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Abstract: Acquiring vast and reliable data of physicochemical parameters is critical to environment
monitoring. In the context of water quality analysis, data collection solutions have to overcome
challenges related to the scale of environments to be explored. Sites to monitor can be large or
remote. These challenges can be approached by the use of Unmanned Vehicles (UVs). Robots provide
both flexibility on intervention plans and technological methods for real-time data acquisition. Being
autonomous, UVs can explore areas difficult to access or far from the shore. This paper presents a
nonlinear Model Predictive Control (MPC) for UV-based exploration. The strategy aims to improve the
data collection of physicochemical parameters with the use of an Unmanned Surface Vehicle (USV)
targeting water quality analysis. We have performed simulations based on real field experiments with
a SPYBOAT® on the Heron Lake in Villeneuve d’Ascq, France. Numerical results suggest that the
proposed strategy outperforms the schedule of mission planning and exploration for large areas.
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1. INTRODUCTION

The problem that we consider is that of exploration missions,
which implies both mission planning and design of autonomous
control strategies (Nigam, 2014).

Exploration requires offline and online motion planning, i.e., a
sequence of connected linear tracks covering the entire region
to explore. Most existing planners fail to incorporate multiple
decision criteria and constraint such as variable length, angle
and velocity trajectory segments Wu et al. (2010). In Goerzen
et al. (2010) a complete overview of the existing motion plan-
ning algorithms is provided.

In case the motion planning is solved offline, the parameterized
reference allows the USVs to navigate several desired regions
by an autonomous control strategy. A popular control technique
of growing successes, particularly in the field of MPC, is the
path-following problem. A thorough review of Nonlinear MPC
trajectory tracking and path-following controllers with applica-
tion to nonholonomic robots can be found on Nascimento et al.
(2018); Nascimento and Saska (2019). On the other hand, for
exploration missions performed by multitarget tracking, there
are several control designs adapted for specific environments to
provide an energy efficient and robust solution. For instance,
Sarunic and Evans (2014) provides a hierarchical MPC that
enables an efficient trajectory for the UAVs; a nonlinear MPC
scheme for navigation for constrained enviroment is proposed

in Lindqvist et al. (2020); Prodan et al. (2013) (the last paper
provide a path design via differential flatness); Bertrand et al.
(2014) presents a framework for the cooperative guidance of
a fleet of autonomous vehicles with optimal trajectories ob-
tained for an exploration mission on a grid zone. A full dis-
cussion about the general relation between different control
objectives, covering set-point stabilization, trajectory tracking,
path-following and their approaches within the nonlinear MPC
framework are included in Matschek et al. (2019). Although
interesting, the aforementioned works and the most literature
on MPC for exploration are based on set-point stabilization
and the benefits of the set-based MPC (i.e., general invariant
set stabilization) on the exploration missions have not been
explore.

The stabilization of target sets instead of single points is more
suitable in cases where it is enough to reach at least one
state inside a target region. Such is the case of water resource
management, where the exploration mission usually aims to
cover large surface of water with an USV to visit regions
where a measurement needs to be acquired (Anderson et al.,
2022). In this scenario, the properties of invariant sets are useful
to provide robustness, flexibility, extension of the domain of
attraction, between other benefits. The set stabilization can be
framed in the context of set-based MPC (Blanchini and Miani,
2015; Anderson et al., 2018) where a general invariant set is
considered as a control objective.



In this context, the main contribution of this article is to present
a novel set-based MPC formulation for nonlinear systems for
exploration large areas with an USV. The proposal is based on a
set of meshing of the region to be explored with a twofold aims,
to configure a simple motion planning offline for the problem
and to use the sets composing the meshing as target sets for the
controller. Several simulation results targetting water quality
assessment show the properties of the proposed controller.

The structure of this paper is as follows. Section 2 present the
nonlinear system and some basic concepts of the regions of
the state space. Section 3 describes the general set-based MPC
formulation and some stability conditions. The main result of
the paper is presented in Section 4. In this section the proposal
is formulated and some simulation results show its properties.
The nonlinear model and the properties of the USV are stated
on Section 5.1. In Section 6 the problem statement of the water
quality assessment is presented and the simulation results are
presented. Lastly, Section 7 states the conclusions of the paper.

1.1 Notation

We denote with N the sets of integers, N0 := N ∪ {0}
and Ii := {0, 1, . . . , i}. The ceiling function is defined by
ceil(x) := min{n ∈ N : x ≤ n}. Consider two sets U ⊂ Rn

and V ⊂ Rn, containing the origin and a real number λ. The
Minkowski sum U ⊕ V ⊂ Rn is defined by U ⊕ V = {(u +
v) : u ∈ U , v ∈ V}; the set U \ V ⊂ Rn is defined as
U \V = {u : u ∈ U ∧u ̸= V}; and the set λU = {λu : u ∈ U}
is a scaled set of U . The close ball with center in x ∈ Rn and
radius ε > 0 is given by B(x, ε) := {y ∈ Rn : ∥x − y∥ ≤ ε}.
The point x is an interior point of U if the there exists ε > 0
such that the open ball B(x, ε) ⊆ U . The interior of a set U is
the set of all its interior points and it is denoted by intU .

2. NONLINEAR SYSTEM AND PRELIMINARY
ANALYSIS

The dynamic process discussed in this work consists in the class
of discrete-time nonlinear system described by the following
equations {

x(i+ 1) = f(x(i), u(i)),

x(0) = x0,
(1)

where x(i) ∈ X ⊂ Rn represents the measured states of the
system and u(i) ∈ U ⊂ Rm the control input at time i. The
constraint sets X and U are compact and convex with the origin
inside, and the function f : X × U → X is continuous with
f(0, 0) = 0.

The general permanence regions of a dynamical system (i.e.,
equilibrium manifolds or invariant sets) are quite meaningful to
characterize stable regions as control objectives for a controlled
system (Blanchini and Miani, 2015). The following definition
presents the concept of invariance sets - generally used as
target sets in the set-based MPC context - which are defined
by transient states of the system that can remain indefinitely in
the same region by mean of admissible inputs.
Definition 1 (Control Invariant Set - CIS). The set Ω ⊂ X is a
control invariant set (CIS) for system (1) if for all x ∈ Ω there
exists u ∈ U such that f(x, u) ∈ Ω.

The CIS has an associated corresponding input set given by

Ψ(Ω) := {u ∈ U : ∃ x ∈ Ω such that f(x, u) ∈ Ω},

meaning that every input on Ψ(Ω) leaves at least one state of Ω
inside Ω.

A CIS is called a Contractive CIS if the condition on Definition
1 is replaced by: for every x ∈ Ω there is u ∈ U such that
f(x, u) ∈ intΩ.

The asymptotic stability of sets rather than equilibrium points
allows to robustly generalized target regions, this is useful
when the solutions of the dynamical system cannot be settled
down into an single point, which frequently happens due to the
uncertainties, or the timer variable does not converge to a point
but rather to an interval (such as the case with sample-and-hold
control systems).

3. SET-BASED MPC

A generalization of the MPC controller for tracking invariant
sets is presented. The idea is to track and reach sets that not
only include stationary states, but also transient states. We start
with a quite general formulation, that is particularized in the
next subsections to different applicable cases. Also consider the
following definition.
Definition 2 (Generalized Distance Stage Cost Function). A
generalized distance function d(x,Ω), from x to the CIS Ω, is
a function with the following properties: (1) d(x,Ω) is convex
and continuous for all x ∈ X, (2) d(x,Ω) = 0 for all x ∈ Ω,
(3) d(x,Ω) > 0 for all x ∈ X \ Ω.

The proposed controller cost function will be given by:

VN (x,Ω;u) =

N−1∑
j=0

αd(xj ,Ω) + βd(uj ,Ψ(Ω)), (2)

where α and β are positive real numbers, N is the prediction
horizon, the initial state x = x0, the predicted states xj+1 =
f(xj , uj) and the input sequence u = {u0, · · · , uN−1}.
Remark 3. The usual terminal cost associated with the termi-
nal predicted state xN can be omitted on Eq. (2) if xN is force to
belong to the set Ω, i.e., d(xN ,Ω) = 0. As usual in MPC design,
a local control action ū that will act for predictions inside the
terminal set Ω will have also null cost since ū ∈ Ψ(U).

The general set-based MPC is given by the following optimiza-
tion problem solved at each sample time k ∈ N.

min
u
VN (x,Ω;u) (3)

s.t. x0 = x,

xj+1 = f(xj , uj), j ∈ IN−1,

xj ∈ X, uj ∈ U, j ∈ IN−1,

xN ∈ Ω

Taking into account the receding horizon policy, the control law
at time k is given by the first element of the optimal sequence
uo of the optimization problem given by (3) solved at time k.

Consider the next Lemma for the asymptotic stability of the
closed-loop system.
Lemma 4. If Ω ⊂ X is a CIS for system (1) in the cost function
(2), then Ω is asymptotic stable for the closed-loop system (1)
controlled by the set-based MPC given by (3).

Proof. The proof can be found on Blanchini and Miani (2015).
It is stated that under the hypothesis of the Lemma there is a
Lyapunov function (given by the optimal cost V 0

N (·)) that is a



decreasing function on the level sets of the generalized distance
function used on the function cost (see Fig. 1 and 2).

Provided that the MPC formulation is strongly based on the
concept of generalized distance functions, two possible candi-
dates that fulfills Definition 2 will be presented below.
Definition 5. Given a CIS Ω, the matrix distance from x to Ω
is defined as

d(x,Ω) = min
y∈Ω
∥x− y∥2M , M > 0

The Minkowski functional (Blanchini and Miani, 2015) is
defined as:
Definition 6. Given a CIS Ω, the Minkowski functional ΦΩ

associated to Ω is defined as
ΦΩ(x) = inf{µ ≥ 0 : x ∈ µΩ}.

The Minkowski functional has a number of useful properties
(Blanchini and Miani, 2015). It also was already used as a part
of MPC costs in works as Raković and Lazar (2012); González
et al. (2011). However, the Minkowski functional is not null
inside the set to which it is associated. To achieve this property,
we need to introduce the modified Minkowski functional.
Definition 7. Given a convex set Ω, that includes the origin
as an interior point, and a contractive Invariant Set Σ for the
autonomous system x(i + 1) = f(x(i), x ∈ X, the modified
Minkowski functional is defined as

Φ̄(x) = inf{µ ≥ 0 : x ∈ Ω⊕ µΣ}.
Property 8. The distance from a point to a set defined by the
functions on Definition 5 and 7 satisfies the properties of a
generalized distance stage cost function from Definition 2.

Proof. The proof can be found on González et al. (2014).

Fig. 1 and 2 shows a schematic plots of a Distance function and
the Modified Minkowski functional associated to an arbitrary
polytopic set, respectively, together to the level sets where the
optimal cost is a decreasing function. Notice that inside the set
the functions are null.

Next section presents an extension of the set-based MPC to
tracking multi-target sets.

3.1 Multi-target tracking

In what follows the control formulation presented on the last
section is extended for tracking multi-target sets.

Consider that the closed-loop system has to reach every element
on the set Ω = {Ω1,Ω2, · · · ,ΩK} with Ωi ⊂ X for i =
1, · · · ,K, in the specified order. This is, once the controlled
system reaches the target set Ωj ∈ Ω, the objective change to
Ωj+1 and so on until the state of the system converge to ΩK .
Clearly, a condition must be establish in order to switch target
every time the current target is reached. In the MPC framework,
there are several strategies to approach this goal, such as event-
triggered MPC Tabuada (2007), switched MPC, dual-MPC, etc.
However, in our case a state-dependent MPC will be used, in
this context a condition to consider a reached target set that it
depends on the current state position is established.
Definition 9 (Reached set). The first set on Ω, i.e., Ω1 is
considered a reached set if x(i) ∈ Ω1 for some i > 0. For
k > 1, the target set Ωk ∈ Ω is considered a reached set if

Fig. 1. Descriptive plot of the Distance Function associated to
a given set.

Fig. 2. Descriptive plot of the Modified Minkowski Functional
associated to a given set.

x(i) ∈ Ωk for some i > 0 and the previous sets Ω1, . . . ,Ωk−1

are reached sets.



As it can be seen, the condition for a set on Ω to be a reached
set is defined inductively.

Now, consider the following target set depending on the posi-
tion of the state x, Ωx, given by the following.
Definition 10 (Current target set). Given the sates of the closed-
loop system x(i) ∈ X for i = 0, . . . , T , where x = x(T ) is the
current state. The current target set is given by

Ωx := {Ωk+1 : k = max{i : Ωi is a reached set}} (4)
In the case that there is not reached sets then Ωx := Ω0.

In simple words, Ωx it defines which is the current objective
depending on the position of the state x ∈ X.

The next MPC formulation to tracking target sets is based on
the results proposed by Limon et al. (2005), where the tracking
of reachable sets where used to extend the domain of attraction
of the controller.

Considering the control law derived from solving by the reced-
ing horizon strategy the following optimization problem.

min
u
V (x,Ωx,u) (5)

s.t. x0 = x,

xj+1 = f(xj , uj), j ∈ IN−1,

xj ∈ X, uj ∈ U, j ∈ IN−1,

xN ∈ Ωx,

For an asymptotic stability condition consider the next Lemma.
Lemma 11. If Ωj ∈ Ω is a Contractive CIS for all j =
1, . . . ,K, then every Ωj ∈ Ω is a reached set for the closed-
loop system controlled by the MPC given on (5).

Proof. If the current target set Ωx = Ωj is a Contractive CIS
for system (1), the results proposed on Anderson et al. (2018)
proves that the closed-loop system will reach in finite-time the
set Ωx. Therefore, according the formulation, once the target
set Ωj is reached, the current state switch to Ωx = Ωj+1. The
proof is concluded by induction.

The above Lemma highlights the fact that the asymptotic sta-
bility of every set Ωj ∈ Ω is not enough to guarantee that every
set on Ω is reached. To fulfill every objective a guarantee of
finite-time convergence of every Ωj is necessary.

The following section provides the main result of the paper. The
proposal is an extension of the above MPC formulation that
aims to improve the performance of the controlled trajectory.

4. PROPOSED MPC

In this section, the MPC based on sets for tracking multi-
target set is extended to improve performance. The extension
is based on tracking two consecutive sets on the path Ω =
{Ω1, . . . ,ΩK}, i.e., part of the predictions attempt to reach the
current target set Ωx = Ωj and the rest of the predictions
attempts to reach the target set Ωj+1. This way, the control
design plans the approach to Ωj taking into account that the
next step is to reach the set Ωj+1.

To this end a dual-MPC is formulated, where the goal of the first
mode is to reach only the current target set Ωx = Ωj , by means
of (5). The second mode is activated by the time the current
state x is close enough of Ωx, this mode considers as part of the

objective the target set Ωj+1, so the trajectory to reach Ωx takes
into account the next steps to reach Ωj+1.

To trigger the second mode the current state must be close
enough of Ωx. This condition can be stated by the inclusion
of the current state on the fattening set of Ωx.
Definition 12 (Fattening set). Let Ωx ⊂ Rn be the current
target set of control, and let ε > 0, we denote the ε-fattening
set of Ωx by

(Ωx)
ε := ∪{B(x, ε) : x ∈ Ωx}.

Remark 13. The term ’close enough’ of the current target set is
a parameter of the control design and can be selected by chosen
an appropriate ε.

The second mode is activated when the current state is on
(Ωx)

ε, at this time the design of the control consider the next
target set, i.e. if Ωx = Ωj then the next target set is Ωj+1.
To properly define this next objective depending on the current
state, consider the following definition.

Define Ωx as in Eq. (4), and the set Ω+
x as follows:

Ω+
x :=

{
Ωj+1, being Ωj = Ωx, x ∈ (Ωx)

ε

Ωx, otherwise (6)

Note that, if the current state x /∈ (Ωx)
ε, then it is considered

that Ω+
x = Ωx. This detail allows to formulate the problem in a

consistent way.

Consider now the function Nx : X → IN that defines the
prediction of horizon of the proposed controller:

Nx :=

{
ceil(Nd(x,Ωx)

ε ), x ∈ (Ωx)
ε

N, otherwise

Note that for the first mode, i.e. when x /∈ (Ωx)
ε, the prediction

horizon is N . For the second mode, i.e. when x ∈ (Ωx)
ε, the

prediction horizon decreases with the distance of the current
state x to the current target set. The ceil(·) function is consid-
ered for Nx to be an integer number.
Remark 14. Function Nx is a decreasing function with max-
imum value when x belongs to the boundary of (Ωx)

ε, given
by Nx = N ; and a minimum value when x ∈ Ωx, given by
Nx = 0.

The second mode computes Nx predicted states that attempt to
reach Ωx, andN−Nx predicted states that attempt to reach Ω+

x .
Note that, when x→ Ωx, Nx → 0, and most of predictions are
used to reach the set Ω+

x .

The cost function is given by

JN (x;u) =

Nx−1∑
j=0

pℓΩx
(xj , uj) +

N−1∑
j=Nx

qℓΩ+
x
(xj , uj) (7)

where ℓΩ(xj , uj) := αd(xj ,Ω) + βd(uj ,Ψ(Ω)), and p, q > 0
are weight values.

The nonlinear MPC is given by the following optimization
problem solved at each sample time k ∈ N .



min
u

JN (x;u) (8)

s.t. x0 = x,

xj+1 = f(xj , uj), j ∈ IN−1,

xj ∈ X, uj ∈ U, j ∈ IN−1,

xNx
∈ Ωx,

xN ∈ Ω+
x ,

The solution of Problem (8) is the optimal control sequence
u0 = {u00, u01, · · · , u0N−1}. Taking into account the receding
horizon policy, the control law at time i is given by κ = u00 (the
first element of the optimal control sequence), which is applied
to the real plant at every time step i.

The control algorithm executed at any i− th time instant is the
following:

Algorithm 1: Proposed nonlinear MPC algorithm

Data: N ∈ N, X ⊂ Rn, U ⊂ Rm, Ω = {Ωj}Kj=1

Result: Closed-loop system x(i+ 1) = f(x(i), κ(i))
1: Read x = x(i);
2: Compute Ωx,Ω

+
x with Eq. (4) and (6);

3: Solve Problem (8);
4: Inject κ(i) = u00 into the system;
5: i← i+ 1;
6: Go back to 1

The dual-behaviour of optimization problem (8) is given by two
modes; the first mode is activated when x /∈ (Ωx)

ε and is easy
to prove that (8) is equivalent to (5), so the problem is reduce
only to track the current target set, i.e. Ωx. The second mode
is activated when the system is near to the current target set,
i.e. x ∈ (Ωx)

ε, in this mode the system is driven to the current
target set Ωx considering that once there the next target set is
Ω+

x .
Remark 15. A general strategy of the proposal can be stated
with more than two simultaneous target sets on Ω, this could
be appropriate when the target sets are very close each other.
However this extension implies further analysis.

4.1 Some quantitative properties of the proposal

In what follows, some numerical results are shown to clarify
the nontrivial properties of the proposed controller.

We consider the USV model represented by Eq. (10). With
abuse of notation let define the current state of the vessel by

x(i) = (x, y, ψ, u, v, r),

for every time i ≥ 0. Where x, y, z represent position sates,
on the surface (x, y) and ψ is the ’direction position’ of the
vehicle in the inertial frame. Meanwhile u, v, r represent the
velocities states, i.e., surge (forward), sway (perpendicular) and
yaw (angular), respectively.

The first simulations attempts to show the anticipatory be-
haviour of the proposed control. Consider the paths given by
Ω = {Ω1, · · · ,Ω5} and Ψ = {Ψ1, · · · ,Ψ5} on the surface of
the water (see Fig. 3). This two paths are a reflection of each
other.

Note that both controlled trajectories of the vessel are the same
until the USV is ’close enough’ of the first target set in order
to activate the second mode of the control. At this point, both

Fig. 3. Two different controlled trajectories to follow path Ω
and path Ψ.

Fig. 4. Optimal trajectory that pass over every target set Ωj
j = 1, . . . , 4.

trajectories take different directions according the orientation of
the path that is followed. This anticipatory behaviour remains
until the vessel reaches the last target set on every path.

Consider now the scenario presented on Fig. 4. The objective is
to drive the initial state x(0) = (0, 0, pi2 , 0, 0, 0) to Ω1, from
there to Ω2 then to Ω3 and finally to Ω4. There are infinite
trajectories and countless strategies to fulfill this objective,
however the optimal trajectory - given by proposed strategy
- selects the optimal position to pass through Ωj considering
that from there the system need to be driven to Ωj+1, for j =
1, . . . , 3. It is noteworthy that the optimal trajectory reaches
only the boundary of Ω3, since it is enough to reach the last
target set Ω5 from there.
Remark 16 (Dimension of target sets Ωj). Note that by def-
inition the dimension of the target sets Ωj ∈ X matches with
the dimension of the states. In the above examples the sets Ωj

belongs to the surface (x, y), however to accomplish the real
dimension of the set the following set was considered



Ωj = {(x, y, ψ, u, v, r) ∈ R6 : lx ≤ x ≤ ux, ly ≤ y ≤ uy, . . .
(9)

∞ ≤ ψ, u, v, r ≤ ∞}.
In the water quality application problem assessed on Section 6
the target sets Ωj belongs to /R3, two dimension for the surface
(x, y) and one more for the forward velocity state u.

5. SPYBOAT®’S DESCRIPTION

In this section the description of the USV used on the simula-
tion results and the real experiment described on Section 6 is
presented.

The CT2MC company has designed a range of vessels dedi-
cated to answer the need of data monitoring of freshwater re-
source. The main feature of these vehicles consists in a flat hull
and aerial propulsion system that it guarantees the realization
of sampling missions and inspections without contamination of
the environment.

The SPYBOAT® technology follows standard equipment con-
figuration including multiple sensors (localization system, com-
pass, sonar, camera) and is propelled by two independent ac-
tuators. Thus the heading is controlled through a differential
thrust method. The architecture of the SPYBOAT® technology
is described in Fig. 5.

Fig. 5. Architecture of SPYBOAT® technology.

The USV is equipped with a Hyperion optical sensor from
Valeport 1 , for the measurement of the turbidity. It is also
equipped with Tripod sensors from AquaLabo 2 to measure the
temperature, Dissolved Oxygen, pH, and conductivity.

5.1 USV nonlinear system

In Hervagault (2019) a kinematic model for the SPYBOAT®
vessel was identified based on the following standard assump-
tions.
Assumption 17 (Liu et al. (2016)). (i) USVs are moving in
a horizontal plane in an ideal fluid. (ii) USV masses are
uniformly distributed. (iii) The CG and center of buoyancy (CB)
point vertically along the z-axis. (iv) USVs have port-starboard
symmetry. (v) Surge and sway-yaw dynamics are essentially
decoupled.

In addition to the standard assumptions, the characteristics of
the SPYBOAT® vessel allows to consider the following.
1 https://www.valeport.co.uk/content/uploads/2021/05/0901814i-Hyperion-
Optical-Sensors-Operating-Manual.pdf
2 https://en.aqualabo.fr/

Assumption 18 (Hervagault (2019)). We will consider the
fore/aft symmetry for our system. Considering their flat hull,
they don’t present any stem for hydro-dynamical optimization.
So the Inertia and Damping matrices can be simplified by
canceling their off-diagonal terms. Furthermore, in the control
model, the non-linear damping will be considered as an exter-
nal disturbance.

The marine craft moves on an horizontal plane and only surge,
sway and yaw are considered. The resulting is a nonlinear
model given by the following equations.



ẋ = u cos(ψ)− v sin(ψ),
ẏ = u sin(ψ) + v cos(ψ),

ψ̇ = r,

u̇ = τu
m11

+ m22

m11
vr + Xu

m11
u,

v̇ = −m11

m22
ur + Yv

m22
v,

ṙ = τr
m33

+ m22−m11

m33
uv + Nr

m33
r

(10)

The vector (x, y) is the position on the surface and ψ the
direction of the vessel, u, v, r are the surge, sway and yaw
velocities respectively. The inputs are given by τu = F1 + F2

and τr = b(F1 − F2), where F1 and F2 are the port side and
starboard side thrust forces, and b represent 1/2 of the distance
between thrusters. The parameter Xu, Yv and Nr are the linear
drag coefficient in surge direction from surge, the linear drag
coefficient in sway direction from yaw rate and the linear
drag moment coefficient from yaw rate, respectively. The mass
parametersmii include added mass contributions that represent
hydraulic pressure forces and torque due to forced harmonic
motion of the vessel which are proportional to acceleration:

m11 =m+ 0.05m,

m22 =m+ 0.5(ρπD2L),

m33 =
m(L2 +W 2) + 0.5(0.1mB2 + ρπD2L3)

12
.

where m is the actual mass, L is the effective length (hull’s
length in the water), W is the width, D is the mean submerged
depth, B is the distance between propellers and ρ is the water
density.

For more detail on the parameters of model (10) see Hervagault
(2019).

6. APPLICATION TO ENVIRONMENTAL MISSIONS

In this section some simulation results for exploration mission
targetting water quality map extraction are presented. First, the
problem statement and the general objective of the mission are
explained.

6.1 Problem statement

In Anderson et al. (2022), a data collection of physicochemical
parameters (such as pH, turbidity, conductivity, temperature
and dissolved oxygen) that indicate the pollution index of water
surface were studied in a particular region of the Heron Lake
in Villeneuve d’Ascq, France (see region Ω on Fig. 6). In this
artificial lake the water arrives from east and when the level is
too high water is pumped out to a nearby river in the far western
point. A natural remediation of the water occurs in lake so a
gradient of the parameters can be expected between points on



the entrance with a high biodegradable inputs (Ivanovsky et al.,
2018).

Fig. 6. Region Ω on the Heron lake, Villeneuve d’Ascq, where
the measurements need to be acquire.

Remark 19 (General objective). In this context - as was explain
on Anderson et al. (2022) - the general objective is to construct
a limnological map of the region Ω, i.e., a map F : Ω → R5

such that F assigns to every point on Ω its approximation
value of pH, turbidity, conductivity, temperature and dissolved
oxygen (see Fig. 8 for dissolved oxygen).

The construction of map F on the region of interest was
discussed on Anderson et al. (2022), where an approximation of
F was proposed by geo-statistical interpolation methods based
on real measurements provided by a hand-operated USV. The
interpolation method was necessary at this point in order to
complete uncovered points (unmeasured positions) due to the
irregularity of the hand-operated trajectory (see Fig. 7).

Fig. 7. Trajectory of the hand-operated vessel in region Ω with
decimal GPS coordinates.

To improve the data collection of the aforementioned physic-
ochemical parameters, in what follows the proposed control
strategy is performed for a regular exploration of region Ω.

6.2 Motion planning

The area of interest Ω was computed by the largest convex set
containing the entire data collection of Fig. 8. The design of
the path to explore the complete region is based on a regular
map meshing of Ω. The map meshing consists in a collection
of disjointed sets {Ωj}Kj=1 such that ∪Ωj contains the region
Ω. The size of every Ωj must be considered according the
size of the vessel, the accurate of the map F , the time for
the exploration mission, etc. On the other hand, the shape
of Ωj must be chosen according the best performance of the

Fig. 8. Limnological map F on Ω for the Dissolved Oxygen
(Anderson et al., 2022).

controller. Figure 9 shows a motion planning for squares Ωj

with a size of 100m2. A discussion about the shapes and sizes
of the meshing is discussed on Anderson et al. (2022)

The controlled vessel reaches every set Ωj and performes a di-
rect in situ measurement of each parameters. The limnological
map F is constructed by this process.

Fig. 9. A motion planning to explore Ω.
Remark 20. The path Ω = {Ω1, · · · ,ΩK} is an ordered
sequence that determine in which order the target sets Ωj are
reached. According to the meshing considered in this work,
there are several possible regular paths for exploration; a
proper motion path would depends on the position of the initial
state, wind, water flow, etc.

6.3 Exploring results

Fig. 10 shows the application of the proposed MPC with a
prediction horizon N = 15, a discretization of the dynamical
model (10) with discrete-time with T = 1seg and initial state
x(0) = (x, y, ψ, u, v, r) = (20, 105,−pi

2 , 0, 0, 0). To explore
region Ω a regular meshing of squares with a size of 25m2 is
used. Every target set Ωx share an edge with the next target set
Ω+

x , so once the system enter into Ω, only the second mode of
the MPC (8) is used (the first mode is only used at the beginning
to reach Ω1). Fig. 10 shows the controlled trajectory that reach
every target set Ωj at least one time.

In order to construct the map F by direct in situ measurements
of each parameters inside every target set Ωj , the velocity u of



Fig. 10. Controlled trajectory for exploring region Ω.

the vessel must belongs to certain range to allows the sensor to
take every measurement inside Ωj for all j = 1, . . . ,K. This
can be approach by considering target sets of three dimensions,
i.e.
Ωj = {(x, y, ψ, u, v, r) ∈ R6 : lx ≤ x ≤ ux, ly ≤ y ≤ uy, . . .

lu ≤ u ≤ uu, ∞ ≤ ψ, v, r ≤ ∞}.
Note that there is no consideration to minimize states ψ, v and
r, which means that they are free. For the simulations on Fig.
11 we consider that 1 ≤ u ≤ 2 for all Ωj , j = 1 . . . ,K, i.e.,
proju Ωj = [1, 2] for all j. The figure shows the velocity state
and inputs for the time interval [0, 100]. On the other hand, for
the simulations on Fig. 12 the target set for the velocity is 0.5 ≤
u ≤ 1.5 for all Ωj , j = 1 . . . ,K, i.e., proju Ωj = [0.5, 1.5] for
all j.

Fig. 11. Inputs and velocity state for the target set proju Ωj =
[1, 2].

Remark 21. Simulation results suggest that the exploration of
the region of interest Ω can be done with a very simple motion
planing and with an optimal trajectory that reaches every point
on the surface where a measurement needs to be performed.
Even more, the velocity of the vessel can be selected for every
target Ωj with j = 1 . . . ,K according the requirements of the
experiment. However, more simulation experiments need to be
done before the real implementation, but they are out of the
scope of this work.

Fig. 12. Inputs and velocity state u for the target set proju Ωj =
[0.5, 1.5].

7. CONCLUSION

Environmental missions were performed on Heron Lake in
Villeneuve d’Ascq, France. The main goal of the experiment is
to construct a temporal water quality profile of a region of the
lake, where there is a suspicion of a source of pollution, so more
experiments are expected in the same region. To outperformed
the data collection results, in this paper a nonlinear MPC for
USV for exploration was presented. The strategy shows that
a simple schedule of mission planning can be obtained, and
the simulations proves that large water surfaces can be tracked
in an optimal and flexible way. This results are expected to
outperformed the real exploration of large areas targeting data
collection for water quality analysis.
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