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Collaborative Multi-Radars Tracking by Distributed Auctions

Pierre Larrenie∗ Cédric L R Buron† Frédéric Barbaresco‡

Abstract

In this paper, we present an algorithm which lies in
the domain of task allocation for a set of static au-
tonomous radars with rotating antennas. It allows a
set of radars to allocate in a fully decentralized way
a set of active tracking tasks according to their loca-
tion, considering that a target can be tracked by sev-
eral radars, in order to improve accuracy with which
the target is tracked. The allocation algorithm pro-
ceeds through a collaborative and fully decentralized
auction protocol, using a collaborative auction pro-
tocol (Consensus Based Bundle Auction algorithm).
Our algorithm is based on a double use of our allo-
cation protocol among the radars. The latter begin
by allocating targets, then launch a second round
of allocation if they have resources left, in order to
improve accuracy on targets already tracked. Our
algorithm is also able to adapt to dynamism, i.e. to
take into account the fact that the targets are mov-
ing and that the radar(s) most suitable for Track-
ing them changes as the mission progresses. To do
this, the algorithm is restarted on a regular basis,
to ensure that a bid made by a radar can decrease
when the target moves away from it. Since our al-
gorithm is based on collaborative auctions, it does
not plan the following rounds, assuming that the
targets are not predictable enough for this. Our al-
gorithm is however based on radars capable of an-
ticipating the positions of short-term targets, thanks
to a Kalman filter. The algorithm will be illustrated
based on a multi-radar tracking scenario where the
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radars, autonomous, must follow a set of targets in
order to reduce the position uncertainty of the tar-
gets. Standby aspects will not be considered in this
scenario. It is assumed that the radars can pick up
targets in active pursuit, with an area of uncertainty
corresponding to their distance.

Keywords: Collaborative combat· Distributed
Auctions· Multi-Radar Tracker.

1 Presentation of the problem of
collaborative multi-radar track-
ing

It is considered that each radar has a 2-dimensional
frame in a polar coordinate system centered on it-
self. It is estimated that the influence of elevation is
negligible, so it is not useful to use a 3-dimensional
landmark.

Each target therefore has a position in the radar
reference frame determined by its distance, denoted
, and its azimuth (polar angle), denoted θ 1. The
precision of the measurement made by the radar is
noted: σr in distance and σθ in azimuth. The result-
ing measurement uncertainty is represented as an el-
lipse. The measure itself corresponds to a2centered
2-dimensional Gaussian random variable of covari-

ance K = R(θ)

(
σr 0
0 σθ

)
, where represents the

R (θ) angle θ rotation matrix. During active track-
ing, the aim is therefore to anticipate the next mea-
surement to be performed on the target given the
past of the target and its current position thanks to
the use of a Kalman filter. As for the measurement,
there is also a prediction uncertainty. This is sum-
marized in fig. 1 with the measurement uncertainty
in orange and the prediction uncertainty associated
with the tracking of the target by the radar in pur-

1A zero angle corresponding to “North”
2Corresponding to the Cartesian coordinates of the target

in a global coordinate system determined by a control center

1

mailto:pierre.larrenie@thalesgroup.com
mailto:cedric.buron@isen-ouest.yncrea.fr
mailto:frederic.barbaresco@thalesgroup.com


ple.
The signal received by the radar is assumed to be

subject to Gaussian white noise. The signal to noise
ratio (S/N)3 is assumed to be constant. The value
was set at 13, which corresponds to a common value
in practice. The S/N will influence the standard
deviation of the measurement. The S/N will in fact
correspond to the quality of the output desired by
the user. For a given S/N it is possible to choose the
parameters such as the wavelength to be transmitted
or the transmission power, etc.

We first start by formalizing the problem we are
dealing with. We are interested in the multi-radar
target allocation problem. We first describe the
radar model. We then formalize the single-radar
allocation problem, i.e. the problem where each
target is tracked by at most one radar, and finally
the complete multi-radar allocation problem, where
each target can be tracked by up to two radars.

2 First problem: mono-sensor al-
location

It may be noted that the model described below cor-
responds exactly to a variant of a backpack problem.
This problem can be formalized as follows:

(P1) :



max
∑
i,j

cij · xij

s.t.:∑
i

xij ≤ 1,∀j ∈ J (C1)∑
j

γij · xij ≤ Lti ,∀i ∈ I (L)

xij ∈ {0, 1} ,∀ (i, j) ∈ I × J

Sets :

• I : Set of cardinality radars|I| = Nu

• J : Set of cardinality tasks|J | = Nt

Note that we are placed here, in the framework
I ≪ J .

3The S/N (Signal to Noise Ratio) corresponds to the ratio
between the noise power of the useful signal and the

power of ambient noise.

The variables :

• cij : Corresponds to the utility that the radar i
provides to the system if it handles the task j.
cij is of the following form, with V (Eij) the sur-
face of the ellipse Eij described by the Kalman
filter matrix Pij of the radar i for the target j:

cij = f(V (Eij))

Note that the function f is therefore decreasing
according to V (Eij).

• xij : Boolean variable, xij equals 1 if the radar
i performs the task j , 0 otherwise.

• γij : Cost of the task j for the radar i.

• Lti : Radar budget i.

Constraints :

• Constraint (C1) implies that a task can only be
performed by a single radar.

• The constraint (L) models the load of the radar
which must not exceed its budget. The γij are
therefore similar to costs.

Let be a total of |I|+ |J | constraints.

3 Second problem: multi-sensor
allocation

(P2) :



max
∑
i,j,k

cikj · wikj

s.t.:

wikj = xMij ∧ xOkj
,∀ (i, k) ∈ I2,
∀j ∈ J (Aikj)∑

i

wij ≤ 1,∀j∈ J (C2)∑
j

γij · (xMij + xOkj
− wiij) ≤ Lti ,

∀i ∈ I(L)(
xMij , xOkj

)
∈ {0, 1}2 ,∀ (i, j)∈ I × J

wikj ∈ {0, 1} ,∀ (i, k) ∈ I2, ∀j∈ J

The variables :
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Figure 1: Illustration of uncertainty ellipses during active pursuit

• cikj : Corresponds to the utility that the radar
i and the radar k provide to the system if the
radar i handles the task j as a main radar and
k as an optional radar. cikj is of the following
form, with V (Eij) (respectively V (Ekj)) the sur-
face of the ellipse Eij ( resp . Ekj) described by
the matrix Pij (resp. Pkj) of the Kalman fil-
ter of the radar i (resp. k) for the target j and
V (Eij∩Ekj) the intersection volume of these two
ellipses, as represented on fig. 2:

cikj = f(V (Eij)) + αg(V (Eij ∩ Ekj))

𝑅
𝜃

𝑅′

𝐶′𝐶

Figure 2: Reconciliation of uncertainty ellipses for
two radars following the same target

{
f(V (Eij)) >> αg(V (Eij ∩ Ekj))

αg (V (Eij ∩ Ekj)) > εmin, εmin ∈ R+
∗ , si Eij ∩ Ekj ̸= ∅

where:

• xMij : Boolean variable, xMij equals 1 if the
radar i performs the task j as the main radar,
0 otherwise.

• xOij : Boolean variable, xOij equals 1 if the
radar i performs the task j as an optional radar,
0 otherwise.

• wikj : Boolean variable, wikj equals 1 if the
radar i performs the task j as main radar and
the radar k performs the task j as optional
radar, 0 otherwise.

Constraints:

• (Aikj):Constraints making it possible to inter-
face between the objective function and the
other constraints according to the category of
the task for the radar. The operator ∧ cor-
responds to the logical AND operator. The con-
straint summarized here is equivalent to the two
constraints below:

xMij + xOij − 2wikj ≤ 1
xMij + xOij − 2wikj ≥ 0

It may be interesting to note that if wiij = 1
then, it is considered that the task is only per-
formed by a single main radar.

• (C2) : This constraint corresponds to the con-
straint (C1) of the first model. It lists all possi-
ble combinations of 2 sensors that track a tar-
get j. There is at most only one combination
of sensors that can be chosen.
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• (L) : Just like the constraint (L) of , this con-
straint models the load of the radar. If the radar
is tracking the target as main or optional radar,
the term between parentheses equals 1, other-
wise it equals 0 and the load for the task is
therefore not considered.

Let be a total of |I|2 · |J |+ |J |+ |I| constraints.
Note that the present formulation is difficult to

generalize to a coupling of n sensors, because it re-
quires adding n − 1 additional indices which would
increase the number of constraints and Boolean vari-
ables far too much. Moreover, this would make the
problem insoluble4 for a classical solver. However, it
is estimated that in our case, two sensors are more
than enough to have a significant precision on the
target.

4 Adaptation of distributed auc-
tions algorithms for multi-radar
tracking

The approach that we present in this article is based
on the use of two successive CBBA algorithms: the
first to make an allocation as the main radar, the
second as an optional radar. In this section, we pro-
ceed in two steps. We first present the CBBA al-
gorithm and the adaptations we have made to it so
that it can consider the specificities of radars. We
then present the general process, which includes the
CBBA algorithm, allows to consider the interactions
between radars and the dynamism of the mission.

4.1 Adaptation of CBBA to radars

The CBBA (Consensus Based Bundle Auction) al-
gorithm [1] is based on the communication between
the different radars. The messages that the radars
send to each other can be represented as a set of
vectors. The set of vectors that a radar sends to
another one corresponds to its current knowledge of
the system. Using these messages, and therefore the
knowledge of the other speed cameras, each speed
camera can update its knowledge and transmit it in
turn. The transmitted data includes:

4Insoluble in a reasonable time. Indeed, the presence of n
Boolean variables requires performing an enumeration, ie 2n

of possibilities.

• Y , the vector that contains the known winning
bid utility for each target. For a radar i , Y =
(yij)j≤|T |

• Z, the vector that contains the identity of the
radar that won the auction for each target. For
a radar i , Z = (zij)j≤|T |. Thus, by making the
link with Y , if we have Zj = i∗ , then we know
that it is the radar i∗ which made a winning bid
of an amount Yj

• S, which corresponds to a “timestamp” vector,
it makes it possible to manage conflicts by mak-
ing it possible to keep the track of the contacts
between radars. For a radar i, Si = (sik)k≤|A|.
Each component therefore corresponds to the
date of the last message received from each
radar. It therefore makes it possible to deter-
mine which of 2 radars was the last to be in
contact with another one and therefore to se-
lect the most up-to-date information. This vec-
tor is updated when an agent receives a mes-
sage. The values of the agent’s neighbors are
updated with the current time, while the val-
ues of other agents are updated with the most
recent time of the agent’s neighbors:

sik =

{
reception time if k ∈ i.

maxl∈i. slk

In our case, for the allocation as main radar, an-
other vector will also be sent. This is the vector
E = (eij)j≤|T | that groups the ellipses leading to the
winning bids for each target. This notably makes it
possible to calculate intersections with the latter.

The algorithm is divided into 2 main phases:

• A selection phase: the radar calculates the
utility for each of the targets it can process5.
It then selects targets for which it has utility
greater than the winning bid, until it cannot
add any more due to overload, until there are
no more targets it can deal, or that the pro-
posed bids are too low.

An update phase: the radar will open the mes-
sages it has received containing the knowledge of
other radars and update its own according to rules
defined in the form of a table (taken from the article
on the CBBA), represented on table 1.

5i.e., are located within its range of perception and move
sufficiently quickly along the radial axis of the radar
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The transmitter
(radar k) thinks the
winner is:

The recipient (radar
i) thinks the winner
is:

Action taken by i

k i If ykj > yij → update
k update
m /∈ {i, k} If ykj > yij andskm > sim → update
none update

i i leave unchanged
k Reset
m /∈ {i, k} if skm > sim reset
none leave unchanged

m /∈ {i, k} i If ykj > yij andskm > sim → update
k ifskm > sim → update

otherwise → reset
m ifskm > sim → update
n /∈ {i, k,m} if skm > sim andskn > sin → update

if skm > sim andykj > yij → update
if skn > sin andsim > skm → reset

none ifskm > sim → update
none i leave unchanged

k update
m /∈ {i, k} ifskm > sim → update
none leave unchanged

Table 1: CBBA Update Table

The actions shown in the table are as follows:

• leave unchanged: Yi and Zi all three remain
unchanged

• update (for zkj = m and zij = n): yij ← ykj ,
zij ← zkj ,eij ← ekj ,

• reset: yij ← 0 , zij ← , eij ←

In the static case, when all the radars have the
same beliefs, we say that the consensus is estab-
lished. That is to say that a distributed allocation
conflict-free could be found; this therefore consti-
tutes the end of the algorithm.

The CBBA algorithm has a 50% performance
guarantee, i.e., in the worst case, the global solu-
tion obtained is greater than half of the optimal so-
lution. Certain assumptions are necessary to ensure
this convergence, the main one being the Diminish-
ing Marginal Gain (DMG) constraint. We note bi
all the tasks allocated to the radar i. The DMG
constraint is as follows:
cij = cij (bi) ≥ cij (bi ⊕ b) ∀b (DMG)

The constraint (DMG) reflects the fact that the
utility for the same target must be decreasing in the
number of tasks.

In our case, we also want to balance the loads of
the radars, i.e., to make sure that a single radar will
not take the maximum of tasks while leaving the
others unoccupied. To respect this constraint, we
added a bias:

cCBBA
ij =

cij
|bi|

4.2 General loop, interaction and dy-
namism

The algorithm operates in a closed loop, where the
algorithm is executed at each time step; in particu-
lar, the agent makes an allocation as the main radar,
then it makes the allocation as an optional radar if
it has remaining budget. Each allocation is made
through a CBBA algorithm, and therefore includes
the two phases of the algorithm (auction and con-
sensus) explained above. It therefore receives and
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sends information on its allocation as main and op-
tional radar at each time step. The dynamism as-
pect, which completes the global loop of the algo-
rithm, is explained below.

The interactive aspect can be understood in the
following way: on the one hand, a radar does not
take into consideration the targets which it follows
as main radar in the list of targets which it can take
as secondary radar (that wouldn’t matter). On the
other hand, the ellipses sent by the radars are taken
into account by the other radars (whether they are
ellipses sent directly by the neighbors of the radar
or transmitted with the winning bids step by step).
It is these ellipses which make it possible to perform
the utility calculation for the allocation as a sec-
ondary radar, and which therefore make it possible
to calculate the utility function of the radar for the
target. Another aspect of coupling is how the bud-
get is managed. Indeed, when the agent arrives at
the stage of allocation as main radar, it considers its
budget as all of its remaining budget plus the budget
allocated as optional radar. If ever a new allocation
as main radar is possible, it deallocates the tasks as
optional radar with the lowest utility, and performs
a reset as described in the previous section.

To take account of the dynamic aspect of our
problem, we only considered that the consensus was
never reached. Thus, all auctions concerning a tar-
get are not considered closed unless the target in
question has not been seen throughout the system
for a certain period of time. This delay must take
into account the fact that all the radars of the system
are not in direct communication. After this delay,
the radar deletes the knowledge (which has become
useless) that it had on the target and transmits the
information. In the case where the target can be
perceived again by the system, the latter behaves in
the same way as for the appearance of a new target,
namely that it creates the knowledge associated with
it. After each allocation step (as main radar and op-
tional radar), the latter performs the tasks to which
it has allocated itself.

So the general loop (repeated forever) is as follows.

1. The radar makes the selection step as the main
radar. To do this, it calculates the uncertainty
ellipses for each target, and its utility function;
it also applies the Kalman filters of all the tar-
gets it is already tracking.

2. If it has remaining radar time budget, the radar

proceeds to the selection step as an optional
radar on all the targets that are not already
tracked as the main radar (with its remaining
budget).

3. The radar proceeds to the consensus stage as
the primary radar. The vectors Y,Z,E and S
as main radars are updated; vectors are sent to
neighbors.

4. The radar then proceeds to the consensus stage
as an optional radar. Vectors Y,Z and S as
optional radars are updated; vectors are sent to
neighbors.

5. The radar tracks the targets it has selected, pos-
sibly by applying its Kalman filter.

Note that since the radar initiates the tracks at
each execution of the two phases of CBBA, which
means that the algorithm does not have time to con-
verge. In practice, this can result in conflicts. This is
the case for a target on the edge between two radars,
and which is increasingly threatening. In this case,
each radar making its decision on a previous value of
the utility of the others, and its own current value,
it will consider that its bid wins the bet. Similarly,
a less and less threatening radar (i.e., whose use-
fulness decreases) will potentially be followed by no
one, each radar considering that the other has a bet-
ter bid than itself. Differentiation from conventional
methods

The method we propose calls into question several
classic points in target allocation. If there is indeed
a method of target allocation by auction, our ap-
proach proposes a different method, where the role
of the auctioneer is in fact distributed on the radars.
The latter therefore hold two roles at once: that of
bidder first, and then that of auctioneer. This fea-
ture is represented by the two phases of the algo-
rithm: the auction phase and the consensus phase.

Another particularity of our approach is that it
allows to allocate a target to several radars, thus
making it possible to take advantage of the intersec-
tion of the ellipses of uncertainties generated by the
different radars, which is not possible in the meth-
ods offered in the state of the art. Finally, we pro-
pose a classic auction, and not a combinatorial auc-
tion. While traditional auctions are generally less ef-
ficient than the combinatorial auctions described in
the state of the art, they are also much faster, which
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allows our approach to achieve a relatively rapid al-
location, particularly in a context where targets are
move quickly.

5 Algorithm illustration

Our approach makes it possible to solve the task
allocation problem in an advantageous way: in the
case where the radars remain in contact, even if the
communication graph evolves during the mission,
this remains possible provided that the graph of con-
nection of the radars remains connected by arc. The
total decentralization of the algorithm makes it pos-
sible to relax the constraint on the communication
graph, which does not require having a radar in di-
rect communication with all the radars, the informa-
tion propagating in the communication graph. In or-
der to make the allocation in a reasonable time, the
calculations of allocation on the targets are done in
an additive manner at the level of each radar, which
makes it possible to reduce the combination thereof.
Finally, by carrying out two sequential auction runs,
our algorithm also takes into account the possible
overlapping of uncertainty ellipses, and thus makes
it possible to generate an allocation favoring more
precise tracking of targets when possible, while pri-
oritizing the tracking of as many targets as possible
(depending on radar capability).

The main means of realization is the deployment
of the CBBA algorithm on radars. To proceed with
this deployment, each radar is provided with a part
of the implementation of the utility function, which
allows it to determine the utility associated with a
target, as well as a decision function which allows it:

1. To bid on the targets it has detected during its
standby phase, considering its own load limits,

2. To receive messages sent by other radars,

3. To calculate the winner for each target accord-
ing to Table 1,

4. Return the updated table.

Radars must also be able to differentiate between
first-round allocation messages – one that tracks
as many targets as possible – and one that im-
proves accuracy by generating an intersection of un-
certainty ellipses. Each radar i proceeds by try-
ing to maximize

∑
j xij ·cij for the main allocation

(resp.
∑

j,k wikj ·cikj for the optional allocation), that
is to say the sum of the utilities corresponding to the
targets that it tracks, while taking into account the
information received from the other radars, in par-
ticular the bids made by the latter.

An example of the way the algorithm works for
allocation of the main radar is represented on fig. 4.
The implementation must also include an additional
target disambiguation mechanism, making it possi-
ble to identify the targets present at several radars,
and in particular a plot merging algorithm, mak-
ing it possible to match the targets of the different
radars. This induces the sending of additional in-
formation enabling this operation to be carried out,
such as the estimated speed and position of the tar-
gets.

6 Results

The implementation of our model has been per-
formed on the MESA framework [2], along with the
Kalman filter package [3], on the same simulator as
the one used in [4]. The fig. 4 shows the simulator:
the radars are represented as blue points while the
targets are represented as red triangles. Main radars
following a target are represented as green lines, op-
tional ones as purple lines. The uncertainty ellipses
are in yellow.

In order to evaluate our work, we compare it to
an optimal allocation, performed with the Coin-OR
Branch and Cut tool (CBC). Results are represented
on fig. 5. The blue (or green) curves correspond to
the decentralized (or centralized) approach. The av-
erage value of each of the simulations and the differ-
ent scenarios for a certain “composition” of Targets
and Radars are presented. Each of the “composi-
tions” of Targets and Radars is represented on the
x-axis as a tuple (Targets, Radars). This allows us
to compare the performance of the centralized and
decentralized approaches with equivalent configura-
tion. The colors of the bars correspond to the decen-
tralized (D) or centralized (C) values, with optional
tracking represented in light colors when relevant.
The standard error (in black) is available for each of
the bars of the different graphs.

Regarding the utility, as shown in the previous
figure, the centralized approach obtains results su-
perior to the decentralized approach. However, it
can be seen that here too, for the decentralized ap-
proach, we obtain a utility clearly higher than the
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(a) initial allocation (b) sending messages

(c) Update (consensus) (d) Bidding & sending messages

(e) Second consensus stage, consensus reached

Figure 3: Master Allocation Method Workflow for Two Targets and Three Radars
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Figure 4: Simulation of the algorithm with 3 radars,
the area where they are able to pick up targets in
active pursuit, and 10 targets. The main track is in
green, the secondary track in purple.

theoretical 50% of the CBBA algorithm compared
to the centralized approach.

Regarding the coverage, we notice that for a con-
stant configuration we obtain equivalent coverage in
“main” tracking. The coverage being weaker for the
coverage for the “optional” tracking.

Regarding the average load, we observe that for
the configurations studied, there is almost no differ-
ence between the centralized and decentralized ap-
proaches. While we would have liked the decentral-
ized approach should have a much lower load than
the centralized approach.

As we can see overall, there are only very small dif-
ferences between the centralized and decentralized
approaches. This can be interpreted as a strength
for the decentralized approach, because the radar
configuration could then be adaptive (one could sup-
pose that the radars are not fixed but can move) but
also resilient, i.e., the global system could continue
to function normally if a connection is cut, which
is not the case with a centralized approach since
there is only one connection with the control center.
Since the load is also more evenly distributed, it can
be assumed that the centralized approach can cope
with a “surprise” attack without a total re-planning,
which is not the case for the centralized approach. It
should be noted that no experiment has been done
with a higher number of radars since the constraint
of the cost of purchasing a set of radars can be very

limiting.

(a) Utility

(b) Coverage

(c) Mean Load of the radars

Figure 5: Evolution of tracking metrics over scenar-
ios generated randomly
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7 Related works

Several works have focused on the use of decentral-
ized approaches for task allocation for sensor, since
the seminal work of Lesser et at. [5]. Since then,
many approaches have been used. Recently, for real
time use cases, auction methods have gained much
interest in the multi-agent community [6, 7] for their
capacity to perform good allocation in an afford-
able time. Many methods have been using auctions
since then to allocate tasks in real-time, including
to robots, sensors and radars (see for instance [8]).

One of the most successful recent algorithms is
CBBA [1]. This algorithm allows to perform the
allocation in a fully decentralized way, the agents
acting both as auctioneers and bidders. This algo-
rithm has since been used several times for sensors
[9, 10]. However, none of them has been taking into
account the specificities of radars, i.e., their collab-
oration through the intersection of their uncertainty
ellipses. Similarly, the challenge of high dynamicity
has been barely studied.

8 Conclusion

In this paper, we presented a novel approach for
allocating target to a team of radars in a totally
decentralized way. This approach is based on a fully
decentralized auction algorithm, CBBA. We showed
that, when taking into account the intersection of
uncertainty ellipses, the results of this algorithm is
comparable to the centralized optimal allocation.

Future works include the design of a more generic
approach, that could handle an arbitrary number of
radars following the same target. We also would like
to make our approach more dynamic, for instance by
including replanning approaches that have been re-
cently proposed to improve CBBA [11] and evaluate
this approach in the highly dynamic setting imposed
by our use-case.
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