values to build a ‘control 233 

envelope’. For a specific r, if the observed Kinhom was higher (or lower) than the upper (or 234 

lower) envelope limit, the depredations were significantly clustered (or regular, i.e. tended to 235 

avoid each other) at this distance considering sheep availability. The larger the differences 236 

with the envelope, the more aggregated or regular the pattern. 237 

We also annually applied the Ripley’s K-function at the regional scale. The PPP of the K-238 

function was homogeneous. Hence, the number of controls falling into the cells was expected 239 

to be equal over the whole analysis area (Baddeley et al., 2015). We tested two possibilities to 240 
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define the grid of 200x200 m cells. First, we simulated the same grid over the pastoral 241 

surfaces at depredation risk as in the Kinhom analysis, in order to simulate a situation for which 242 

sheep distribution was known, but sheep availability was not. Second, we simulated the grid 243 

over the wolf distribution, to simulate a situation for which pastoral data were totally 244 

unavailable.  245 

2.6 Analysis 2: Wolf depredation hotspot location 246 

For each year y, we located at the regional scale the significant wolf depredation hotspots by 247 

applying the first version of the Kulldorff statistic (Kulldorff, 1997) which adjusts for 248 

spatially inhomogeneous population at risk. We used the package SpatialEpi (Kim and 249 

Wakefield, 2018) in R 4.0.2 (R Core Team, 2019) to perform the analysis. 250 

First, we defined all the possible zones Z which could be later identified as hotspot by the 251 

Kulldorff statistic. We defined the pastoral surface as the smallest possible zone Z. Then, a 252 

circle was put on the centroid of each pastoral surface, with a progressively increasing radius. 253 

Each time the growing circles encompassed the centroid of an adjacent pastoral surface, a new 254 

zone Z was defined. The sheep availability of a zone Z was calculated as the sum of the sheep 255 

availability >(?) of all the pastoral surfaces u whose centroids were in Z. We determined the 256 

limit size of a zone Z as following: a zone Z could not include more than 5% of the sum of 257 

>(?) of all pastoral surfaces. Otherwise, the hotspots were too vast to be informative 258 

(Kulldorff, 1997). Because information on the pastoral area was omitted in this analysis, we 259 

included this information in the definition of the sheep availability of a pastoral surface >(?), 260 

as >(?) = 	121! × 4567! ×	@=7@!, where @=7@! was the surface u in km². Therefore, the 261 

larger a pastoral surface, the larger its risk of depredation. We indeed considered that two 262 

flocks of the same size and grazing time should have a different depredation risk depending 263 

on the size of their pastures. Farmers generally used the entire pasture for their flock, either by 264 
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dividing the flock into smaller flocks or by moving the flock within the pasture. Increasing the 265 

pasturing area should make the flock more exposed to depredation by increasing the risk of 266 

encounters with wolves. In addition, we restricted the analysis to the depredated pastoral 267 

surfaces. The inclusion of pastoral surfaces without depredation into the analysis would 268 

indeed have increased sheep availabilities of certain zones, especially zones where depredated 269 

pastoral surfaces were surrounded by pastoral surfaces without depredation. This would have 270 

reduced the capacity of the analysis to identify such zones as hotspots. 271 

Second, the Kulldorff statistic modelled the total number of observed depredations n as: 272 

A	~	Poisson(1% 	× 	>(? ∈ H) + I% 	× >(? ∉ H)) 273 

with the probabilities 1% and I% that a depredation event occurred within or outside Z, 274 

respectively, and >(? ∈ H) and >(? ∉ H)	the sum of >(?) inside and outside Z, respectively. 275 

For each Z, the Kulldorff statistic tested the null hypothesis 1% =	I% (M0) and the alternative 276 

hypothesis 1% > I% (MA). It calculated the likelihood ratio LM(H) as L(H) L&⁄ . L(H) 277 

corresponded to the result of the likelihood function L of the model under MA for the zone Z. 278 

L& corresponded to the result of the likelihood function L of the model under M0, which was 279 

the same for all zones because under M0 the model can be reduced to A	~	Poisson(1 ×280 

∑>(?)). The zones Z for which MA was the most likely had the highest LM(H).  281 

Third, we simulated 499 sets of randomly distributed n controls over the depredated pastoral 282 

surfaces, proportionally to their sheep availabilities. The second step was repeated for each 283 

control set, to eventually compute the control distribution of the highest likelihood ratio 284 

LM(H). If the observed highest LM(H) were among the top 5% of this control distribution, 285 

then the corresponding zones were  significant hotspots.  286 
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We repeated this analysis with a simulated homogeneous sheep availability to show the 287 

discrepancies when ignoring prey availability: each depredated pastoral surface had then a 288 

sheep availability equal to the mean observed sheep availability of the depredated pastoral 289 

surfaces.  290 

3. Results 291 

3.1 Trends in depredation risk and observed depredations 292 

We collected 25 220 wolf presence signs and 18 764 verified depredations on any type of 293 

livestock, reported from 1995 to 2018 in the study area. The resulting estimated annual wolf 294 

distribution expanded along the years, and reached 40% of the study area in 2018 (Fig. A.2A; 295 

Fig B.2). The annual proportion of pastoral surfaces at depredation risk within the total set of 296 

pastoral surfaces increased at the regional scale, reaching 70% in 2018. This overlap 297 

generated more and more depredations on sheep per year, starting from 49 depredation events 298 

in 1995 to 2 289 in 2018. However, the annual proportion of depredated pastoral surfaces 299 

among all surfaces at risk remained quite stable over time at the regional scale, with a mean of 300 

18%. Most of these pastoral surfaces experienced one or two depredations per year (Fig. B.3). 301 

One depredation event corresponded on average to 3.8 wounded or killed sheep (sd=0.3) 302 

when removing indirect mortalities (e.g. fall from cliff). 303 

The situation at the local scale differed from the regional scale (Fig. A.2B). The majority of 304 

the local scale was recolonised by wolves from 2003. Almost all the pastoral surfaces were at 305 

depredation risk from 2003. Most depredated pastoral surfaces also experienced one or two 306 

depredations per year (Fig. B.3). Because the number of pastoral surfaces at depredation risk 307 

quickly stabilised, the trend of the depredation numbers followed the trend of the proportion 308 

of depredated pastoral surfaces.  309 
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3.2 Analysis 1: Summarised spatial structure of wolf depredations  310 

At the regional scale, the Kinhom function identified significant aggregation of the depredations 311 

for all years, with some Kinhom values higher than the control envelope (Fig. 1; Fig. B.4). The 312 

control envelope was thinner with time as the depredation pattern included more and more 313 

events. However, depending on years, the range of radiuses r for which aggregation was 314 

significant varied, as well as the aggregation intensity (i.e. difference between the observed 315 

and control envelope values at the same r). We identified four time periods.  316 

The first period ranged from 1995 to 1999. In 1995, aggregation was significant up to 20 km. 317 

The depredation pattern exhibited randomness beyond. From 1996, aggregation was 318 

significant for the whole range of computed radiuses r, up to 15-30 km around depredations. 319 

Aggregation tended to intensify with r, especially in 1996 and 1998. This suggested that the 320 

depredation pattern showed no particular spatial structure, except in 1995. During the second 321 

period from 2000 to 2003, aggregation intensity decreased at the largest computed r values. 322 

From 2001, the Kinhom values merged with the control envelope between 40 and 50 km, 323 

suggesting a locally emerging clustered pattern. During the third period from 2004 to 2012, a 324 

weak significant aggregation was only observed over the lowest r values, and turned into 325 

significant repulsion between 15 and 35 km. This was typical of a clustered pattern, with 326 

hotspots producing coldspot interzones (Hoffmann et al., 2019). Finally, the last period from 327 

2013 to 2018 showed significant aggregation over 25 to 40 km followed by randomness 328 

(except 2014 with continuous aggregation). In certain years, a weak repulsion was observed at 329 

the largest r values. Aggregation intensity was greater in 2013 compared to 2012, but it 330 

tended to decrease the following years, which brought the depredation pattern closer to 331 

randomness with time.  332 
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Using Kinhom or the K-function provided comparable results only during the first period. But, 333 

from 1999-2000, the differences between the analysis of Kinhom and the two analyses of the K-334 

function increased (Fig. 1; Fig. B.4). The first analysis with the K-function which considered 335 

sheep availability as homogeneous across pastoral surfaces identified the typical hotspot 336 

structure (i.e. aggregation followed by repulsion) only in 2009 and 2010 with a radius of 30 337 

and 40 km respectively. The other years, aggregation was significant for all values of r and 338 

always more intense than the one obtained through Kinhom. When the analysis grid was only 339 

based on the wolf distribution, the K-function analysed the pattern over larger values of r than 340 

the previous analyses because isolated distribution cells in the west of the study area could 341 

sporadically appear without overlapping with pastoral surfaces. This analysis only identified 342 

significant aggregation which, in most years, intensified with r.    343 

At the local scale, the Kinhom function provided two main findings. First, from 1995 to 2011, 344 

the analysis identified significant aggregation over 12 to 17 km, occasionally followed by 345 

randomness at large radiuses (Fig. B.4). Repulsion was never observed, except in 2004 where 346 

depredations seemed clustered into three single zones (Fig. B.2). Second, the aggregation 347 

intensity was generally decreasing with time from 2013, even though the control envelopes 348 

were of equivalent thickness. The pattern tended to randomness for all values of r from 2015, 349 

with almost complete randomness observed in 2016. Therefore, the depredations were 350 

increasingly widespread at the local scale and were no longer significantly clustering in the 351 

last years of the study period, long after the full recolonisation of the MNP by wolves.  352 

3.3 Analysis 2: Wolf depredation hotspot location 353 

The number of hotspots identified by the Kulldorff statistic adjusting for sheep availability 354 

tended to increase over time in the study area, from 2 hotspots in 1995 to 32 in 2018 (Fig. 355 

2A). The annual proportion of depredated pastoral surfaces into hotspots was higher for the 356 
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period 2012-2018 (mean=29.2%, sd=3.8%) than for the period 1995-2011 (mean=23.5%, 357 

sd=5.9%) (Fig. 2B). Hotspots were of various sizes but generally did not exceed 50 km² of 358 

pastoral area (Fig. 2C). The average number of pastoral surfaces within hotspots tended to 359 

increase with time, from 3.0 in 1995 (sd=0) to 7.8 in 2018 (sd=11.5). Hotspots could be 360 

located at different places within the study area (Fig. 3A; Fig. B.5). They could be sporadic, 361 

appearing for one year. But others could persist over time, such as in the MNP where hotspots 362 

were present during the whole study period, and in the south for the period 2013-2018.  363 

In contrast to the analysis adjusting for sheep availability (hereafter ‘first Kulldorff analysis’), 364 

the results of hotspot identification changed in the analysis with simulated homogeneous 365 

sheep availability (hereafter ‘second Kulldorff analysis’). For almost all years, the numbers of 366 

hotspots were lower in the second Kulldorff analysis than in the first one (Fig. 2A). The 367 

annual proportion of depredated pastoral surfaces into hotspots was always lower than in the 368 

second Kulldorff analysis and exceeded 20% only in 2014 and 2017 (Fig. 2B). The pastoral 369 

surfaces identified as hotspots in the second Kulldorff analysis were generally identified as 370 

hotspots in the first Kulldorff analysis (e.g. Fig. 3B; Fig. B.5). The unidentified hotspots in 371 

the second Kulldorff analysis generally encompassed small pastoral surfaces where sheep 372 

availability was low as well  as the number of depredations. Thus, annual means of sheep 373 

counts, of grazing time and of depredations of the pastoral surfaces within hotspots were 374 

significantly larger in the second Kulldorff analysis than in the first one (Wilcoxon tests: 375 

P<0.001, α=0.05).   376 

4. Discussion 377 

To reduce the number of depredations in an area, managers seek to act on the factors driving 378 

depredation. Depredations primarily rely on the rate of encounters between predators and 379 

livestock (Mech and Boitani, 2003), and therefore on livestock availability (Balbuena-Serrano 380 
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et al., 2021; Bradley and Pletscher, 2005). The room for maneuver on livestock availability is 381 

however generally limited for managers. Other factors can favour depredations, such as 382 

environmental, husbandry or predator-linked factors, or a combination of these factors 383 

(Fowler et al., 2019). There is therefore a strong interest for managers to easily identify the 384 

areas where the high number of depredations is not only caused by the primary livestock 385 

availability factor, but also by other factors.  386 

 387 

Depredation spatial risk modelling studies have generally integrated livestock availability. 388 

However, the produced risk maps do not allow managers to clearly disentangle between areas 389 

with significant depredation clustering given livestock availability (e.g. Balbuena-Serrano et 390 

al., 2021; Fowler et al., 2019). If adjusted for livestock availability, the depredation hotspot 391 

analysis can allow for such identification. In our case study, we showed that adjusting or not 392 

for livestock availability modified the results, whether it was for the summarised depredation 393 

pattern or the hotspot map. These two analyses are complementary to help managers to 394 

identify the causes favouring depredations.  395 

 396 

The hotspot map provided the locations of areas where investigations in situ can be led to 397 

understand the unexpected high level of depredations. The most straightforward factor to 398 

investigate is husbandry. Generally, detailed husbandry practices or implementation of 399 

preventive measures are not available for spatial statistical analyses, as in our case study. 400 

Because a regional inventory of preventive measures is often difficult if not impossible to put 401 

in place, especially in the long term, it can be necessary to go in the field to check if 402 

preventive measures are implemented, but also suited to the local context. The involved 403 

farmers can receive technical support provided by the public authorities in the implementation 404 

of appropriate preventive tools (Littlewood et al., 2020). Other factors can encompass larger 405 
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spatial scales than the sole pasture (e.g. environmental factors as type of vegetation, or 406 

wolves). Investigation of such factors is difficult if the hotspot definition is based on each 407 

spatial unit without considering the other units, as it is currently done by the French 408 

administration. Our approach has the benefit of identifying groups of spatial units belonging 409 

to the same hotspot, and therefore to facilitate the investigation of large-scale factors. 410 

 411 

The analysis of the summarised depredation pattern can also help to understand the spatial 412 

scale of the depredation pattern, and therefore the scale relevant to management. The hotspot 413 

radiuses were estimated between 12 and 50 km in our Kinhom analysis at the local and regional 414 

scales. This did not match with the 7-8 km wolf territory radius estimated in France through 415 

telemetry and genetic tracking (Duchamp et al., 2012). Therefore, these results suggest that 416 

most of the hotspots encompassed more than one pasture, but also more than one wolf 417 

territory. In other words, the depredation clustering was not linked to one ‘problematic’ wolf 418 

or pack, or one isolated unprotected flock. Instead, these results suggest that a local context 419 

could favour depredations, e.g. a lack of wild preys or environmental conditions making an 420 

efficient guarding difficult (as bushy environments). The Kinhom analysis also showed that 421 

depredation pattern tended to randomise through time. This randomisation pattern did not 422 

seem to be linked to the increase of the area recolonised by wolves, as the randomisation 423 

occurred at the local scale long after wolves recolonised the MNP. The depredation risk 424 

homogenisation among pastoral surfaces could result from the increasing number of farmers 425 

who protected their flocks against wolf depredations during wolf recolonisation (MTES and 426 

MAA, 2018), as suggested by Meuret et al. (2021).  427 

 428 

Besides the identification of the causes favouring depredation, the results provided by the 429 

hotspots maps can help in resource allocation. For example, France currently allocates its 430 
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highest level of subsidies for preventive measures in depredation hotspots. Each year hotspots 431 

are defined as the municipality with a mean of at least 15 depredations over the last three 432 

years, and all its adjacent municipalities. This definition accounts neither for the surface of the 433 

municipality nor for the surface of pastures. This definition creates biases, large 434 

municipalities having higher chances to be identified as hotspots than others (DREAL 435 

Auvergne-Rhône-Alpes et al., 2020). Moreover, relying on three years to define hotspots 436 

prevents the detection of emerging hotspots in time. In our case study, the methodology we 437 

used corrected these biases. Correcting for livestock availability also allowed us to detect 438 

hotspots of pastoral surfaces with low sheep counts and grazing time. The current 439 

administrative definition of hotspots does not account for the size of flocks or the time spent 440 

on pastures. Therefore, hotspots with low livestock availability can remain undetected by the 441 

administration. Yet, the consequences of depredations for the involved livestock owners are 442 

high in these situations because a high proportion of the flock is lost to predation (Stahl et al., 443 

2001).  444 

 445 

Thus, the spatial correlation analyses are powerful tools for large carnivore conservation. 446 

They help to better define priority conservation areas. These areas can receive a specific 447 

attention from managers, whether it is for preventive measures subsidies or for investigating 448 

the effective implementation of these measures, as recommended by Bautista et al., 2019. The 449 

methodology we presented could then optimize the cost-effectiveness of public funds. The 450 

user interface we developed to present the hotspot maps (Fig B.5) should also facilitate the 451 

adoption of the tool by managers.    452 

 453 

For both the Kinhom and the Kulldorff analyses, information about livestock availability was of 454 

paramount importance to detect the depredation pattern and hotspot locations. This 455 
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information is usually hard to obtain, even more at a regional scale. This explains why the 456 

studies on depredation hotspots generally do not adjust for livestock information (e.g. 457 

Hoffmann et al., 2019) or only for livestock distribution (e.g. Gastineau et al., 2019). Here, 458 

our information on livestock availability was limited in time to two censuses which in total 459 

covered a period of 5 years. Limiting our study period to this 5-year period would have been 460 

possible and still informative to show the discrepancies in the results of Kinhom and of the 461 

Kulldorff statistic when adjusting or not for livestock availability. However, the extension of 462 

the use of livestock information to years surrounding the census’ periods brought valuable 463 

information about the dynamics of the depredation pattern. Indeed, grazing time and flock 464 

size are highly constrained by the climate that differs greatly between the north and the south 465 

of the studied area. If it is possible that flocks may have grazed more or less before or after 466 

each census, we do not expect these differences to overcome the benefits of using the pastoral 467 

censuses that allowed the integration of seasonal differences between pastures in the analysis. 468 

 469 

 470 

5. Conclusions 471 

We encourage the use of clustering analyses adjusted for livestock availability in the context 472 

of large predator conservation and of the management of their predations on livestock. 473 

Contrary to the conventional wisdom which relegates clustering analyses to a preliminary step 474 

in risk modelling, the estimation of hotspot locations is a full-fledged decision-making tool. 475 

Hotspots are the first targets for allocation of conservation resources, or for investigation in 476 

situ of the causes favouring depredation. The livestock owners in hotspots can be supported, 477 

financially or technically, to quickly adapt their husbandry practices according to the pastures 478 

they use and the predator they face. Using spatial statistical analyses with Kinhom or with the 479 
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Kulldorff statistic combined with livestock availability data would substantially improve the 480 

reliability of the estimates of depredation pattern and hotspot locations, and therefore the use 481 

of these quantities for conservation.  482 
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Figures 604 

Color should be used for all figures in print. 605 

Figure 1: Results at the regional scale of the Kinhom function (solid yellow line) and of the K-606 

function where the analysis grid was simulated over the pastoral surfaces at depredation risk 607 

(dotted dark blue line) or over the wolf distribution (dotted light blue line), against their 608 

corresponding control envelopes, for years y 1995, 2001, 2010 and 2018. The r distances were 609 

limited in the figure to those computed by the Kinhom function. See Fig. B.4 for all years and 610 

all computed r. 611 
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Figure 2: Descriptive results of the Kulldorff statistic used with the observed heterogeneous 612 

(yellow) or simulated homogeneous (blue) sheep availability, for each year, within the study 613 

area. (A) Number of significant hotspots; (B) Proportion of depredated pastoral surfaces into 614 

significant hotspots in the whole set of depredated pastoral surfaces; (C) Distribution of the 615 

sum of the areas of the pastoral surfaces included into each hotspot (with outliers as black 616 

dots).  617 

 618 
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Figure 3: Locations of depredated pastoral surfaces identified as hotspots (dark colour) or not 619 

(light colour) in the study area in 2017 according to the Kulldorff statistic results adjusted for 620 

the observed heterogeneous (A) or simulated homogeneous (B) sheep availability. Pastoral 621 

surfaces within the same circles belonged to the same hotspot. Pastoral surfaces which were 622 

not depredated (grey) were shown for information but were not used in the statistical analysis. 623 

See Fig. B.5 for all years. 624 
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Supplementary material 626 

Appendix A - Figures 627 

Fig. A.1  ̶  Location of the study area (white) within France, and of the MNP (hatched) within the 628 
study area, from which wolves from Italy recolonised France (black arrows).  629 

 630 

 631 
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Fig. A.2  ̶  Proportion of 10x10km cells of the study area within wolf distribution (solid yellow), 644 
proportion of pastoral surfaces within wolf distribution in the whole set of pastoral surfaces (dotted 645 
light green), proportion of pastoral surfaces with at least one reported wolf depredation on sheep in 646 
the set of pastoral surfaces within wolf distribution (dot-dashed dark green), and number of wolf 647 
depredations on sheep (dashed red) per year in the area. At the A) regional scale, B) local scale.  648 

 649 

 650 

Supplementary material 651 

Appendix B – Interactive figures 652 

Fig. B.1  ̶  Pastoral information of the study area, from the census of 1996-1997 and from the census 653 
of 2012-2014. https://oksanagrente.shinyapps.io/Hotspots-SuppFig1/  654 

Fig. B.2  ̶  Annual distributions of wolf presence, pastoral surfaces at depredation risk and verified 655 
wolf depredations on sheep in the study area between biological years 1995 and 2018. 656 
https://oksanagrente.shinyapps.io/Hotspots-SuppFig2/ 657 
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Fig. B.3  ̶  Annual distributions of the number of wolf depredations on sheep per pastoral surface, at 658 
the regional and local scales between biological years 1995 and 2018. 659 
https://oksanagrente.shinyapps.io/Hotspots-SuppFig3/  660 

Fig. B.4  ̶  Annual results between biological years 1995 and 2018 of the Kinhom analysis and of the two 661 
K-function analyses (one with the analysis grid simulated over the pastoral surfaces at depredation 662 
risk, the other only over the wolf distribution) at the regional and local scales. 663 
https://oksanagrente.shinyapps.io/Hotspots-SuppFig4/  664 

Fig. B.5  ̶  Annual locations between biological years 1995 and 2018 of depredated pastoral surfaces 665 
identified or not as hotspots, according to the Kulldorff statistic used with the observed 666 
heterogeneous sheep availability or the simulated homogeneous sheep availability at the regional 667 
scale. https://oksanagrente.shinyapps.io/Hotspots-SuppFig5/  668 
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