Table S3 : The formulas of the different generalized linear mixed models constructed during the analysis of bud's survival and the associated value of AICc's weights, related to the analysis of bud survival.

First, there is the results for the random effect selection and then for the fixed effects selection. Table S4 : The formulas of the different linear mixed models and generalized linear mixed models constructed during the first sexual reproduction analysis and the analysis of the number of eggs produced, and the associated value of AICc's weight, related to the analysis of the timing of sexual reproduction.

First, there is the results for the random effect selection and then for the fixed effects selection. 

Data formatting

The dataframe all (corresponding to asexual_reproduction_indivudual_following.csv) contains the detail of asexual reproduction's following for each individual. data_sum (corresponding to asexual_reproduction_summary.csv) is the summary for each variable per individual of the asexual reproduction's following. surv (corresponding to asexual_reproduction_survival.csv) contains the survival's data. transmission (corresponding to asexual_reproduction_tumoral_transmission.csv) gather the data about the tumoral's transmission during the budding. 

Analysis of the age at the first asexual reproduction

We start by isolating all the data concerning the first reproductive episode, then a Wilcoxon's and a Kolmorogov-Smirnov test are applied on the number of day past before the first reproduction between the heathly and tumorous hydras. The standardized distributions of the first day of reproduction are a significantly different in both groups.

Graphical representation

Budding rate analysis

We start by testing if the random effects of the birthday of the individual and/or the individual are useful to explain the variable. Given that the b4 model do not converge, it has been excluded. The weights of AICc suggest that the first model with the random effect of the individual best fitted the data than the other ones.

Then, we selected now the fixed effects to include. The fixed effect of the interaction between the Status and the Phase seems to be the ones allowing the better explanation of the variable.

The final model take into account the fixed of the interaction between the Status and the Phase, and the random effect of the individual. Final result Graphical representation

Number of bud per reproductive episode analysis

We start by creating a column describing qualitatively the type of reproductive episode observed.

all$bud_type<-with(all,ifelse(Nb_simultanous_buds<2,"simple","multiple")) all$bud_type<-as.factor(all$bud_type)

The random effect is selected. The third and fourth model do not converge, they have been excluded. The second model seems to be the best.

The fixed effects are selected.

sim2_1<-glmmTMB(bud_type~Phase*Status+(1|ID_parent),REML = FALSE,family=binomial(logit),data =all) sim2_2<-glmmTMB(bud_type~Phase+Status+(1|ID_parent),REML = FALSE,family=binomial(logit),data =all) sim2_3<-glmmTMB(bud_type~Phase+(1|ID_parent),REML = FALSE,family=binomial(logit),data =all) sim2_4<-glmmTMB(bud_type~Status+(1|ID_parent),REML = FALSE,family=binomial(logit),data =all) sim2_5<-glmmTMB(bud_type~1+(1|ID_parent),REML = FALSE,family=binomial(logit),data =all) ## model weights ## [1] 0.158 0.332 0.000 0.510 0.000

The fourth model has the better AICc.

The final model take into account the fixed effect of the Status and the random effect of the individual.

sim2_4<-glmmTMB(bud_type~Status+(1|ID_parent),REML = TRUE,family=binomial(logit),data =all)

Finally, model's residuals are checked.

The model selected fit well the data.

Final result

Type of reproductive episode (simple/multiple) Status

Predictors Odds Ratiosstd. Error p

Tumorous status 0.37 0.07

7.363e-08

Observations 751

Graphical representation

Analysis of the gap between two reproductive episode

The random effect is selected. The fourth model do not converge then have been excluded. The first model seems to be the best.

The fixed effect is selected. The second model has the better AICc.

The final model take into account the fixed effect of the Status and the Phase, and the random effect of the individual.

del1_2<-glmmTMB(Delta~Status+Phase+(1|ID_parent),REML = TRUE,family = poisson(log),data=all)

Finally, model's residuals are checked.

The overdispersion and the outlier tests are correct.

Final result

Delta ~ Status + Phase

Predictors Incidence Rate Ratiosstd. Error p

Tumor status 0.81 0.04

3.392e-06

Passage of the 5th week 1.25 0.05

5.208e-08

Graphical representation

Survival time analysis

We start by calculating the survival time.

surv$survival_Time<-with(surv,ifelse(is.na(Death_date),as.numeric(surv$Last_check_date-surv$P arent_birthday),as.numeric(surv$Death_date-surv$Parent_birthday)))

Then we traced the graph of the instantaneous risk over the time.

The instantaneous risk is not linear across the time so we will used a Weibull distribution to model this risk.

survie<-Surv(as.numeric(surv$survival_Time),surv$Censored) modele<-survreg(survie~surv$Status,dist="weibull")

Final result

Survival time ~ Status

Predictors Estimatesstd. Error p

Tumor status 0.39 0.07 6.862e-08

Log(scale) 0.33 0.05

5.883e-15

Observations 62

Graphical representation

Analysis of bud's survival First, the random effect is selected. The first and the fourth model are equal, so we decided to keeps the nested random effect because at the same survey date different batch.

Then, we select the fixed effect. The twelfth model has the better AICc.

The final model take into account the fixed of the Production_phase, and the nested random effect of the Survey_date and the Complet_batch. 

Final result

Analysis of tumor transmission

We begin with isolating, inside the surviving buds, those which are from a tumor strain.

transmission_alive<-subset(transmission,Survival=="Alive") transmission_alive$Bud_status<-as.factor(transmission_alive$Bud_status) tum<-subset(transmission_alive, Status=="Tumor")

Afterward, we select the random effect needed. The last model does not converged, so it has been excluded. The second and the third model have identical AICc so we decided to selected the random effect of the Complet_batch because it has more level than the Survey_date.

devtum41<-glmmTMB(Bud_status~Production_phase*Bud_type+(1|Complet_batch),REML=FALSE, family = binomial(logit),data=tum) devtum42<-glmmTMB(Bud_status~Production_phase+Bud_type+(1|Complet_batch),REML=FALSE, family = binomial(logit),data=tum) devtum43<-glmmTMB(Bud_status~Production_phase+(1|Complet_batch),REML=FALSE, family = binomial (logit),data=tum) devtum44<-glmmTMB(Bud_status~Bud_type+(1|Complet_batch),REML=FALSE, family = binomial(logit), data=tum) devtum45<-glmmTMB(Bud_status~1+(1|Complet_batch),REML=FALSE, family = binomial(logit),data=tu m)

The last model has the better AICc.

The final model take into account no fixed effect, and the random effect of the Complet_batch. The weights of AICc suggest that the model with the random effect fit more to the data than the other one.

Then we select the fixed effects needed. The fixed effect of the interaction between the Status and the Phase seems to be the one allowing the better explanation of the variable.

The final model take into account the fixed of the interaction between the Status and the Phase, and the random effect of the date. Finally, model's residuals are checked to see if the model fit and explain really the data.

Lexical

  Status : the strain from which the individual comes from (tumorous or healthy) ID_parent : the name of each individual Parent_birthday : the date of birth of the individual Survey_date : the date when the survey has been done ID_reproductive_episode : the number attributed to each reproductive episode Delta : the number of day between two reproductive episode Nb_simultanous_buds : the number of bud produce by each individual at each reproductive episode Cum_nb_buds : the cumulative sum of the number of buds for each individual Time : the number of day between the birth and the survey date Week : the number of week past since the birthday of the individual Phase : the age of the individual when it has been placed in the sexual reproduction conditions Nb_buds : the number of bud produce by each individual for each phase Delay : the delay (in days) of each reproductive phase for each individual (considering that the first phase start at the production of the first bud) Mean_simult_buds : the mean number of bud produce by each individual at a reproductive episode per each phase Mean_Delta : the mean number of day between two reproductive episode per each phase Stand_nb_bud : the mean number of bud produce by each individual for each phase on 100 days (calculated by correcting the total number of bud per phase by its delay and multiplied by 100) Time : the number of day between the birth and the survey date Week : the number of week past since the birthday of the individual Death_date : the date of each individual death Spont_Tum_date : the date of apparition of spontaneous tumors on control individuals Spont_tum_event : the observation of spontaneous tumor on control hydra during the experiment Censored : the observation the individual death during the experiment Last_check_date : the date when the last survival measurement had take place Production_phase : the parent's age-class when the bud was produced Batch : the batch number of the parent Bud_type : the type (simple or multiple) of budding episod which from the bud is originated Bud_birthday : the day when the bud was detach Bud_status : the status of the buds one month after their birth Complet_batch : the name of batch composed by the status, the phase and the batch number Survival : the individual's condition (alive or dead)

  b1<-glmmTMB(Stand_nb_bud~Phase*Status+(1|ID_parent),REML = TRUE, family=poisson(log),data = d ata_sum) b2<-glmmTMB(Stand_nb_bud~Phase*Status+(1|Parent_birthday),REML = TRUE, family=poisson(log),da ta = data_sum) b3<-glmmTMB(Stand_nb_bud~Phase*Status+(1|ID_parent)+(1|Parent_birthday),REML = TRUE, family=p oisson(log),data = data_sum) b4<-glmmTMB(Stand_nb_bud~Phase*Status,REML = TRUE, family=poisson(log),data = data_sum)

  b1_1<-glmmTMB(Stand_nb_bud~Phase*Status+(1|ID_parent),REML = FALSE,family=poisson(log),data = data_sum) b1_2<-glmmTMB(Stand_nb_bud~Phase+Status+(1|ID_parent),REML = FALSE,family=poisson(log),data = data_sum) b1_3<-glmmTMB(Stand_nb_bud~Phase+(1|ID_parent),REML = FALSE,family=poisson(log),data = data_s um) b1_4<-glmmTMB(Stand_nb_bud~Status+(1|ID_parent),REML = FALSE,family=poisson(log),data = data_ sum) b1_5<-glmmTMB(Stand_nb_bud~1+(1|ID_parent),REML = FALSE,family=poisson(log),data = data_sum) ## model weights ## [1] 0.994 0.006 0.000 0.000 0.000

  b1_1<-glmmTMB(Stand_nb_bud~Phase*Status+(1|ID_parent),REML = TRUE,family=poisson(log),data = data_sum)Finally, model's residuals are checked to see if the model is equilibrated.Overdispersion, Kolmogorov-Smirnov and outlier test end all correct.

  sim1<-glmmTMB(bud_type~Phase*Status+(1|ID_parent),REML = TRUE, family=binomial(logit),data = all) sim2<-glmmTMB(bud_type~Phase*Status+(1|Parent_birthday),REML = TRUE, family=binomial(logit),d ata = all) sim3<-glmmTMB(bud_type~Phase*Status+(1|ID_parent)+(1|Parent_birthday),REML = TRUE, family=bin omial(logit),data = all) sim4<-glmmTMB(bud_type~Phase*Status,REML = TRUE, family=binomial(logit),data = all) ## model weights ## [1] 0.489 0.511

  del1<-glmmTMB(Delta~Status*Phase+(1|ID_parent),REML = TRUE, family = poisson(log),data=all) del2<-glmmTMB(Delta~Status*Phase+(1|Parent_birthday),REML = TRUE, family = poisson(log),data= all) del3<-glmmTMB(Delta~Status*Phase+(1|ID_parent)+(1|Parent_birthday),REML = TRUE, family = pois son(log),data=all) del4<-glmmTMB(Delta~Status*Phase,REML = TRUE, family = poisson(log),data=all)

  del1_1<-glmmTMB(Delta~Status*Phase+(1|ID_parent),REML = FALSE, family = poisson(log),data=al l) del1_2<-glmmTMB(Delta~Status+Phase+(1|ID_parent),REML = FALSE,family = poisson(log),data=all) del1_3<-glmmTMB(Delta~Status+(1|ID_parent),REML = FALSE,family = poisson(log),data=all) del1_4<-glmmTMB(Delta~Phase+(1|ID_parent),REML = FALSE,family = poisson(log),data=all) del1_5<-glmmTMB(Delta~1+(1|ID_parent),REML = FALSE,family = poisson(log),data=all)

  surv1<-glmmTMB(Survival~Status*Production_phase*Bud_type+(1|Complet_batch)+(1|Survey_date),RE ML=TRUE, family = binomial(logit),data=transmission) surv2<-glmmTMB(Survival~Status*Production_phase*Bud_type+(1|Complet_batch),REML=TRUE, family = binomial(logit),data=transmission) surv3<-glmmTMB(Survival~Status*Production_phase*Bud_type+(1|Survey_date),REML=TRUE, family = binomial(logit),data=transmission) surv4<-glmmTMB(Survival~Status*Production_phase*Bud_type+(1|Survey_date/Complet_batch),REML=T RUE, family = binomial(logit),data=transmission) surv5<-glmmTMB(Survival~Status*Production_phase*Bud_type,REML=TRUE, family = binomial(logit)

  surv4_12<-glmmTMB(Survival~Production_phase+(1|Survey_date/Complet_batch),REML=TRUE, family = binomial(logit),data=transmission) The modele's residuals are checked. ## Object of Class DHARMa with simulated residuals based on 250 simulations with refit = FALS E . See ?DHARMa::simulateResiduals for help. ## ## Scaled residual values: 0.4767229 0.5598669 0.1379513 0.388332 0.02551519 0.02524903 0.852 6626 0.67773 0.8209898 0.6766341 0.6859425 0.3158154 0.5510649 0.4938672 0.1657359 0.6996305 0.317379 0.6103911 0.2221154 0.5752245 ...

  devtum10<-glmmTMB(Bud_status~Production_phase+Bud_type+(1|Complet_batch)+(1|Survey_date),REML =TRUE, family = binomial(logit),data=tum) devtum20<-glmmTMB(Bud_status~Production_phase+Bud_type+(1|Complet_batch),REML=TRUE, family = binomial(logit),data=tum) devtum30<-glmmTMB(Bud_status~Production_phase+Bud_type+(1|Survey_date),REML=TRUE, family = bi nomial(logit),data=tum) devtum40<-glmmTMB(Bud_status~Production_phase+Bud_type+(1|Survey_date/Complet_batch),REML=TRU E, family = binomial(logit),data=tum) devtum50<-glmmTMB(Bud_status~Production_phase+Bud_type,REML=TRUE, family = binomial(logit),da ta=tum) ## model weights ## [1] 0.125 0.375 0.375 0.125

  devtum45<-glmmTMB(Bud_status~1+(1|Complet_batch),REML=TRUE, family = binomial(logit),data=tu m) The model's residual are checked. . codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 f1<-lm(First_reproduction_age~Status*Phase,data=sexual_reproduction) f2<-lmer(First_reproduction_age~Status*Phase+(1|Cold_placement_date),REML = TRUE,

  f2_1<-lmer(First_reproduction_age~Status*Phase+(1|Cold_placement_date),REML = FALSE,data=sexu al_reproduction) f2_2<-lmer(First_reproduction_age~Status+Phase+(1|Cold_placement_date),REML = FALSE,data=sexu al_reproduction) f2_3<-lmer(First_reproduction_age~Status+(1|Cold_placement_date),REML = FALSE,data=sexual_rep roduction) f2_4<-lmer(First_reproduction_age~Phase+(1|Cold_placement_date),REML = FALSE,data=sexual_repr oduction) f2_5<-lmer(First_reproduction_age~1+(1|Cold_placement_date),REML = FALSE,data=sexual_reproduc tion) ## model weights ## [1] 0.734 0.258 0.000 0.008 0.000

  f2_1<-lmer(First_reproduction_age~Status*Phase+(1|Cold_placement_date),REML = TRUE,data=sexua l_reproduction)

  

  

  

  

  

  

  

  

  

  

  

  Theses tests are not significant, we standardized the variable by dividing by the maximal number of days before the first reproduction for each status. Then we reapply the same tests.

	##
	## Wilcoxon rank sum test with continuity correction
	##
	## data: first_repro[first_repro$Status == "Control", "Time"] and first_repro[first_repro$St
	atus == "Tumor", "Time"]
	## W = 525, p-value = 0.1543
	## alternative hypothesis: true location shift is not equal to 0
	ks.test(first_repro[first_repro$Status=="Control","Time"],first_repro[first_repro$Status=="Tu
	mor","Time"])
	##
	## Two-sample Kolmogorov-Smirnov test
	##
	## data: first_repro[first_repro$Status == "Control", "Time"] and first_repro[first_repro$St
	atus == "Tumor", "Time"]
	## D = 0.22222, p-value = 0.3364
	## alternative hypothesis: two-sided
	ks.test(nctrl,ntum)
	##
	## Two-sample Kolmogorov-Smirnov test
	##
	## data: nctrl and ntum
	## D = 0.44444, p-value = 0.001632
	## alternative hypothesis: two-sided
	wilcox.test(nctrl,ntum)
	##
	## Wilcoxon rank sum test with continuity correction
	##
	## data: nctrl and ntum
	## W = 377.5, p-value = 0.00215

first_repro<-as.data.frame(all[all$ID_reproductive_episode=="1",] ) wilcox.test(first_repro[first_repro$Status=="Control","Time"],first_repro[first_repro$Status= ="Tumor","Time"]) fr_ctrl<-subset(first_repro,Status=="Control") fr_tum<-subset(first_repro,Status=="Tumor") nctrl<-(fr_ctrl$Time/max(fr_ctrl$Time)) ntum<-(fr_tum$Time/max(fr_tum$Time)) ## alternative hypothesis: true location shift is not equal to 0

Code S2 : Code of the analysis of the traits related to sexual reproduction related to STAR Methods. Tumors alter life-history traits in the freshwater cnidarian, Hydra oligactis Justine BOUTRY and Sophie TISSOT R Packages loading library(readr) library(lme4) library(MASS) library(DHARMa) library(MuMIn) library(glmmTMB) library(ggplot2) library(sjPlot) library(ade4) library(RVAideMemoire) library(survival) library(car) library(survminer) library(factoextra) library(ggridges)

Data formatting

The dataframe sexual_reproduction (corresponding to sexual_reproduction.csv) contains the detail of sexual reproduction's following for each individual. The variables Cold_survival_time, Eggs_number and First_reproduction_age are kept in numerical form. The other variables are formatted in the factor form. The model with the random effect of the date has the lower AICc.

Then, it's the fixed effect which is tested. The effect of the interaction is kept.

The final model take into account the fixed of the interaction between the Status and the Phase, and the random effect of the date.

Finally, model's residuals are checked.

The model selected fit well the data. 

Final result