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3.1. Introduction

Ecology may be defined as the study of living organisms in interaction with their
environment. At the heart of this discipline lie two key questions : how many indivi-
duals are there in a population, and where are they ? In other terms, the first question
relates to the dynamics of populations, while the second concerns the distribution of
species. These questions have long attracted the interest of researchers ; for example,
in the early 19th Century, Laplace attempted to estimate the size of the French popu-
lation (Amor6s 2014), while Grinnell, at the start of the 20th Century, focused on a
formalization of the role of species in the operation of ecosystems (Grinnell 1917).

Statistical research in relation to these questions continues to this day, notably
in terms of the analysis of data generated using new technologies (Gimenez, Buck-
land, Morgan, Bez, Bertrand, Choquet, Dray, Etienne, Fewster, Gosselin, Mérigot,
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Monestiez, Morales, Mortier, Munoz, Ovaskainen, Pavoine, Pradel, Schurr, Thomas,
Thuiller, Trenkel, de Valpine and Rexstad 2014). One issue which has attracted parti-
cular attention is the difficulty of observing individuals and species in natural condi-
tions — essentially, a detection problem (Royle and Dorazio 2008). Given the imper-
fections inherent in the detection of individuals and species, variables such as whether
an individual is dead or alive, or whether or not a species is present in a particular
location, are only partially observable ; as such, they constitute hidden variables, in
the sense defined in the introduction to this book.

In this chapter, we shall show how hidden Markov models (HMM) can be used to
develop capture-recapture and occupancy models, traditionally used to study the dyna-
mics of populations and the distribution of species in a context of imperfect detection.
We shall show how the HMM formulation permits the estimation of hidden variables
in two different case studies. The question of population dynamics will be illustra-
ted through an estimation of the prevalence of wolf-dog hybrids in Italy, while the
distribution of species will be illustrated by examining the distribution of wolves in
France.

3.2. Overview of HMMs

Hidden Markov models (HMM) are a class of statistical models, generally used
for analyzing data from systems with temporal dynamics. An ecological process may
be modeled using a state process (or system process) of which the future states are
solely dependent on current states : this is the Markov hypothesis. In an HMM, this
process is not observed directly, but is hidden (latent). Observations are made based
on a state-dependent process, controlled by the subjacent state process. These obser-
vations are essentially considered to be noisy measures of system states with a specific
dependence structure. HMMs are a specific class of state space models with a finite
number of states (Auger-Méthé et al. 2020 ; Gimenez et al. 2012).

In formal terms, an HMM consists of an observed state-dependent process
Y1 Y2 ... YT and a non-observed (hidden) state process Z', Z2,..., ZT. HMMs
are often represented scehmatically in the way shown in Figure 2.1, which highlights
the way in which observations are conditional on states, and illustrates the Markovian
structure of the series of states.

Three components are needed to fully specify an HMM with N states. The first
component is the initial distribution § = (Pr(Z' = 1),...,Pr(Z' = N)) which
combines the probabilities of being in different states at the start of the sequence. The
second component is made up of the probabilities of transition ;; = Pr(Z'T! =
j|Zt = i) between states i and j, generally grouped into an N x N transmission
matrix, I' = (7;;). The third component is the distribution of the collected observa-
tions f(y'|Z" = 1), used to facilitate the calculation of likelihood in a diagonal matrix
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Figure 3.1 — Schematic illustration of a Hidden Markov Model.

of dimension N x N, noted P(y") = diag(f(y'| 2" = 1),..., f(y'|Z" = N)). In this
chapter, only discrete and univariate distributions of observations will be addressed,
but continuous distributions (Mews et al. 2020 ; Choquet et al. 2017) and multivariate
distributions (Choquet et al. 2013 ; Laake et al. 2014 ; Johnson et al. 2016) may also
be used.

The likelihood E( | y1,...,yT) of the unknown parameters () given an obser-
ved sequence (Y'1,. YT) is expressed formally as :
E(a | yla'”ayT) = f9(y17~"7yT)
N N
3 S ol Tl e )
21=1 2T=1
N N T
=2 2 b L H%Hzt
z1=1 T=1 t=1 =

The first step is obtained by applying the law of total probability ; the second step
is a result of the Markovian dependency structure of the model.

The problem lies in the fact that the calculation of the likelihood of an HMM
in this form requires N7 summations, making it time-consuming, if not impossible,
to evaluate. One solution is to use a more efficient method to calculate likelihood.
In this chapter, we have chosen to use the forward algorithm, which draws on the
dependency structure of the model, instead of a the “brute force” approach which
consists of summing all possible series of states.

Using the forward algorithm, likelihood is calculated as a matrix product :
LO]y',....y") =Py )TP(y*) .- - TP(y")IP(y")1

where 1 is a column vector of ones. The complexity of this calculation is linear as
a function of the number of observations, meaning that likelihood can be evaluated
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rapidly in most of the cases encountered in ecology. The parameters 8 of an HMM
can be calculated by maximum likelihood, using optimization routines (such as the
Newton-Raphson method) to maximize likelihood numerically. This is the approach
used here, implemented using R.

Once the parameters have been estimated, the next step is to infer the hidden states
2%, ..., 2T In the context of HMM, this step is known as decoding. In this case, we
use global decoding to look for the series of states (g', ..., g7 ) with the highest joint
probability (this differs from local decoding, in which we search for the most likely
value of z* taken separately). In other terms, we wish to find :

(g',...,97) = argmax Pr(Z' = 2", ..., 27 =27 | 4!, ... yT).
(21,...,2T)
This is a relatively complex optimization problem ; however, it can be solved effi-
ciently using the Viterbi algorithm (Rabiner 1989).

For more details on HMMs in general, see (Zucchini et al. 2016) ; for the ecologi-
cal context, see (McClintock et al. 2020).

3.3. HMM and demographics
3.3.1. General overview

The hidden (or partially hidden) variables encountered in the study of animal popu-
lations are living/dead ; developmental states, which are generally discrete, such as
sexual maturity (Nichols ef al. 1994) ; epidemiological states (Marescot et al. 2018) ;
or social states (Dupont ez al. 2015). These states can be hard to measure in the field.
It is often impossible to track animals in their environment in an exhaustive manner,
i.e. in the way human patients might be monitored in the context of a medical pro-
tocol. Data is often obtained in capture-recapture form, indicating whether or not an
animal has been detected. If an individual is not detected, it may be possble to infer its
state ; if an individual is detected, then its state may be known perfectly or imperfectly.
HMMs are a natural choice for use in these contexts, as they can be used to formalize
the analysis of noisy measures of demographic states.

One example involves the two states “dead” and “alive’, with Z! = V denoting
“alive at time ¢’ and Z* = M “dead at time ¢” (Gimenez et al. 2007). The “dead” state
here is absorbent insofar as an individual cannot leave the state once it has entered it
(except in the context of zombie movies). An illustration of the corresponding HMM
is given in Figure 2.2.

As we have seen, an HMM is defined using three components. The initial distribu-
tion is :
VM
d=(1 0).
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Figure 3.2 — Two-state capture-recapture model expressed in HMM form.

Let ¢ be the probability of survival over an interval of time. The transition probability
matrix is given by :

vV M
S
0 1 M

Finally, the distribution of observations Y? conditional on the states Z* is a Bernoulli
distribution of parameter p, where p is the probability of detection, if Z t=V,ora
Bernoulli distribution of parameter 0 if Z¢ = M :

v M

P(y") _[pyt(l —Op)l“”t 1 _Oyt}.

Thus, if the individual is dead, Z* = M, then the probability of observation is null,
Pr(y' = 1|2 = M) =1 — y* = 0, and the probability of it not being observed is 1,
Pr(yt = 0|72 = M) = 1 —y' = 1. If the individual is a live, Z! = V/, the probability
of observing it is Pr(y' = 1|Z! = V) = p¥' (1 — p)' %" = p, and the probability of
it not being observed Pr(y! = 0|2t = V) =p¥' (1 —p)'=¥ =1—p.

The contribution of each individual to the overall likelihood of the data set can
then be calculated using these components. For example, consider a study which takes
place over the course of 7' = 3 years, and let us take an individual observed in the
first and third years, but not in the second year : (y! = 1,y?> = 0,y> = 1). This
individual’s contribution to the likelihood is written :

L(b,p|y'v% %) = fop(y' v?y°) = 6P(y" ) TP(y*)T'P(y*)1
with
VM

P =P = D]
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and
VvV M
P 2y _[1—p 0
W=7 ]

We can verify (with a little patience) that this matrix product is equal to pe(1 — p)¢p,
generally conditioned with respect to the first capture, with an assigned value of 1,

such that fy ,(y*, y%,¥*) = ¢(1 — p)dp.

Once the probabilities of survival and detection have been estimated, it should, in
theory, be possible to calculate life expectancy based on the inferred dead/alive status
of individuals, reconstructing the sequence of states for each individual.

This two-state example may be generalized to give a multi-state capture-recapture
model (Lebreton et al. 2009), incorporating reproductive states. This model may be
formulated as a three-state HMM, including a “dead” state and two reproductive states,
Rand NR: Z! = R for “alive and reproducing at time t” and Z* = NR “alive and not
reproducing at time ¢”. A schematic representation of this HMM is shown in Figure 2.3

variable observée Y € {0, R, NR}

variable cachée Z' € {R, NR, M}

Figure 3.3 — Multi-state capture-recapture model expressed in HMM form.

The first component of the associated HMM is the initial distribution :

R NR M
62(51{ 1—53 0)

Let ¢ be the probability of survival of reproducing individuals, ¢ g that of non-
reproducing individuals, ¥y g, g the probability of an individual which is not reprodu-
cing at time ¢ entering the reproductive state at time ¢ + 1, and 1)r g the probability
that an individual which is in the reproductive state at time ¢ will have left this state at
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time ¢t + 1. The transition matrix is written :

R NR M
¢r(1 — YR NR) ORVR,NR 1-¢r 7R

=l ¢nrYnrr ¢Nvr(1—UNRrRR)1—éNR[NR
0 0 1 M

Finally, let pr be the probability of detection of reproducing individuals (and py g
that of non-reproducing individuals). The diagonal matrix giving the distribution of
observations conditional on states is thus :

R NR
pgyt:R)(l _ pR)I(yt:O)OI(yt:NR) 0
ty — t t
P(y") = 0 ])%?}/{—NR)(l — png) W =00l =R)
0 0

where I(y? = k) is the indicator function, taking a value of 1 when y* = k and 0
otherwise. The distribution implied here is a generalization of the Bernouilli distribu-
tion for more than two possible outcomes, i.e. a categorical (single-trial multinomial)
distribution.

For example, to study reproduction costs, ecologists may compare the probability
of reproducing in year ¢ + 1 based on the individual’s reproductive, (Yprp = 1 —
Y¥r NR), Or non-reproductive, ({)n g r), state in year ¢ ; the differences in survival
rates between reproducing (¢r) and non-reproducing (¢ ) individuals may also be
studied in this way.

While multi-state models were originally developed for use in estimating demo-
graphic parameters (survival, movement, etc.) which depend on geographical sites
(Brownie et al. 1993), there are few real limits to their application in ecology (Gime-
nez et al. 2012).

Once the parameters have been estimated, the subjacent states can be inferred. In
this way, it becomes possible to calculate particularly interesting ecological quantities.
Examples of this include the sex ratio (Pradel et al. 2008), where the states are the sex
of individuals ; reproductive success over a lifetime (Rouan, Gaillard, Guédon and
Pradel 2009 ; Gimenez et al. 2012 ; Desprez et al. 2018); or the number of sick
individuals (Buzdugan et al. 2017) in the case of epidemiological states.

One tacit hypothesis which is inherent in multi-state levels is that the state of an
individual can be measured without error. In practice, however, it can be difficult to
assign a sure state to individuals, for example when observing reproduction in the
field. A reproductive state can be confirmed if a female is seen with one or more
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young, for example, but if a female is observed alone, status assignment is less certain.
The HMM approach takes account of this element of uncertainty in the assignment of
states to individuals (Dupuis 1995 ; Pradel 2005 ; Gimenez et al. 2012), as we shall
see in the following example.

3.3.2. Case study : estimating the prevalence of dog-wolf hybrids in a
context of uncertain individual identification

The points made above can be illustrated using an example, in this case relating
to the estimation of the prevalence of hybrids in a wild animal population. Our case
study concerns cross-breeding between dogs and wolves in the Tusco-Emilian Apen-
nines National Park, Italy (Santostasi et al. 2019). The data was obtained using wolf
feces collected from August 2016 and May 2017, from which DNA was extracted,
amplified and sequenced (Caniglia e al. 2014) ; using this DNA data, a distinction
can be made between wolves, hybrids and animals of uncertain status. There were
5 capture sessions, each spanning 2 months, featuring samples from 39 individuals
(19 wolves, 12 hybrids and 8 uncertain). In the original study, the authors compared
different models, including or ignoring the difference between hybrid and parental
individuals in terms of detection and assignment probabilities.

The possible states included parental Z! = P, hybrid Z! = H or dead Z! = M,
with observations noted y* = 0 for undetected, y* = 1 for observed parental, y* = 2
for observed hybrid and y* = 3 for observed, uncertain status. All parameters in the
model used here are constant, except for survival, which is state dependent; hence

bp F# dn-

The components used to write the likelihood of the HMM are the initial distribution

P H M
8 =(6p 1—0dp 0),

the transition matrix

P H M

op 0 1—¢p]P
'=l0 ¢y 1-9¢u|H

0 O 1 M

and the diagonal matrix which gives the distribution of observations conditional to the

states
P H M

f(y'z" = P) 0 0
P(y') = 0 fWzt=H) 0 ]
0)

0 0 I(yt =
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Tableau 3.1 — Prevalence of hybrids : observed and estimated using the Viterbi
algorithm.

Prevalence Occ. 1 Occ. 2 Occ. 3 Occ. 4 Occ. 5
Observed 0.27 0.33 0.20 0.46 0.27
Estimated 0.27 0.33 0.20 0.20 0.18

95% confidence interval (0.09,0.61) (0.10,0.61) (0.00, 0.50) (0.00, 0.50) (0.00, 0.50)

where f(yt|Zt = P) =
f'zt =H)=(1-p)'!

The important parameter here is §, the probability of an individual being assigned
to a state. If the genetic or morphological assessment is not sufficient to assign parental
or hybrid status to an individual, then it will be classed as uncertain, with probability
1—46.

( )W —0)(p5)1(u =Dl =2) (p(1 — §))1@'=3) and
W =0T =1) (pg) 1" =2) (p(1 — §))TW' =),

As the hybridization test was carried out just once for each genotype, the assign-
ment probability ¢ is estimated for the first capture alone. The assignment of parental
or hybrid status to individuals in the uncertain category, and consequently the calcu-
lation of the prevalence of hybrids, is carried out using global decoding by means of
the Viterbi algorithm.

The probability of survival for wolves ¢p is estimated at 0.63 (0.39-0.82), lower
than the probability of survival for hybrids ¢z, estimated at 0.81 (0.59-0.93). The
probability of detection p is estimated to be 0.46 (0.31-0.61) and the probability of
assignment § is estimated to be 0.85 (0.75-0.91).

The main result in this case is an estimation of the number of hybrid individuals.
The estimated prevalence varies from 0.18 to 0.33, and is comparable to the observed
prevalence (Table 2.1).

(Santostasi et al. 2019) compares several models ; the authors show that the esti-
mated prevalence is systematically in excess of the observed prevalence, with impor-
tant consequences in terms of species management. The HMM permits a confidence
interval to be used in conjunction with the estimation of prevalence.

3.4. HMM and distribution
3.4.1. General case

Instead of working on an individual scale, a different perspective can be gained by
using detection and non-detection data at species level. This data gives us access to
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spatial information in relation to species and populations, e.g. occupancy. In concrete
terms, datais obtained by monitoring several spatial units (such as breeding sites or
photo traps) where a species may or may not be detected. Occupancy models are
used to estimate the proportion of an area occupied by a species, with corrections for
imperfect detectability (MacKenzie et al. 2018) ; in dynamic cases, the probabilities of
local extinction € and colonization & are also included. Sites are treated in exactly the
same way as individuals using the capture-recapture approach, and occupancy models
are thus similar to the capture-recapture models presented in the previous section.
Occupancy models can be seen as HMMs (Royle and Kéry 2007 ; Gimenez, Blanc,
Besnard, Pradel, Doherty Jr, Marboutin and Choquet 2014) in which the state process
governs the dynamics of site states, with Z? = O denoting “occupied site” and Z* =
NO denoting “non-occupied site” for a year t. A species may be detected, Y** = 1,
or undetected, Y'*"¥ = 0, at each site on multiple visits & over the course of a year ¢.
A schematic representation of the corresponding HMM is shown in Figure 2.4

‘ @ @ variable observée Y € {0,1} &

° 0 @ plusieurs visites £k = 1,..., K

0 0 NO variable cachée Z! € {O, NO

) ) () {0. N0}
t t ]

t—1

Figure 3.4 — Diagram of a dynamic occupancy model expressed as an HMM.

The components used in constructing the likelihood of the model are written as
above. We begin with the initial distribution :

O NO
0 =(1 1 —11)

where 1) is the probability of initial occupancy (in the first year). The transition matrix
is written :

O NO

le—e € O
k 1—x|NO
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Finally, the state-dependent matrix of the observation distribution is :

0 NO
K
I a—p— 0
P(y') =|k=1 K
0 (1—y"*)
k=1

where p is the probability of detection of the species.

One sepcial case is that of single-season (static) occupancy (MacKenzie et al.
2002) where ¢ = x = 0 (Gimenez, Blanc, Besnard, Pradel, Doherty Jr, Marboutin
and Choquet 2014) and 7" = 1. The HMM formulation allows us not only to estimate
the probabilities of occupancy, extinction and colonization, but also to estimate the
sstate of a site if the species has not been detected (via global decoding). Thanks to
the flexibility of the HMM formulation, the standard model can be extended to take
account of differences in the probability of detecting a species via finite number mix-
tures (Louvrier, Chambert, Marboutin and Gimenez 2018) or a discrete measure of
this heterogeneity such as population density or reproductive state (Gimenez, Blanc,
Besnard, Pradel, Doherty Jr, Marboutin and Choquet 2014 ; Veran et al. 2015); it
can also take account of the occurrence of false positives in the data due to erroneous
species identification (Miller et al. 2011 ; Louvrier et al. 2019). As in the case of multi-
state capture-recapture models, HMM occupancy models can be extended to include
multiple “occupied” states, such as reproductive states (MacKenzie et al. 2009 ; Mar-
tin et al. 2009), epidemiological states (McClintock et al. 2010), or landscape-related
states (Lamy et al. 2013). These models can also be extended to cases with multiple
species in order to study predator-prey relationships (Fidino et al. 2019 ; Rota et al.
2016).

3.4.2. Case study : Estimating the distribution of a wolf population in a
case with species identification errors and heterogeneous detection

In this case, an HMM will be used to model species distribution in a case fea-
turing identification errors and heterogeneous deteciton. The data analyzed relates to
the detection and non-detection of wolves in France, and was collected in 2013 (Lou-
vrier, Duchamp, Lauret, Marboutin, Cubaynes, Choquet, Miquel and Gimenez 2018).
Signs that the species was present, such as tracks, faeces, prey remains, dead animals,
camera trap photographs and actual spottings were collected by a network of profes-
sional and amateur observers (Duchamp et al. 2012). The data for 2013 comprised
250 certain detections, 54 uncertain detections (cases of confusion with another spe-
cies) and 12540 non-detections across a grid of 3211 sites over a 10 x 10 km space.
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We have chosen to consider each month, from December to March, as a separate sam-
pling occasion. These months correspond to a period between two dispersion events,
in the fall and the spring (Louvrier, Duchamp, Lauret, Marboutin, Cubaynes, Choquet,
Miquel and Gimenez 2018). This choice increases the chance of respecting an impor-
tant hypothesis inherent to occupancy models, namely that the state of the site should
stay the same over the course of the study. In a previous study, we found that the main
explanatory factor for occupation was site altitude, but that the probability of detec-
ting the species was mostly determined by the sampling effort, defined as the number
of observers per site per year (Louvrier, Duchamp, Lauret, Marboutin, Cubaynes,
Choquet, Miquel and Gimenez 2018). In this case, for illustrative purposes, we have
chosen to focus on a model which takes account of identification errors and heteroge-
neous detection in the determination of detection probabilities (Louvrier, Chambert,
Marboutin and Gimenez 2018). After estimating the parameters of the model, we
constructed a map representing the 3211 sites in the study area, each associated with
a heterogeneity class estimated using the Viterbi algorithm.

We considered two classes of site, A and B, with respective proportions 7 and
1—. The possible states were Z¥ = O A for an occupied site of class A, A, Z¥ = OB
for an occupied site of class B, Z¥ = NOA for a non-occupied site of class A
and Z¥ = NOB for a non-occupied site of class B. We constructed a single-season
(static) model with & = 1,..., K visits. Observations were classed as y* = 0 for
a site where the species was not observed, y* = 1 for a site with an unambiguous
observation, and y* = 2 for a site with an ambiguous observation. ambiguité. In this
case, we have chosen to work with a model in which all parameters are constant over
time, but dependent on the site classification in terms of detection.

The components used in writing the likelihood of the HMM are the initial distri-

bution :
NOA NOB OA OB

d=(r(1—4a) 1 —m)(1 —4p) mpa (1 —m)Yp),

and the diagonal matrix giving the distribution of observations conditional on states :

NOA NOB OA OB
f(y*|ZF = NOA) 0 0 0
Py") = 0 f(y*|Z¥ = NOB) 0 0
0 0 f(y*|ZF = 0 A) 0
0 0 0 f(y*|Z* = OB)

where f(yk|Zk _ NOA) _ (1 _pAlo)I(ykzo)OI(yk:l)p,Iq(ly(?:m’ f(yk|Zk _
NOB) = (1 — ppio)! @ =001 =D)L= ki zE — 04) = (1 —
Pa11) @ =0 (bpar ) W=D (1 — b)pany) W=D et f(yk|ZF = OB) = (1 —
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p511) =0 (bpp1y) @ =D (1 — b)pp11)’ @ = where pay is the probability of
correctly detecting the species at a class A occupied site (respectively pp11 for class
B), paio is the probability of wrongly detecting the species at a class A non-occupied
site (resp. pp1o for B), and b is the probability of classifying a true positive as
unambiguous or certain. As there is no dynamic element with respect to site state, the
transition matrix is the identity matrix.

The model presents several local maxima in terms of likelihood, something which
is common when using HMMs. It can be hard to pinpoint the reason for this pro-
blem ; our preferred approach is to apply multiple numerical optimizations, changing
the initial values each time. In this case, 100 random drawings were carried out from
a uniform distribution between 0 and 1 to provide initial values for the model parame-
ters, which are all probabilities ; the model was then adjusted for each combination.
The results are striking, featuring multiple optima, as shown in Figure 2.5.

3200

I

3000

déviance
N
[o=]
o
o

2600

2400

effectif

Figure 3.5 — Identification of local minima in the —2log (£(6)) deviance of an
HMM. Numerical optimization was carried out using 100 random drawings of ini-
tial values. The graph shows number of instances (x axis) against value (y axis).
Several local minima are clearly visible.

The estimated probability of occupation is low, at 0.05 (0.04-0.06). According to
the adjusted model, 94% have a zero probability of detection of a false positive pg10,
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indicating that there are no identification errors for these sites. From the remaining
6% of sites, the estimated value of p 419 is also low, at 0.05 (0.03-0.08). These results
suggest that the training procedure followed by observers in the network was effective,
and/or that the data filtering process applied prior to analysis minimizes the number
of false positives. The probability b of classifying a true positive as non-ambiguous
is high, estimated at 0.93 (0.90-0.95). Taken in conjunction with the low risk of false
positives, this result suggests that uncertain detections could be considered as certain.
Finally, the probability of detection of true positives p;; was estimated at 1 for 6% of
sites, and at 0.39 (0.35-0.43) for the remaining 94%.

Once the parameters of the model have been estimated, the Viterbi algorithm may
be used to determine the most probable state for each site. Once the most probable
state of each site has been determined, the results may be viewed on a map, such
as that shown in Figure 2.6, showing the level of heterogeneity. Observed variations
between sites are partly the result of spatial variations in sampling effort, defined as the
number of active observers for a site (Louvrier, Chambert, Marboutin and Gimenez
2018). The interest of using HMMs in this case lies in the ability to take account
of heterogeneity in the observation process. This is done using a hidden variable to
account for belonging to a finite number of classes ; it is thus possible to avoid the
need to measure sampling effort on the ground, a promising property for analyzing
data obtained using participative approaches.

50°N
48°N
classe d'hétérogénéité
46°N WA
B
44°N
42°N

0° 5°E 10°E

Figure 3.6 — Visualization of heterogeneity : map of the heterogeneity class to
which each site in the study area is assigned using the Viterbi algorithm.
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3.5. Discussion

In this chapter, we have seen how hidden Markov models (HMM) can be used in
ecology to respond to questions concerning the demographics and distribution of spe-
cies in their natural environment. The flexibility and ecological relevance of the HMM
modeling framework have contributed to its increasing popularity in ecology, where
it is used in relation to a wide range of questions (McClintock et al. 2020). The main
advantage of the HMM approach lies in the ability to infer the ecological state of indi-
viduals and species which are, at best, partially observable : these are hidden variables.
In addition to the ability to explicitly distinguish between observation processes and
states, it is possible to decompose potentially complex processes into several simpler
steps (Choquet 2008), facilitating model construction (Santostasi et al. 2019 ; Lou-
vrier, Chambert, Marboutin and Gimenez 2018). Finally, HMMs make it possible to
infer state dynamics in time and space. Note that model selection and approaches to
testing the quality of adjustment of models to data are not covered here ; for a detailed
discussion of these issues, see (Zucchini et al. 2016) and (McClintock et al. 2020).

Nevertheless, HMMs do have limits, three of which will be discussed here. The
first is numerical in nature. As we saw in our case study concerning occupancy models,
the likelihood function may present local maxima, which makes global maximization
complex. The solution to this problem generally involves testing several sets of ini-
tial values for numerical optimization, via random drawings, as in the case described
above ; another option is to use estimated parameters for a simplified model less sub-
ject to local maxima as the initial values. Other approaches may aslo be used (Brooks
and Morgan 1994). A further problem is linked to the non-identifiability of models
for which the likelihood is uniform in areas, for example in the case of redundant
parameters ; this problem can be diagnosed (Cole 2019).

The second limitation concerns the Markovian hypothesis itself. This hypothesis
implies that the time taken to move from one state to another follows a geometric
distribution, and this is not always verified in practice. One solution to this problem is
to consider Markov chains with an order greater than 1, or, in other words, to to assign
memory to HMMs. In terms of demographics, this consists, for example, in admitting
that the probability of movement between geographical sites depends not only on the
current site, but also on previously-visited sites (Cole et al. 2014 ; Rouan, Choquet
and Pradel 2009). Another solution is to model the time spent in a state directly, in the
form of a semi-Markov model (Choquet et al. 2011 ; King and Langrock 2016).

The third limitation relates to the discrete nature of states in HMMs. In cases where
a finite number of states are used to approximate the distribution of a continuous
variable, such as the mass of an individual or the geographical range of a species,
the question of discretization must be adressed. Evidently, the number of states may
be increased to make the discretization finer, but at the cost of increased complexity,
via an increase in the number of parameters and/or states to estimate. The problems
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relating to high-dimensional space states can be mitigated by exploiting the fact that
only certain transitions are possible, increasing calculation efficiency (Glennie et al.
2019) ; another option is to group states (Besbeas and Morgan 2019).

In this chapter, we have demonstrated the adjustment of HMMs in a frequentist
setting, combining an efficient expression of likelihood using the forward algo-
rithm with numerical optimization in order to obtain estimators of the maximum
likelihood of parameters, then using the Viterbi algorithm to reconstruct the most
likely sequence of states (hidden variables) in a process known as decoding. Our
approach can be implemented in R and is reproducible (the code is available to
download from GitHub : https://oliviergimenez.github.io/code_livre_
variables_cachees/gimenez.html). There are several computer-based solutions
for implementing a frequentist approach and for using HMMs to analyze capture-
recapture or occupancy data(Choquet ef al. 2009 ; Laake 2013);(Gimenez, Blanc,
Besnard, Pradel, Doherty Jr, Marboutin and Choquet 2014 ; Fiske and Chandler
2011). Other tools which may be used in this context include the EM algorithm (see
Chapter 4) or the Bayesian approach, implemented via Markov chain Monte Carlo
methods (MCMC). The Bayesian approach is enjoying increasing popularity for
adjusting statistical models in the field of ecology, notably due to the availability of
flexible, powerful programs (de Valpine et al. 2017 ; Plummer et al. 2003). A major
advantage of the Bayesian approach is that hidden variables are treated as parameters
to estimate, making it easy to take account of a measure of uncertainty with regard to
these variables. However, the drawback is that standard MCMC samplers do not per-
form particularly well in cases where both parameters and hidden variables must be
determined. One solution is to apply sampling to the parameters alone, marginalizing
states via the forward algorithm (Turek et al. 2016 ; Yackulic ez al. 2020), but this has
a negative effect on the estimation of hidden variables. Research into the use of the
Viterbi algorithm within a Bayesian framework is currently ongoing (Lember et al.
2019).
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